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MP-RESIDUATED LATTICES

SAEED RASOULI1 AND AMIN DEHGHANI2

Abstract. This paper is devoted to the study of a fascinating class of residuated
lattices, the so-called mp-residuated lattice, in which any prime filter contains a
unique minimal prime filter. A combination of algebraic and topological methods
is applied to obtain new and structural results on mp-residuated lattices. It is
demonstrated that mp-residuated lattices are strongly tied up with the dual hull-
kernel topology. Especially, it is shown that a residuated lattice is mp if and only if its
minimal prime spectrum, equipped with the dual hull-kernel topology, is Hausdorff
if and only if its prime spectrum, equipped with the dual hull-kernel topology, is
normal. The class of mp-residuated lattices is characterized by means of pure filters.
It is shown that a residuated lattice is mp if and only if its pure filters are precisely
its minimal prime filters, if and only if its pure spectrum is homeomorphic to its
minimal prime spectrum, equipped with the dual hull-kernel topology.

1. Introduction

Let A be a residuated lattice, F (A) the lattice of filters, and PF (A) the lattice
of principal filters of A. The lattice of coannihilators of A, say Γ(A), is the skeleton
of F (A), and the lattice of coannulets of A, say γ(A), is the skeleton of PF (A).
So (Γ(A); ∨Γ, ∩, {1}, A) is a complete Boolean lattice, in which ∨Γ is the join in the
skeleton, and γ(A) is a sublattice of Γ(A). A is said to be Baer provided that Γ(A)
is a sublattice of F (A), and Rickart provided that γ(A) is a Boolean sublattice of
F (A). Obviously, A is Rickart if and only if γ(A) is both Boolean and a sublattice
of F (A). The latter can be characterized by a property that can be formulated in
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terms of universal algebra, namely that any prime filter contains a unique minimal
prime filter.

Historically, this notion is rooted in a query posed by G. Birkhoff [8, Problem 70]
inspired by M. H. Stone: ”What is the most general pseudocomplemented distributive
lattice in which x∗ ∨ x∗∗ = 1 identically?“ The first solution to this problem belongs
to G. Grätzer and E. Schmidt [20] who gave the name ”Stone lattices“ to this class
of lattices. They characterized stone lattices as distributive pseudocomplemented
lattices in which any pair of incomparable minimal prime ideals is comaximal or
equivalently each prime ideal contains a unique minimal prime ideal. Motivated by
this characterization, W. Cornish [12] studied distributive lattices with zero in which
each prime ideal contains a unique minimal prime ideal under the name of ”normal
lattices“. He observed that a distributive lattice with zero, A, is normal if and only
if given x, y ∈ A such that x ∧ y = 0, x⊥ and y⊥ are comaximal. Cornish used
this terminology in light of H. Wallman [36], who proved that the lattice of closed
subsets of a T1 space satisfies the above annihilator condition if and only if the space is
normal. G. Artico and U. Marconi [5, Lemma β] showed that in a unitary commutative
reduced ring any prime ideal contains a unique minimal prime ideal if and only if
the set of its annulets is a sublattice of its ideals. E. Matlis [23, Proposition 2.1]
proved that the class of commutative PF rings, i.e., a unitary ring with the property
that every principal ideal is flat, introduced by A. Hattori [21, p. 151], is precisely
the class of reduced rings in which any prime ideal contains a unique minimal prime
ideal. P. Bhattacharjee and W. McGovern [7, Theorem 2.6] tied up the notion of PF
rings to the notion of the dual hull-kernel topology. They established that a unitary
commutative ring is a PF ring if and only if its minimal prime spectrum, with the dual
hull-kernel topology, is Hausdorff. This knot was tightened further by M. Aghajani
and A. Tarizadeh [1, Theorem 6.2]. They studied the class of unitary commutative
rings which fulfill the above universal property, under the name of ”mp-rings“. They
gave a good perspective of mp-rings and asserted that a unitary commutative ring is
mp if and only if its prime spectrum, with the dual hull-kernel topology, is normal.

Inspired by the above universal property, many authors have proposed similar
notions, under other names, for various structures over the years, see e.g., normal
lattices [9, 24], conormal lattices [6, 18, 33], normal residuated lattices [32], mp-rings
[1], mp-residuated lattices [31], mp-quantales [16,17], etc (for a discussion about this
terminology, see [33, p. 185] and [22, p. 78]).

It is known that residuated lattices play a critical role in the theory of fuzzy
logic. Lots of logical algebras such as MTL-algebras, divisible residuated lattices,
BL-algebras, MV-algebras, Heyting algebras, and Boolean algebras are subvarieties
of residuated lattices. Residuated lattices are not only important from a logical point
of view but also interesting from an algebraic point of view and have some interesting
algebraic properties.

Given the above discussions, we decided to take a deeper look at mp-residuated
lattices. So the notion of mp-residuated lattices is investigated, and some algebraic and
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topological characterizations are given. Although, the class of mp-residuated lattices
has been investigated by [32], however, here we give some more characterizations for
the class of mp-residuated lattices, which seems to give more light to the topological
situation. Our findings show that some results obtained by some above papers can also
be reproduced via residuated lattices. Also, outcomes show that mp-residuated lattices
can be considered as the dual notion of Gelfand residuated lattices, as asserted in [1]
for rings. So mp-residuated lattices can be studied both as one of the two main pillars
of Rickart residuated lattices (along with quasicomplemented residuated lattices), and
as a dual notion of Gelfand residuated lattices.

This paper is organized into four sections as follows. In Section 2, some definitions
and facts about residuated lattices are recalled, and some of their propositions ex-
tracted. We illustrate this section with some examples of residuated lattices, which
will be used in the following sections. Section 3 deals with mp-residuated lattices.
Theorem 3.1 shows that a residuated lattice is mp if and only if the bounded distribu-
tive lattice of its filters is conormal. Theorem 3.1 (Cornish’s characterization) gives
an element-wise characterization for mp-residuated lattices. Theorem 3.2 shows that
a residuated lattice A is mp if and only if γ(A) is a sublattice of F (A). Theorem 3.3
(Matlis’s characterization) establishes that a residuated lattice A is mp if and only
if A/D(p) is a domain, for any prime filter p of A. The remaining theorems of this
section demonstrate that mp-residuated lattices are strongly tied up with the dual
hull-kernel topology. Theorem 3.7 shows that a residuated lattice is mp if and only if
its prime spectrum is normal with the dual hull-kernel topology. Section 4 deals with
the pure spectrum of an mp-residuated lattice. The pure filters of an mp-residuated
lattice are characterized in Theorem 4.4. As an important result in this section in
Theorem 4.6 is expressed that a residuated lattice is mp if and only if the set of its
minimal prime filters is equal to the its purely-prime filters. Theorem 4.8 verifies that
a residuated lattice is mp if and only if the identity map between its pure spectrum
and its minimal prime spectrum, equipped with the dual hull-kernel topology, is a
homeomorphism. Finally, Corollary 4.2 implies that, like Gelfand residuated lattices,
the pure spectrum of an mp-residuated lattice is Hausdorff.

2. Preliminaries

In this section, some definitions, properties, and results relative to residuated
lattices, which will be used in the following, recalled.

An algebra A = (A; ∨, ∧, ⊙, →, 0, 1) is called a residuated lattice provided that
ℓ(A) = (A; ∨, ∧, 0, 1) is a bounded lattice, (A; ⊙, 1) is a commutative monoid, and
(⊙, →) is an adjoint pair. A residuated lattice A is called non-degenerate if 0 ̸= 1.
For a residuated lattice A, and a ∈ A we put ¬a := a → 0 and an := a ⊙ · · · ⊙ a (n
times), for any integer n. The class of residuated lattices is equational, and so forms
a variety. For a survey of residuated lattices, the reader is referred to [15].
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Remark 2.1. ([10, Proposition 2.6]). Let A be a residuated lattice. The following
conditions are satisfied for any x, y, z ∈ A:

(r1) x ⊙ (y ∨ z) = (x ⊙ y) ∨ (x ⊙ z);
(r2) x ∨ (y ⊙ z) ≥ (x ∨ y) ⊙ (x ∨ z).

Example 2.1 ([34]). Let A6 = {0, a, b, c, d, 1} be a lattice whose Hasse diagram is given
by Figure 1. Routine calculation shows that A6 = (A6; ∨, ∧, ⊙, →, 0, 1) is a residuated
lattice in which the commutative operation ⊙ is given by Table 1 and the operation
→ is given by x → y = ∨{a ∈ A6 | x ⊙ a ≤ y} for any x, y ∈ A6.

⊙ 0 a b c d 1
0 0 0 0 0 0 0

a a a 0 a a
b a 0 a b

c c c c
d d d

1 1

Table 1. Cayley table for “⊙” of
A6

0

c
a

b
d

1

Figure 1. Hasse diagram of A6

Example 2.2. Let A8 = {0, a, b, c, d, e, f, 1} be a lattice whose Hasse diagram is given
by Figure 2. Routine calculation shows that A8 = (A8; ∨, ∧, ⊙, →, 0, 1) is a residuated
lattice in which the commutative operation ⊙ is given by Table 2 and the operation
→ is given by x → y = ∨{a ∈ A8 | x ⊙ a ≤ y} for any x, y ∈ A8.

Let A be a residuated lattice. A non-void subset F of A is called a filter of A
provided that x, y ∈ F implies x ⊙ y ∈ F , and x ∨ y ∈ F , for any x ∈ F and y ∈ A.
The set of filters of A is denoted by F (A). A filter F of A is called proper if F ̸= A.
For any subset X of A, the filter of A generated by X is denoted by F (X). For each
x ∈ A, the filter generated by {x} is denoted by F (x) and said to be principal. The set
of principal filters is denoted by PF (A). Following [19, §5.7], a join-complete lattice
A, is called a frame if it satisfies the join infinite distributive law (JID), i.e., for any
a ∈ A and S ⊆ A, a ∧ ∨

S = ∨{a ∧ s | s ∈ S}. A frame A is called complete provided
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⊙ 0 a b c d e f 1
0 0 0 0 0 0 0 0 0

a a 0 a a a a a
b 0 0 0 0 b b

c c a c a c
d a a d d

e c d e
f f f

1 1

Table 2. Cayley table for ⊙ of
A8

0

a b

c d

e f

1

Figure 2. Hasse diagram of A8

that A is a complete lattice. According to [15], (F (A); ∩,⊻, 1, A) is a complete frame,
in which ⊻F = F (∪F), for any F ⊆ F (A).

Example 2.3. Consider the residuated lattice A6 from Example 2.1 and the residuated
lattice A8 from Example 2.2. The sets of their filters are presented in Table 3.

Filters
A6 {1}, {a, b, d, 1}, {c, d, 1}, {d, 1}, A6
A8 {1}, {a, c, d, e, f, 1}, {c, e, 1}, {f, 1}, A8

Table 3. The sets of filters of A6 and A8

The proof of the following proposition has a routine verification, and so it is left to
the reader.

Proposition 2.1. Let A be a residuated lattice and F be a filter of A. The following
assertions hold for any x, y ∈ A:

(1) F (x) = {a ∈ A | xn ≤ a, for some integer n};
(2) x ≤ y implies F (y) ⊆ F (x);



588 S. RASOULI AND A. DEHGHANI

(3) F (x) ∩ F (y) = F (x ∨ y);
(4) F (x) ⊻F (y) = F (x ⊙ y);
(5) PF (A) is a sublattice of F (A).

The following proposition gives a characterization for the comaximal filters of a
residuated lattice.

Proposition 2.2. Let A be a residuated lattice and F, G two proper filters of A. The
following assertions are equivalent:

(1) F and G are comaximal, i.e., F ⊻G = A;
(2) there exist f ∈ F and g ∈ G such that f ⊙ g = 0;
(3) there exists a ∈ A such that a ∈ F and ¬a ∈ G.

Proof. (1)⇒(2) It is evident by Proposition 2.1.
(2)⇒(3) Let f ⊙ g = 0, for some f ∈ F and g ∈ G. This implies that g ≤ ¬f , and

the result hold.
(3)⇒(1) It is evident. □

Let A be a residuated lattice. A maximal element in the set of proper filters of
A is called maximal, and the set of maximal filters of A denoted by max(A). A
meet-irreducible element in the set of proper filters of A is called prime, and the set
of prime filters of A denoted by Spec(A). Since F (A) is a distributive lattice, so
max(A) ⊆ Spec(A). Zorn’s lemma verifies that any proper filter is contained in a
maximal filter, and so in a prime filter.

A non-empty subset C of A is called ∨-closed if it is closed under the join operation,
i.e x, y ∈ C implies x ∨ y ∈ C .

Theorem 2.1. ([25, Theorem 3.18]). If C is a ∨-closed subset of A which does not
meet the filter F , then F is contained in a filter P which is maximal with respect to
the property of not meeting C ; furthermore P is prime.

A minimal element in the set of prime filters of a residuated lattice A is called
minimal prime, and the set of minimal prime filters of A denoted by min(A). For the
basic facts concerning prime filters of a residuated lattice, the reader is referred to
[25].

Example 2.4. Consider the residuated lattice A6 from Example 2.1 and the residuated
lattice A8 from Example 2.2. The sets of their maximal, prime, and minimal prime
filters are presented in Table 4.

Proposition 2.3 ([25]). Let A be a residuated lattice. The following assertions hold.

(1) A subset P of A is a minimal prime filter if and only if Ṗ
def.= A \ P is a

∨-closed subset of A which it is maximal with respect to the property of not
containing 1.

(2) Any prime filter of a residuated lattice contains a minimal prime filter.
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Prime filters
Maximal filters Minimal prime filters

A6 {a, b, d, 1}, {c, d, 1} {1}
A8 {a, c, d, e, f, 1} {c, e, 1}, {f, 1}

Table 4. The sets of maximal, prime, and minimal prime filters of A6
and A8

(3) A prime filter P of A is minimal prime if and only if for any x ∈ A, P contains
precisely one of x or x⊥.

Let A be a residuated lattice and Π a collection of prime filters of A. For a subset
π of Π we set k(π) = ⋂

π, and for a subset X of A we set hΠ(X) = {P ∈ Π | X ⊆ P}
and dΠ(X) = Π \ hΠ(X). The collection Π can be topologized by taking the collection
{hΠ(x) | x ∈ A} as a closed (an open) basis, which is called the (dual) hull-kernel
topology on Π and denoted by Πh(d). The generated topology by τh ∪ τd on Spec(A)
is called the patch topology and denoted by τp. As usual, the Boolean lattice of all
clopen subsets of a topological space Aτ shall be denoted by Clop(Aτ ). For a detailed
discussion on the (dual) hull-kernel and patch topologies on a residuated lattice, we
refer to [29].
Proposition 2.4 ([29]). Let A be a residuated lattice. We have:

Clop(Specd(A)) = {h(e) | e ∈ β(A)}.

Let Π be a collection of prime filters in a residuated lattice A. In the following, for
a given subset π of Π, clΠ

h(d)(π) stands for the closure of π in the topological space
(Π, τh(d)). If π = {P} for some prime filter P of A, then clΠ

h(d)({P}) is simply denoted
by clΠ

h(d)(P ). If Π is understood, it will be dropped.
Lemma 2.1. ([29, Theorem 3.14]). Let A be a residuated lattice, Π a collection of
prime filters of A and p, q ∈ Π. The following assertions are equivalent:

(1) p ⊆ q;
(2) q ∈ clh(p);
(3) p ∈ cld(q).
The following proposition characterizes the open sets of the spectrum of a residuated

lattice w.r.t the dual hull-kernel topology.
Proposition 2.5. Let A be a residuated lattice. The open sets of Specd(A) are
precisely of the form {p ∈ Spec(A) | p ∩ X ̸= ∅}, where X is a subset of A.
Proof. Let U be an open set in Specd(A). So U = ⋃

x∈X h(x), for some X ⊆ A. It is
clear that ⋃

x∈X h(x) = {p ∈ Spec(A) | p ∩ X ̸= ∅}. □

Remark 2.2. Let A be a residuated lattice. By Proposition 2.5, it follows that the
closed sets of Specd(A) are precisely of the form {p ∈ Spec(A) | p ∩ X = ∅}, where
X is a subset of A.
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Let Π be a collection of prime filters in a residuated lattice A. Following G. De
Marco [13, p. 290], if π is a subset of Π, its specialization (generalization) in Π, SΠ(π)
(GΠ(π)), is the set of all primes in Π, which contain (are contained in) some prime
belonging to π. One can see that S and G are closure operators on the power set of
Spec(A). A fixed point of S (G ) is called SΠ-stable (GΠ-stable). If Π is understood,
it will be dropped. Notice that for any subset B of A, ⋃

b∈B h(b)(⋃
b∈B d(b)) is S (G )-

stable. The following theorem characterizes the closed sets of the (dual) hull-kernel
topology.

Theorem 2.2. ([29, Theorem 4.30]). Let A be a residuated lattice and π a subset
of Spec(A). π is closed under the dual hull-kernel topology if and only if it is closed
under the patch topology and G -stable.

For a residuated lattice A the hull-kernel topology on min(A) is a well-studied
structure. For example, it is known that the hull-kernel topology on min(A) is totally
disconnected [29, Corollary 5.5], and classifications of when min(A) is compact [29,
Theorem 5.10]. In the sequel, we fucose on the dual hull-kernel topology on min(A).
In particular, we characterize when mind(A) is Hausdorff.

Proposition 2.6. ([29, Theorem 4.6 (2)]). Let A be a residuated lattice. Specd(A)
and mind(A) are compact.

Let A be a residuated lattice. For any subset X of A, we set X⊥ = kd(X),
Γ(A) = {X⊥ | X ⊆ A}, γ(A) = {x⊥ | x ∈ A}, and λ(A) = {x⊥⊥ | x ∈ A}. Elements
of Γ(A), γ(A) and λ(A) are called coannihilators, coannulets, and dual coannulets of
A, respectively.

Let A be a ∧-semilattice with zero. Recall [19, §I.6.2] that an element a∗ ∈ A is
a pseudocomplement of a ∈ A if a ∧ a∗ = 0 and a ∧ x = 0 implies that x ≤ a∗. An
element can have at most one pseudocomplement. A is called pseudocomplemented if
every element of A has a pseudocomplement. The set S(A) = {a∗ | a ∈ A} is called
the skeleton of A and we have S(A) = {a ∈ A | a = a∗∗}. By [19, Theorem 100],
it follows that if A is a pseudocomplemented complete ∧-semilattice, then S(A) is a
complete Boolean lattice, where the meet in S(A) is calculated in A, the join in S(A)
is given by ∨X = (∧{x∗ | x ∈ X})∗, for any X ⊆ S(A), and 1 def.= 0∗.

Applying Proposition 2.11 from [27], it follows that Γ(A) is the skeleton of F (A)
and γ(A) is the skeleton of PF (A). So (Γ(A); ∨Γ, ∩, {1}, A) is a complete Boolean
lattice, in which ∨Γ is the join in the skeleton, and γ(A) is a sublattice of Γ(A). A is
said to be Baer provided that Γ(A) is a sublattice of F (A), and Rickart provided that
γ(A) is a Boolean sublattice of F (A). For the basic facts concerning coannihilators
and coannulets of residuated lattices we refer to [26].

Let A be a residuated lattice. For a ∨-closed subset I of ℓ(A), set ω(I) = {a ∈ A |
a ∨ x = 1, for some x ∈ I}, and Ω(A) = {ω(I) | I ∈ id(ℓ(A))}. Using Proposition 3.4
from [32], it follows that Ω(A) ⊆ F (A), and so elements of Ω(A) are called ω-filters of
A. For an ω-filter F of A, IF denoted an ideal of ℓ(A), which satisfies F = ω(IF ). [32,
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Proposition 3.7] shows that (Ω(A); ∩, ∨ω, {1}, A) is a bounded distributive lattice, in
which F ∨ω G = ω(IF ⋎ IG), for any F, G ∈ Ω(A) (by ⋎, we mean the join operation
in the lattice of ideals of ℓ(A)). For any proper filter H of A we set D(H) = ω(Ḣ).
Elements of D({1}) shall be called the unit divisors of A. For the basic facts concerning
ω-filters of a residuated lattice, interested readers are referred to [32].
Proposition 2.7 ([32]). Let A be residuated lattice. The following assertions hold:

(1) γ(A) is a sublattice of Ω(A);
(2) D(p) = kG (p) = k(G (p) ∩ min(A)), for any prime filter p of A;
(3) a prime filter p of A is minimal prime if and only if p = D(p).

Definition 2.1. A residuated lattice A is said to be a domain provided that it has
no unit divisors.

The following proposition has a routine verification, and so its proof is left to the
reader.
Proposition 2.8. Let A be a residuated lattice and F a filter of A. The quotient
residuated lattice A/F is a domain if and only if F is prime.

3. Mp-Residuated Lattices

In this section, the notion of an mp-residuated lattice is investigated, and some
topological characterizations of them are extracted.
Definition 3.1. A residuated lattice A is called mp provided that any prime filter of
A contains a unique minimal prime filter of A.
Example 3.1. One can see that the residuated lattice A6 from Example 2.1 is mp and
the residuated lattice A8 from Example 2.2 is not mp.
Example 3.2. The class of MTL-algebras, and so, MV-algebras, BL-algebras, and
Boolean algebras are some subclasses of mp-residuated lattices.

Let A be a bounded distributive lattice. A is said to be:
• normal provided that for all x, y ∈ A, x ∨ y = 1 implies there exist u, v ∈ A

such that u ∨ x = v ∨ y = 1 and u ∧ v = 0;
• conormal provided that for all x, y ∈ A, x ∧ y = 0 implies there exist u, v ∈ L

such that u ∧ x = v ∧ y = 0 and u ∨ v = 1.
Remark 3.1. In [12] and [24], the above nomenclatures are reversed. We have picked
the version of these definitions from [33, Definition 4.3] and [22, p. 67] because of the
author’s discussion in [22, p. 78].

The following result shows that a residuated lattice is mp if and only if the bounded
distributive lattice of its filters is conormal.
Proposition 3.1. Let A be a residuated lattice. The following assertions are equiva-
lent:
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(1) the bounded distributive lattice F (A) is conormal;
(2) the bounded distributive lattice PF (A) is conormal;
(3) A is mp.

Proof. (1)⇒(2) Let x, y ∈ A, such that F (x) ∩ F (y) = {1}. Then there exist
F, G ∈ F (A) such that F ⊻ G = A and F ∩ F (x) = G ∩ F (y) = {1}. Thus there
exist f ∈ F and g ∈ G such that f ⊙ g = 0. This implies that F (f) ⊻F (g) = A and
F (f) ∩ F (x) = F (g) ∩ F (y) = {1}.

(2)⇒(3) Using Proposition 2.1, it is straightforward.
(3)⇒(1) Let F and G be two filters of A such that F ∩ G = {1}. By distributivity

of A, with a little bit of effort, we can show that F⊥ ⊻G⊥ = A. □

The following theorem gives some algebraic criteria for mp-residuated lattices,
inspired by the one obtained for normal lattices [12, Theorem 2.4].

Theorem 3.1 (Cornish’s characterization). Let A be a residuated lattice. The follow-
ing assertions are equivalent:

(1) any two distinct minimal prime filters are comaximal;
(2) A is mp;
(3) for any prime filter p of A, D(p) is a prime filter of A;
(4) for any maximal filter m of A, D(m) is a prime filter of A;
(5) for any pairwise elements x and y in A, i.e, x ∨ y = 1, x⊥ ⊻ y⊥ = A;
(6) for any pairwise elements x and y in A, there exists a ∈ A such that a ∈ x⊥

and ¬a ∈ y⊥;
(7) for any x, y ∈ A, (x ∨ y)⊥ = x⊥ ⊻ y⊥;
(8) for any x, y ∈ A, (x ∨ y)⊥ = A implies x⊥ ⊻ y⊥ = A.

Proof. (1)⇒(2) It is evident.
(2)⇒(3) It follows by Proposition 2.7 (2).
(3)⇒(4) It is evident.
(4)⇒(5) Let x and y be two pairwise elements in A. Assume by absurdum that

x⊥ ⊻ y⊥ ⊈ A. So x⊥ ⊻ y⊥ ⊆ m, for some maximal filter m of A. Applying Proposition
2.3 (3), it verifies that x, y /∈ D(m); a contradiction.

(5)⇒(6) It follows by Proposition 2.2.
(6)⇒(7) Let a ∈ (x ∨ y)⊥. Let b = a ∨ x. Obviously, b and y are pairwise. There

exists s ∈ A such that s ∈ b⊥ and ¬s ∈ y⊥. By (r2), it follows that a ≥ (a ∨ s) ⊙ ¬s.
This establishes that a ∈ x⊥ ⊻ y⊥. The converse inclusion is evident.

(7)⇒(8) It is evident.
(8)⇒(1) Let m and n be distinct minimal prime filters of A. Consider x ∈ m \ n

and y ∈ n \ m. Using Proposition 2.3 (3), there exists z ∈ x⊥ \ m. Let a = y ∨ z. So
(a ∨ x)⊥ = A, and this implies that A = a⊥ ⊻ x⊥ ⊆ m ⊻ n. □

Theorem 3.2. Let A be a residuated lattice. The following assertions are equivalent:
(1) for any F, G ∈ Ω(A), F ∨ω G = A implies F ⊻G = A;
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(2) A is mp;
(3) for any F ⊆ Ω(A), ⊻F ∈ Ω(A);
(4) (Ω(A); ∩,⊻) is a frame;
(5) (γ(A); ∩,⊻) is a lattice.

Proof. (1)⇒(2) Let x ∨ y = 1 for some x, y ∈ A. Since γ(A) is a sublattice of Ω(A)
so we have x⊥ ∨ω y⊥ = x⊥ ∨Γ y⊥ = (x ∨ y)⊥ = A.

(2)⇒(3) Let {Fi}i∈I be a family of ω-filters of A. Obviously, we have ⊻i∈IFi ⊆
ω(⋎i∈IIi). Consider a ∈ ω(⋎i∈IIi). Hence, there exists x ∈ ⋎i∈IIi such that a ∈ x⊥.
This states that x ≤ xi1 ∨ · · · ∨ xin , for some integer n and xij

∈ Iij
. We have the

following sequence of formulas:
x⊥ ⊆ (xi1 ∨ · · · ∨ xin)⊥ = x⊥i1 ⊻ · · · ⊻ x⊥in

⊆ Fi1 ⊻ · · · ⊻ Fin ⊆ ⊻i∈IFi.

(3)⇒(4) It is evident.
(4)⇒(5) It follows by Proposition 2.7 (1).
(5)⇒(1) Let F, G ∈ Ω(A) such that F ∨ω G = A. Since ω(IF ⋎ IG) = A, so

1 ∈ IF ⋎ IG. This establishes that f ∨ g = 1, for some f ∈ IF and g ∈ IG. Hence,
A = (f ∨ g)⊥ = f⊥ ∨Γ g⊥ = f⊥ ⊻ g⊥ ⊆ F ⊻G. □

E. Matlis [23, Proposition 2.1] gave a criterion for a ring to be PF and showed that
a unitary commutative ring A is PF if and only if for any maximal ideal m of A, Am be
an integral domain. Motivated by this, the following theorem, which is an immediate
consequence of Proposition 2.8 and Theorem 3.1, can be extracted for mp-residuated
lattices.

Theorem 3.3 (Matlis’s characterization). Let A be a residuated lattice. The following
assertions are equivalent:

(1) A is mp;
(2) A/D(p) is a domain, for any prime filter p of A;
(3) A/D(m) is a domain, for any maximal filter m of A.

The next theorem gives some necessary and sufficient conditions for the collection
of minimal prime filters in a residuated lattice to be a Hausdorff space with the dual
hull-kernel topology.

Theorem 3.4. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) mind(A) is Hausdorff.

Proof. (1)⇒(2) Let m and n be two distinct minimal prime filters of A. So, there
exist x ∈ m and y ∈ n such that x ⊙ y = 0. This follows that h(x) ∩ h(y) = ∅, and
the result holds.

(2)⇒(1) Let m and n be two distinct minimal prime filters of A. So, there exist
x, y ∈ A such that m ∈ h(x), n ∈ h(y), and h(x ⊙ y) = ∅. This shows that A =
x⊥⊥ ⊻ y⊥⊥ ⊆ m ⊻ n. □
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Remark 3.2. By Proposition 2.6 and Theorem 3.4, A is an mp-residuated lattice if
and only if mind(A) is a T4 space.

Theorem 3.5. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) h(m) is closed in Specd(A) for any m ∈ min(A).

Proof. (1)⇒(2) It follows by Proposition 2.3(2) and Theorem 2.2.
(2)⇒(1) Assume by absurdum that there exist two distinct minimal prime filters

m and n of A such that m ⊻ n ̸= A. This implies that there exists a prime filter P
containing in m and n, and so h(m) ∩ h(n) ̸= ∅. □

Recall that a retraction is a continuous mapping from a topological space into a
subspace which preserves the position of all points in that subspace.

Theorem 3.6. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) mind(A) is a retraction of Specd(A).

Proof. (1)⇒(2) Define f : Spec(A) → min(A) by f(p) = mp. Set H = {p ∈ Spec(A) |
a /∈ f(p)} and X = (⋃

H)c. Consider a ∈ A. Let p ∈ f−1(dm(a)). This implies
that p ∈ H, and so p ∩ X = ∅. Conversely, suppose that p ∩ X = ∅. Let a ∈ f(p).
So for any n ∈ dm(a) there exist xn ∈ n and yn ∈ f(p) such that xn ⊙ yn = 0.
Obviously, dm(a) ⊆ ⋃

n∈dm(a) h(xn). Since dm(a) is a compact subspace of mind(A),
so dm(a) ⊆ ⋃

n∈ℑ h(xn) = h(∨
n∈ℑ xn), where ℑ is a finite subset of dm(a). Letting

y = ⊙
n∈ℑ yn, we have y ∈ f(p) and x ⊙ y = 0. So, there exists a prime filter Q of A

such that Q ∩ X = ∅ and y ∈ Q. Since a /∈ f(Q), so x ∈ Q; a contradiction. This
shows that f−1(dm(a)) = {p | p ∩ X = ∅}. So, the result holds by Remark 2.2.

(2)⇒(1) Let f : Specd(A) → mind(A) be a retraction and m ∈ min(A). Suppose
that m ⊆ p, for some p ∈ Spec(A). By Lemma 2.1, we have m ∈ cl

Spec(A)
d (p) and by

continuity of f and T1 we obtain that

m = f(m) ∈ f(cl
Spec(A)
d (p)) ⊆ cl

min(A)
d (f(p)) = {f(p)}.

This shows that m is the unique minimal prime filter of A contained in p. □

Remark 3.3. By Theorem 3.6, if A is an mp-residuated lattice, the map Spec(A)⇝
min(A), which sends any prime filter p of A to the unique minimal prime filter of A
containing in it, is the unique retraction from Specd(A) into mind(A).

The next result, which can be compared with Proposition 2.4, characterizes the
clopen subsets of mind(A) where A is an mp-residuated lattice.

Corollary 3.1. Let A be an mp-residuated lattice. We have:

Clop(min
d

(A)) = {h(e) ∩ min(A) | e ∈ β(A)}.
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Proof. By Theorem 3.6, there exists a retraction f : Specd(A) → mind(A). Let
U ∈ Clop(mind(A)). So f←(U) ∈ Clop(Specd(A)). Thus f←(U) = h(e), for some e ∈
β(A), due to Proposition 2.4. This implies that U = f←(U)∩min(A) = h(e)∩min(A).
The converse is evident. □

Theorem 3.7. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) Specd(A) is a normal space.

Proof. (1)⇒(2) Using Theorem 3.6 and Remark 3.3, there exists a retraction f :
Specd(A) → mind(A), which sends any prime filter of A to the unique minimal prime
filter of A contained in p, for any prime filter p of A. By Remark 3.2, min(A) is
a T4 space, and so f is a closed map. Let C1 and C2 be two disjoint closed sets
in Specd(A), so f(C1) and f(C2) are disjoint closed sets in mind(A). Since mind(A)
is normal, there exist disjoint open neighbourhoods N1 and N2 of f(C1) and f(C2)
in mind(A), respectively. One can see that f−1(N1) and f−1(N2) are disjoint open
neighbourhoods of C1 and C2 in Specd(A), respectively.

(2)⇒(1) Let m ∈ min(A). If p ∈ Cl
Spec(A)
d (m), p ⊆ m, and this yields that p = m.

This shows that {m} is a closed subset of Specd(A). Now, let m1,m2 ∈ min(A). Thus,
there exist a, b ∈ A such that h(a) and h(b) are disjoint neighborhood of m1 and m2 in
Specd(A), respectively. This shows that hm(a) and hm(b) are disjoint neighborhood
of m1 and m2 in mind(A), respectively. □

Let A be a residuated lattice. Consider the following relation ı = {(p, q) ∈ X2 |
p ⊻ q ≠ A} on X = Spec(A). Obviously, ı is reflexive and symmetric. Let ı be the
transitive closure of ı.

Theorem 3.8. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) for a given minimal prime filter m of A, ı(m) = h(m).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. Consider p ∈ ı(m). So, there
exists a finite set {p1, . . . , pn} of elements of Spec(A) with n ≥ 2 such that p1 = p,
pn = m, and (pi, pi+1) ∈ ı, for all 1 ≤ i ≤ n − 1. If n = 2, then p ⊻ m ̸= A, and so
m ⊆ p. Assume that n > 2. We have pn−2 ⊻ pn−1 ≠ A and m ⊆ pn−1. This verifies
that (pn−2,m) ∈ ı. Hence, in the equivalency (p,m) ∈ ı, the number of the involved
primes is reduced to n − 1. Therefore by the induction hypothesis, m ⊆ p. This shows
that ı(m) ⊆ h(m). The inverse inclusion is evident.

(2)⇒(1) It is evident. □

Let Aτ be a topological space, and E be an equivalence relation on A. In the
following, by Aτ /E we mean the quotient of the space Aτ modulo E. By [14, p. 90],
the quotient map π : Aτ → Aτ /E is continuous, and a mapping f of the quotient
space Aτ /E to a topological space Bζ is continuous if and only if the composition
f ◦ π is continuous.
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Corollary 3.2. Let A be a residuated lattice. A is mp if and only if the map η :
mind(A) → Specd(A)/ı, given by m⇝ ı(m), is a homeomorphism.

Proof. Let mind(A) is a Hausdorff space. It is evident that Specd(A)/ı = {ı(m) |
m ∈ min(A)}, and this implies that η is a surjection. The injectivity of η follows by
Theorem 3.8, and the continuity of it follows by η = π ◦ i, where i is the inclusion
map. By Remark 3.3 and Theorem 3.6, it follows that η−1 ◦ π is a retraction, and
this verifies the continuity of η−1, see [14, Proposition 4.2.4]. This shows that η is
a homeomorphism. Conversely, let η : mind(A) → Specd(A)/ı be a homeomorphism.
Obviously, η−1 ◦π is a retraction, and so mind(A) is a Hausdorff space due to Theorem
3.6. □

Let A be a residuated lattice. Consider the relation ȷ = {(p, q) ∈ X2 | ṗ⋎ q̇ ̸= A}
on X = Spec(A). Obviously, ȷ is reflexive and symmetric. Let ȷ be the transitive
closure of ȷ.

Remark 3.4. For prime filters p and q of a residuated lattice A. One can see that,
using [32, Proposition 3.5], ṗ⋎ q̇ = A if and only if D(p) ⊻D(q) = A.

Theorem 3.9. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) for a given minimal prime filter m of A, ȷ(m) = h(m).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. Consider p ∈ ȷ(m). So there
exists a finite set {p1, . . . , pn} of elements of Spec(A) with n ≥ 2 such that p1 = P ,
pn = m, and (pi, pi+1) ∈ ȷ, for all 1 ≤ i ≤ n − 1. If n = 2, then ṗ ⋎ ṁ ̸= A, and
so m ⊆ p due to Proposition 2.3. Assume that n > 2. We have ˙pn−2 ⋎ ˙pn−1 ≠ A
and m ⊆ pn−1. Using Zorn’s lemma, it verifies that ˙pn−2 ⋎ ˙pn−1 ⊆ c, for a maximal
∨-closed set of A. Applying Proposition 2.3 and the hypothesis, it shows that m = ċ.
This verifies that (pn−2,m) ∈ ȷ. Hence, in the equivalency (p,m) ∈ ȷ, the number
of the involved primes is reduced to n − 1. Therefore, by the induction hypothesis,
m ⊆ p. This shows that ȷ(m) ⊆ h(m). The inverse inclusion is evident.

(2)⇒(1) It is evident. □

The proof of the following corollary is analogous to the proof of Corollary 3.2, and
so it is left to the reader.

Corollary 3.3. Let A be a residuated lattice. A is mp if and only if the map η :
mind(A) → Specd(A)/ȷ, given by m⇝ ȷ(m), is a homeomorphism.

4. The Pure Spectrum of an mp-Residuated Lattice

This section deals with the pure spectrum of an mp-residuated lattice. For the
basic facts concerning pure filters of a residuated lattice, the reader is referred to [28].

For any filter F of a residuated lattice A, set σ(F ) = kG h(F ).
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Proposition 4.1. ([28, Propositions 5.2 & 5.4]). Let A be a residuated lattice. The
following assertions hold:

(1) σ(F ) = {a ∈ A | F ⊻ a⊥ = A}, for any filter F of A;
(2) F ⊆ G implies σ(F ) ⊆ σ(G), for any filters F and G of A;
(3) σ(m) = D(m) for any maximal filter m of A;

Let A be a residuated lattice. A filter F of A is called pure provided that σ(F ) = F .
The set of pure filters of A is denoted by σ(A). It is obvious that {1}, A ∈ σ(A).

Proposition 4.2. Let A be an mp-residuated lattice and F a filter of A. σ(F ) is a
pure filter of A.

Proof. Let x ∈ σ(F ). Applying Proposition 4.1 (1), it follows that F ⊻ x⊥ = A. So
f ⊙ y = 0, for some f ∈ F and y ∈ x⊥. By Proposition 3.1 there exists a ∈ A such
that a ∈ x⊥ and ¬a ∈ y⊥. This implies that ¬a ∈ σ(A), and so x ∈ σ(σ(F )). □

The following theorem gives some criteria for mp-residuated lattices by pure filters,
inspired by the one obtained for bounded distributive lattices by [11, Theorem 2.11].

Theorem 4.1. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) Ω(A) ⊆ σ(A);
(3) γ(A) ⊆ σ(A).

Proof. (1)⇒(2) Let F be an ω-filter of A. So, F = ω(I), for some ideal I of ℓ(A).
Consider x ∈ F . So x ∈ a⊥, for some a ∈ I. By Propositions 2.7 (1) and 3.1 (4), it
follows that A = x⊥ ⊻ a⊥ ⊆ x⊥ ⊻ F .

(2)⇒(3) By Propositions 2.7 (2), it is evident.
(3)⇒(1) Let x ∨ y = 1. So x ∈ y⊥ = σ(y⊥) and this implies that x⊥ ⊻ y⊥ = A.

Hence, the result holds by Proposition 3.1. □

Remark 4.1. Al-Ezeh in [2, Theorem 1] showed that a unitary commutative ring is a
PF ring if and only if any its annulet is a pure ideal. Thus, if we define PF-residuated
lattices as those ones in which any coannulet is a pure filter, Theorem 4.1 verifies that
the class of PF residuated lattices coincides with the class of mp-residuated lattices.

Lemma 4.1. Let A be a residuated lattice. Any two distinct elements of the set
Spec(A) ∩ σ(A) are comaximal.

Proof. Let p1 and p2 be two distinct elements of the set Spec(A) ∩ σ(A). Consider
x ∈ p1 \ p2. So, p1 ⊻ x⊥ = A and x⊥ ⊆ p2. □

Theorem 4.2. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) D(p) is a pure filter of A, for any prime filter p of A;
(3) D(m) is a pure filter of A, for any maximal filter m of A;
(4) min(A) ⊆ σ(A).
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Proof. (1)⇒(2) It follows by Theorem 4.1.
(2)⇒(3) It is evident.
(3)⇒(4) It follows, with a little bit of effort, by Proposition 2.7 (3).
(4)⇒(1) It follows by Proposition 3.1 and Lemma 4.1. □

Let A be a residuated lattice. Recall [28] that a proper pure filter of A is called
purely-maximal provided that it is a maximal element in the set of proper and pure
filters of A. The set of purely-maximal filters of A shall be denoted by max(σ(A)).
A proper pure filter p of A is called purely-prime provided that F1 ∩ F2 ⊆ p implies
F1 ⊆ p or F2 ⊆ p, for any F1, F2 ∈ σ(A). The set of all purely-prime filters of A
shall be denoted by Spp(A). It is obvious that max(σ(A)) ⊆ Spp(A). Zorn’s lemma
ensures that any proper pure filter is contained in a purely-maximal filter, and so in
a purely-prime filter.

Theorem 4.3. Let A be a residuated lattice. The following assertions are equivalent:
(1) A is mp;
(2) min(A) = max(σ(A)).

Proof. (1)⇒(2) Let m be a minimal prime filter of A. By Theorem 4.2. it follows that
m is a pure filter of A. Thus there exists n ∈ max(σ(A)) containing m. Let a ∈ n.
So there exists b ∈ a⊥ such that ¬b ∈ n. This implies that b /∈ m, and so a ∈ m.
Conversely, let p be a purely-maximal filter of A. So p ⊆ n, for some n ∈ max(A).
Using Theorem 3.1, Proposition 4.1 ((2) & (3)), and Theorem 4.2, it shows that
p = D(n) ∈ min(A).

(2)⇒(1) It is evident by Theorem 4.2. □

The following result generalized and improved [4, Theorem 1.8] to residuated lat-
tices.

Proposition 4.3. Let A be an mp-residuated lattice and F a proper pure filter of A.
We have

F = k(min(A) ∩ h(F )).

Proof. By Theorem 4.3, min(A) ∩ h(F ) ̸= ∅. Consider a ∈ k(min(A) ∩ h(F )). Assume
that a⊥ ⊻ F is proper. Thus, a⊥ ⊻ F ⊆ n, for some maximal filter n of A. Let m be
a minimal prime filter of A contained in n. This implies that F ⊆ m, and so ¬b ∈ n,
for some b ∈ a⊥ which is a contradiction. □

The pure ideals of a PF ring are characterized in [3, Theorems 2.4 and 2.5]. These
results have been improved and generalized to residuated lattices in Theorem 4.4 and
Proposition 4.6.

Theorem 4.4. Let A be an mp-residuated lattice. The pure filters of A are precisely
of the form ⋂

m∈min(A)∩C m,where C runs over closed subsets of Specd(A).

Proof. Let a ∈ G := ⋂{m | m ∈ min(A) ∩ C}, in which C is a closed subset of
Specd(A). So, for any m ∈ min(A) ∩ C, we have m ⊻ a⊥ = A. By absurdum, assume
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that G ⊻ a⊥ ̸= A. So, G ⊻ a⊥ is contained in a maximal filter n. Let o be a minimal
prime filter of A contained in m. Obviously, o /∈ C. So for any m ∈ min(A) ∩ C,
there exist xm ∈ m and ym ∈ o such that xm ⊙ ym = 0. Since C is stable under
the generalization, so C ⊆ ⋃

m∈min(A)∩C h(xm). By Proposition 2.6, it follows that
C is compact. So there exist a finite number m1, . . . ,mn ∈ min(A) ∩ C such that
C ⊆ ⋃n

i=1 h(xmi
). Set x = ∨n

i=1 xmi
and y = ⊙n

i=1 ymi
. Routinely, one can see that

0 = x ⊙ y ∈ G ⊻ o, which is a contradiction. The converse follows by Proposition
4.3. □

Let A be a residuated lattice. For any filter F of A, we set
ρ(F ) =

∨
{G ∈ σ(A) | G ⊆ F},

and it is called the pure part of F . Definitely, the pure part of a filter is the largest
pure filter contained in it.
Proposition 4.4. Let A be a residuated lattice. Then⋂

{ρ(m) | m ∈ max(A)} = {1}.

Proof. It is an immediate consequence of [28, Corollary 4.19]. □

Proposition 4.5. Let A be an mp-residuated lattice and a ∈ A. Then a⊥ ∩ Fa = {1},
where Fa = ⋂

m∈max(A)∩h(a) ρ(m).
Proof. With a little bit of effort, it follows by Theorem 4.1 and Proposition 4.4. □

Corollary 4.1. If m is a minimal prime filter of an mp-residuated lattice A, then
m = ∨

a∈mFa.

Proof. Let a ∈ m. So b ∈ a⊥, for some b /∈ m. This implies that a ∈ F¬b. The reverse
inclusion is deduced from Corollary 4.5. □

Proposition 4.6. Let A be an mp-residuated lattice. The pure filters of A are precisely
of the form ⋂

m∈max(A)∩h(F ) ρ(m), where F is a filter of A.
Proof. Let C = {P ∈ Spec(A) | P ∩ ¬F = ∅}. One can see that max(A) ∩ h(F ) =
min(A) ∩ C. This establishes the result due to Remark 2.2 and Theorem 4.4. □

H. Al-Ezeh [3, Theorem 3.5] proved that every purely prime ideal of a PF ring is
purely maximal. Now we provide an alternative proof to the following interesting
result.
Theorem 4.5. Let A be an mp residuated lattice. Then

Spp(A) ⊆ max(σ(A)).
Proof. Let p be a purely prime filter of A. So p ⊆ m, for some m ∈ max(σ(A)). By
Theorem 4.3 we have m ∈ min(A). Let a ∈ m. By Proposition 2.3 (3) we have a⊥ ⊈ m.
By Proposition 4.5, it follows that a⊥ ∩ Fa ⊆ P . By Theorem 4.1 and Proposition
4.6, respectively, it follows that a⊥ and Fa are pure filters. This implies that Fa ⊆ p.
Hence, by Corollary 4.1, it follows that m = ∨

a∈mFa ⊆ p. □
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The following theorem is a direct consequence of Theorems 4.2, 4.3 and 4.5. So its
proof is left to the reader.
Theorem 4.6. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;
(2) min(A) = Spp(A).
For each pure filter F of A we set dp(F ) = {P ∈ Spp(A) | F ⊈ P}. Spp(A) can be

topologized by taking the set {dp(F ) | F ∈ σ(A)} as the open sets. The set Spp(A)
endowed with this topology is called the pure spectrum of A. It is obvious that the
closed subsets of the pure spectrum are precisely of the form hp(F ) = {P ∈ Spp(A) |
F ⊆ P}, where F runs over pure filters of A.

The next result, which can be compared with Proposition 2.6, shows that the pure
spectrum of a residuated lattice is a compact space.
Theorem 4.7. ([28, Theorem 4.22]). Let A be a residuated lattice. Spp(A) is a
compact space.

The next theorem gives a criterion for a residuated lattice to be mp, inspired by
the one obtained for unitary commutative rings by [35, Theorem 5.6].
Theorem 4.8. Let A be a residuated lattice. The following assertions are equivalent:

(1) A is mp;
(2) the identity map ι : Spp(A) → mind(A) is a homeomorphism.

Proof. (1)⇒(2) Consider the identity map ι : Spp(A) → min(A). Using Theorem 4.3,
it follows that ι is a well-defined bijection. One can see that min(A) ∩ h(a) = dp(a⊥),
for any a ∈ A, which implies that ι is continuous. By Theorems 3.4 and 4.7, it follows
that mind(A) is Hausdorff, and Spp(A) is compact, respectively. So, the result holds
due to [14, Theorem 3.1.13].

(2)⇒(1) It is evident by Theorem 4.3. □

Using Theorem 4.7, the pure spectrum of a residuated lattice is compact (not
necessarily Hausdorff). The following result verifies that the pure spectrum of an
mp-residuated lattice is Hausdorff.
Corollary 4.2. Let A be an mp-residuated lattice. Spp(A) is a Hausdorff space.

Proof. It is an immediate consequence of Theorems 3.4 and 4.8. □
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