
Kragujevac Journal of Mathematics
Volume 49(4) (2025), Pages 567–581.

QUANTITATIVE UNCERTAINTY PRINCIPLES FOR THE
CANONICAL FOURIER BESSEL TRANSFORM

KHALED HLEILI1 AND MANEL HLEILI2

Abstract. The aim of this paper is to prove new uncertainty principles for the
Canonical Fourier Bessel transform. To do so we prove a quantitative uncertainty
inequality about the essential supports of a nonzero function for this transformation.

1. Introduction

The classical linear canonical transform (LCT) is considered as a generalization of
the Fourier transform, and was first proposed in the 1970s by Collins [5] and Moshinsky
and Quesne [26]. Very recently, many works have been devoted the LCT under many
different names and in different contexts. Namely, in [22] the LCT is known as the
generalized Fresnel transform, in [4] is called ABCD transform and in [1] is also called
the special affine Fourier transform. Also, the LCT has been studied by many authors
for various Fourier transforms, for examples [11,23,34]. In [11], the authors introduced
the Dunkl linear canonical transform (DLCT) which is a generalization of the LCT in
the framework of Dunkl transform [7]. DLCT includes many well-known transforms
such as the Dunkl transform [7,10] and the canonical Fourier Bessel transform [8,11].
The LCT plays an important role in many fields of optics, radar system analysis,
GRIN medium system analysis, filter design, phase retrieval, pattern recognition and
many others [3, 28, 29]. In [8] the authors established some important properties of
the Canonical Fourier Bessel transform (QFBT) such as Riemann-Lebesgue lemma,
inversion formula, Plancherel theorem and some uncertainty principles.
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On the other hand, the uncertainty principle plays one important role in signal
processing. It describes a function and its Fourier transform, which cannot both
be simultaneously sharply localized. If we try to limit the behaviour of one we
lose control of the other. Many of these uncertainty principles have already been
studied from several points of view for the Fourier transform, such as Heisenberg-
Pauli-Weyl inequality [6] and local uncertainty inequality [30]. Uncertainty principles
have implications in two main areas: quantum physics and signal analysis. In quantum
physics, they tell us that a particle’s speed and position cannot both be measured
with arbitrary precision. In signal analysis, they tell us that if we observe a signal
only for a finite period of time, we will lose information about the frequencies the
signal consists of. Timelimited functions and bandlimited functions are basic tools
of signal and image processing. Unfortunately, the simplest form of the uncertainty
principle tells us that a signal cannot be simultaneously time and bandlimited. This
leads to the investigation of the set of almost time and almost bandlimited functions,
which has been initially carried through Landau, Pollak [24,25] and then by Donoho,
Stark [9]. In recent past, many works have been devoted to establish some uncertainty
principles in different setting and for various transforms (see for example [2,12–21,31])
and others.

The purpose of this paper is to obtain uncertainty principle similar to Donoho-
Stark’s principle for the QFBT.

In order to describe our results, we first need to introduce some facts about harmonic
analysis related to Canonical Fourier Bessel transform. For more details, see [8].

Throughout this paper, α denotes a real number such that α ⩾ −1
2 . We use the

following notation.
• Ce,0(R) denotes the space of even continuous functions on R and vanishing at

infinity. We provide Ce,0(R) with the topology of uniform convergence.
• Lp,α denotes the Lebesgue space of measurable functions f on R+, such that

∥f∥p,α =
(∫ +∞

0
|f(y)|py2α+1dy

) 1
p

< +∞, if 1 ⩽ p < +∞,

∥f∥∞,α =ess sup
y∈R+

|f(y)| < +∞, if p = +∞.

We provide Lp,α with the topology defined by the norm ∥ · ∥p,α.
• L2,α denotes the Hilbert space equipped with the inner product ⟨·, ·⟩ given by

⟨f, g⟩ =
∫ +∞

0
f(y)g(y)y2α+1dy.

• m =
(

a b
c d

)
is an arbitrary matrix in SL(2,R), such that b ̸= 0.

Definition 1.1. The canonical Fourier Bessel transform of a function f ∈ L1,α is
defined by

F m
α (f)(x) = cα

(ib)α+1

∫ +∞

0
Km

α (x, y)f(y)y2α+1dy,



QUANTITATIVE UNCERTAINTY PRINCIPLES FOR THE CANONICAL FOURIER BESSEL ...569

where

(1.1) cα = 1
2αΓ(α + 1)

and

Km
α (x, y) = e

i
2

(
dx2

b
+ ay2

b

)
jα

(
xy

b

)
.

Here jα denotes the normalized Bessel function of order α ⩾ −1
2 and defined by [33]

jα(z) = 2αΓ(α + 1)Jα(z)
zα

= Γ(α + 1)
+∞∑
k=0

(−1)k

k!Γ(α + 1 + k)

(
z

2

)2k

, z ∈ C.

Proposition 1.1 ([8]). We denote by ∆m
α the differential operator

∆m
α = d2

dx2 +
(2α + 1

x
− 2i

d

b
x
)

d

dx
−
(

d2

b2 x2 + 2i(α + 1)d

b

)
.

(1) For each y ∈ R, the kernel Km
α (·, y) of the canonical Fourier Bessel transform

F m
α is the unique solution of

∆m
α Km

α (·, y) = −y2

b2 Km
α (·, y),

Km
α (0, y) = e

iay2
2b ,

d
dx

Km
α (0, y) = 0.

(2) For each x, y ∈ R the kernel Km
α has the following integral representation

Km
α (x, y) =


2Γ(α+1)√
πΓ(α+ 1

2 )e
i
2

(
dx2

b
+ ay2

b

) ∫ 1
0 (1 − t2)α− 1

2 cos(xyt
b

)dt, if α > −1
2 ,

e
i
2

(
dx2

b
+ ay2

b

)
cos(xy

b
), if α = −1

2 .
In particular, we have

(1.2) |Km
α (x, y)| ⩽ 1 for all x, y ∈ R.

Theorem 1.1 ([8]). (1) (Plancherel theorem) If f ∈ L1,α ∩ L2,α, then F m
α (f) ∈ L2,α

and

(1.3) ∥F m
α (f)∥2,α = ∥f∥2,α.

(2) (Orthogonality relation) For every f, g ∈ L2,α, we have

(1.4) ⟨f, g⟩ = ⟨F m
α (f), F m

α (g)⟩.

(3) (The reversibility property) For all f ∈ L1,α, with F m
α ∈ L1,α, we have

(1.5) (F m
α ◦ F m−1

α )(f) = (F m−1

α ◦ F m
α )(f) = f, a.e.

Babenko-Beckner inequality. Let m =
(

a b
c d

)
an arbitrary matrix in

SL(2,R), such that b ̸= 0. Let p and q be real numbers such that 1 < p ⩽ 2
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and 1
p

+ 1
q

= 1. Then, F m
α extends to a bounded linear operator on Lp,α, α ⩾ −1

2 and
we have

(1.6) ∥F m
α (f)∥q,α ⩽ |b|(α+1)( 2

q
−1)

(cαp)
1
p

(cαq)
1
q

α+1

∥f∥p,α,

where cα is the constant given by (1.1).
Riemann-Lebesgue lemma. For all f ∈ L1,α, the canonical Fourier Bessel

transform F m
α (f) belongs to Ce,0(R) and verifies

(1.7) ∥F m
α (f)∥∞,α ⩽ cα|b|−(α+1)∥f∥1,α.

2. Donoho-Stark’s Uncertainty Principle for the Canonical Fourier
Bessel Transform

In this section, based on the techniques of Donoho-Stark [9], we will show uncertainty
principle of concentration-type the canonical Fourier Bessel transform.

In the following, we consider a pair of orthogonal projections on L2,α. The first is
the time-limiting operator defined
(2.1) PSf = χSf,

and the second is the frequency-limiting operator defined by
(2.2) F m

α (QΣf) = χΣF m
α (f),

where S and Σ are two measurable subsets of R+ and χS and χΣ denote the charac-
teristic functions of S and Σ.

Definition 2.1. Let 0 < εS, εΣ < 1 and let f ∈ L2,α be a nonzero function.
(1) We say that f is εS-concentrated on S if

(2.3) ∥PScf∥2,α ⩽ εS∥f∥2,α.

(2) We say that f is εΣ-concentrated on Σ for the canonical Fourier Bessel transform
if
(2.4) ∥QΣcf∥2,α ⩽ εΣ∥f∥2,α.

PS and QΣ are projections. Indeed, let f, g ∈ L2,α. By relation (1.4), we have
⟨P 2

Sf, g⟩ = ⟨PSf, PSg⟩ = ⟨F m
α (PSf), F m

α (PSg)⟩

=
∫ +∞

0
F m

α (PSf)(y)F m
α (PSg)(y)y2α+1dy

=
∫

S
F m

α (f)(y)F m
α (g)(y)y2α+1dy

=
∫ +∞

0
F m

α (PSf)(y)F m
α (g)(y)y2α+1dy

= ⟨PSf, g⟩.
Thus, P 2

S = PS and hence PS is a projection.
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By the same way,

⟨Q2
Σf, g⟩ = ⟨QΣf, QΣg⟩ = ⟨F m

α (QΣf), F m
α (QΣg)⟩

=
∫ +∞

0
F m

α (QΣf)(y)F m
α (QΣg)(y)y2α+1dy

=
∫

Σ
F m

α (f)(y)F m
α (g)(y)y2α+1dy

=
∫ +∞

0
F m

α (QΣf)(y)F m
α (g)(y)y2α+1dy

= ⟨QΣf, g⟩.

Thus, Q2
Σ = QΣf and hence QΣf is a projection.

For all f ∈ L2,α, given the kernel N which satisfies the following two conditions:
f(·)N(·, y) ∈ L1,α for almost every y ∈ R+ and if

Mf(x) =
∫ +∞

0
f(y)N(x, y)y2α+1dy,

then Mf ∈ L2,α. Then we define the norm of M to be

∥M∥ = sup
f∈L2,α

∥Mf∥2,α

∥f∥2,α

, f ̸= 0,

and the Hilbert-Schmidt norm of M is given by

∥M∥HS =
(∫ +∞

0

∫ +∞

0
|N(x, y)|2x2α+1y2α+1dxdy

) 1
2

.

It is clear that ∥PS∥ = ∥QΣ∥ = 1 (see [9]). If |Σ| < +∞, where Σ is a set of finite
measure of R+, we have by [27]

|Σ| =
∫

Σ
x2α+1dx.

Lemma 2.1. If S and Σ are two measurable sets of R+ such that |S| < +∞ and
|Σ| < +∞, then

∥PSQΣ∥HS = ∥QΣPS∥HS.

Proof. From relations (1.5), (2.1) and (2.2), we have

QΣPS(f)(x) = cα

(−ib)α+1

∫
Σ

Km
α (y, x)F m

α (χSf)(y)y2α+1dy

= cα

(−ib)α+1

∫
Σ

Km
α (y, x)

(
cα

(ib)α+1

∫
S

Km
α (y, z)f(z)z2α+1dz

)
y2α+1dy

= c2
α

b2α+2

∫
S

f(z)
(∫

Σ
Km

α (y, x)Km
α (y, z)y2α+1dy

)
z2α+1dz

=
∫

S
f(z)k(x, z)z2α+1dz,
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where
k(x, z) = c2

α

b2α+2

∫
Σ

Km
α (y, x)Km

α (y, z)y2α+1dy, z ∈ S, x ∈ R+.

In the same way, we get
PSQΣ(f)(x) = χS(x)QΣ(f)(x)

= χS(x) cα

(−ib)α+1

∫
Σ

Km
α (y, x)F m

α (f)(y)y2α+1dy

= χS(x) c2
α

b2α+2

∫
Σ

Km
α (y, x)

(∫ +∞

0
Km

α (y, z)f(z)z2α+1dz
)

y2α+1dy

= χS(x) c2
α

b2α+2

∫ +∞

0
f(z)

(∫
Σ

Km
α (y, x)Km

α (y, z)y2α+1dy
)

z2α+1dz

= χS(x)
∫ +∞

0
f(z)k(x, z)z2α+1dz.

Then, from the above results we can easily obtain that

∥QΣPS∥HS =
(∫

S

∫ +∞

0
|k(x, z)|2x2α+1z2α+1dxdz

) 1
2

and

∥PSQΣ∥HS =
(∫ +∞

0

∫
S

|k(x, z)|2x2α+1z2α+1dxdz
) 1

2
,

which yields the desired result. □

Using Cauchy-Schwarz inequality, we can easily obtain that
(2.5) ∥PSQΣ∥ ⩽ ∥PSQΣ∥HS.

Lemma 2.2. If S and Σ are two measurable subsets of R+ such that |S| < +∞ and
|Σ| < +∞, then

∥PSQΣ∥ ⩽
cα

|b|α+1

√
|S||Σ|,

where cα is the constant given by relation (1.1).

Proof. For x ∈ S, let gx(t) = k(x, t). Note that

F m
α (gx)(y) = cα

(ib)α+1 χΣ(y)Km
α (x, y).

By relations (1.3) and (1.2), we have∫ +∞

0
|gx(t)|2t2α+1dt =

∫ +∞

0
|F m

α (gx)(y)|2y2α+1dy

= c2
α

|b|2α+2

∫
Σ

|Km
α (x, y)|2y2α+1dy

⩽
c2

α

|b|2α+2 |Σ|.
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Hence,∫ +∞

0

∫ +∞

0
|k(x, t)|2x2α+1t2α+1dxdt ⩽

c2
α

|b|2α+2 |Σ|
∫

S
x2α+1dx = c2

α

|b|2α+2 |Σ||S|.

Therefore,

∥PSQΣ∥2
HS ⩽

c2
α

|b|2α+2 |Σ||S|.

And the proof is complete by (2.5). □

Proposition 2.1. Let S and Σ be two measurable subsets of R+ and assume that
εS + εΣ < 1, f is εS-concentrated on S and F m

α is εΣ-concentrated on Σ, with
∥f∥2,α = 1. Then

c2
α

|b|2α+2 |Σ||S| ⩾ (1 − εS − εΣ)2.

Proof. Assume that 0 < |S|, |Σ| < +∞. As ∥QΣ∥ = 1, it follows that
∥f − QΣPS(f)∥2,α ⩽ ∥f − QΣ(f)∥2,α + ∥QΣ(f) − QΣPS(f)∥2,α

⩽ εΣ + ∥QΣ∥∥f − PS(f)∥2,α

⩽ εΣ + εS.

The triangle inequality gives
∥QΣPS(f)∥2,α ⩾ ∥f∥2,α − ∥f − QΣPS(f)∥2,α ⩾ 1 − εΣ − εS.

Hence,
∥QΣPS∥ ⩾ 1 − εΣ − εS.

Then from lemmas 2.1 and 2.2, we get the desired result. □

Theorem 2.1 (Donoho-Stark uncertainty principle-type). Let f ∈ L2,α and S, Σ be
two measurable subsets of R+ such that |S||Σ| < |b|2α+2

c2
α

and let εS, εΣ > 0 such that
ε2

S + ε2
Σ < 1. If f is εS-concentrated on S and εΣ-concentrated on Σ for the canonical

Fourier Bessel transform, then
c2

α

|b|2α+2 |S||Σ| ⩾
(

1 −
√

ε2
S + ε2

Σ

)2
.

Proof. Since I = PS + PSc = PSQΣ + PSQΣc + PSc , then, using the orthogonality of
PS and PSc , we have

∥f − PSQΣ(f)∥2
2,α = ∥PSQΣc(f) + PSc(f)∥2

2,α

= ∥PSQΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α

⩽ ∥PS∥2∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

From (2.1), we have
(2.6) ∥PS∥ ⩽ 1.
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Since PS is a projection on L2,α, then

(2.7) ∥PS∥ = ∥PS ◦ PS∥ ⩽ ∥PS∥2.

By (2.6) and (2.7), we deduce that ∥PS∥ = 1. Thus,

(2.8) ∥f − PSQΣ(f)∥2,α ⩽
√

∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

On the other hand,

∥f − PSQΣ(f)∥2,α ⩾ ∥f∥2,α − ∥PSQΣ(f)∥2,α ⩾ (1 − ∥PSQΣ∥)∥f∥2,α.

Then, by (2.8), we have

(1 − ∥PSQΣ∥)∥f∥2,α ⩽
√

∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α.

Since cα

|b|α+1

√
|S||Σ| < 1, it follows from Lemma 2.2 that

(2.9) ∥f∥2
2,α ⩽

(
1 − cα

|b|α+1

√
|S||Σ|

)−2 (
∥QΣc(f)∥2

2,α + ∥PSc(f)∥2
2,α

)
.

Now, by relations (2.3) and (2.4), we get

(2.10) ∥QΣc(f)∥2
2,α + ∥PSc(f)∥2

2,α ⩽ (ε2
S + ε2

Σ)∥f∥2
2,α.

By combining relations (2.9) and (2.10), we obtain the desired result. □

3. Lp,α-Uncertainty Principles for the Canonical Fourier Bessel
Transform

In this section, building on the techniques of Donoho and Stark [9] and Soltani
[32], we show a quantitative uncertainty inequality about the essential supports of a
nonzero function f ∈ Lp,α, 1 ⩽ p ⩽ 2 and its canonical Fourier Bessel transform.

Proposition 3.1. Let f ∈ L1,α ∩ Lp,α, 1 < p ⩽ 2. Then

∥F m
α (f)∥q,α ⩽

cα

|b|α+1 |supp F m
α (f)|

1
q |supp f |

1
q ∥f∥p,α,

with q = p
p−1 .

Proof. Let f ∈ L1,α ∩ Lp,α, 1 ⩽ p ⩽ 2. Then by Hölder’s inequality and (1.7), we get

∥F m
α (f)∥q,α ⩽ |supp F m

α (f)|
1
q ∥F m

α (f)∥∞,α

⩽
cα

|b|α+1 |supp F m
α (f)|

1
q ∥f∥1,α

⩽
cα

|b|α+1 |supp F m
α (f)|

1
q |supp f |

1
q ∥f∥p,α,

which gives the desired result. □
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Proposition 3.2. Let f ∈ L2,α ∩ Lp,α, 1 < p < 2. Then

1 ⩽ |b|(α+1)( 2
q

−1)
(cαp)

1
p

(cαq)
1
q

α+1

|supp F m
α (f)|

q−2
2q |supp f |

2−p
2p ,

with q = p
p−1 .

Proof. Let f ∈ L2,α ∩ Lp,α, 1 ⩽ p ⩽ 2. Then by Hölder’s inequality and (1.6), we get

∥F m
α (f)∥q,α ⩽ |supp F m

α (f)|
q−2
2q ∥F m

α (f)∥q,α

⩽ |b|(α+1)( 2
q

−1)
(cαp)

1
p

(cαq)
1
q

α+1

|supp F m
α (f)|

q−2
2q ∥f∥p,α

⩽ |b|(α+1)( 2
q

−1)
(cαp)

1
p

(cαq)
1
q

α+1

|supp F m
α (f)|

q−2
2q |supp f |

2−p
2p ∥f∥2,α.

Relation (1.3) completes the proof. □

Definition 3.1. Let 0 < εS, εΣ < 1.
(1) We say that a function f ∈ Lp,α, 1 ⩽ p ⩽ 2 is εS-concentrated to S in Lp,α-norm

if and only if

(3.1) ∥f − PSf∥p,α ⩽ εS∥f∥p,α.

(2) Let f ∈ Lp,α, 1 ⩽ p ⩽ 2. We say that F m
α (f) is εΣ-concentrated on Σ in

Lq,α-norm, q = p
p−1 if and only if

(3.2) ∥F m
α (f) − F m

α (QΣf)∥q,α ⩽ εΣ∥F m
α (f)∥q,α.

Lemma 3.1. Let f ∈ Lp,α, 1 < p ⩽ 2. Then

∥F m
α (QΣf)∥q,α ⩽ |b|(α+1)( 2

q
−1)

(cαp)
1
p

(cαq)
1
q

α+1

∥f∥p,α,

with q = p
p−1 .

Proof. Let f ∈ Lp,α, 1 < p ⩽ 2 and q = p
p−1 . From relations (1.6) and (2.2), we get

∥F m
α (QΣf)∥q,α =

(∫
Σ

|F m
α (f)(x)|qx2α+1dx

) 1
q

⩽ ∥F m
α (f)∥q,α

⩽ |b|(α+1)( 2
q

−1)
(cαp)

1
p

(cαq)
1
q

α+1

∥f∥p,α,

which yields the desired result. □
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Lemma 3.2. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2,
q = p

p−1 . Then

∥F m
α (QΣPSf)∥q,α ⩽

cα

|b|α+1 |S|
1
q |Σ|

1
q ∥f∥p,α.

Proof. Assume that |S| < +∞ and |Σ| < +∞. From relation (2.2), we have

(3.3) ∥F m
α (QΣPSf)∥q,α =

(∫
Σ

|F m
α (χSf)(x)|qx2α+1dx

) 1
q

.

By (1.2) and Hölder’s inequality it follows that

|F m
α (χSf)(x)| ⩽ cα

|b|α+1

(∫
S

|f(y)|py2α+1dy
) 1

p
(∫

S
|Km

α (x, y)|qy2α+1dy
) 1

q

⩽
cα

|b|α+1 |S|
1
q ∥f∥p,α.

Then from (3.3), we obtain the desired result. □

Theorem 3.1. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2,
q = p

p−1 . If f is εS-concentration to S in Lp,α-norm and F m
α (f) is εΣ-concentration

to Σ in Lq,α-norm, then

∥F m
α (f)∥q,α ⩽

1
1 − εΣ

 cα

|b|α+1 |S|
1
q |Σ|

1
q + εS|b|(α+1)( 2

q
−1)

((cαp)
1
p

(cαq)
1
q

)α+1
 ∥f∥p,α.

Proof. Assume that |S| < +∞ and |Σ| < +∞. From the triangle inequality, relations
(1.6), (3.1), (3.2) and Lemma 3.2, we get

∥F m
α (f)∥q,α ⩽∥F m

α (QΣPSf)∥q,α + ∥F m
α (f) − F m

α (QΣPSf)∥q,α

⩽∥F m
α (QΣPSf)∥q,α + ∥F m

α (f) − F m
α (QΣf)∥q,α

+ ∥F m
α (QΣf) − F m

α (QΣPSf)∥q,α

⩽
cα

|b|α+1 |S|
1
q |Σ|

1
q ∥f∥p,α + εΣ∥F m

α (f)∥q,α

+ |b|(α+1)( 2
q

−1)
(cαp)

1
p

(cαq)
1
q

α+1

∥f − PSf∥p,α

⩽

 cα

|b|α+1 |S|
1
q |Σ|

1
q + εS|b|(α+1)( 2

q
−1)

(cαp)
1
p

(cαq)
1
q

α+1
 ∥f∥p,α

+ εΣ∥F m
α (f)∥q,α,

which gives the desired result. □

Theorem 3.2 (Donoho-Stark’s uncertainty principle-type). Let S and Σ be two
measurable subsets of R+ and f ∈ Lp1,α ∩ Lp2,α, 1 < p1 < p2 ⩽ 2. If f is εS-
concentration to S in Lp1,α-norm and F m

α (f) is εΣ-concentration to Σ in Lq2,α-norm,
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q2 = p2
p2−1 , then

∥F m
α (f)∥q2,α ⩽

|S|
p2−p1
p1p2 |Σ|

q1−q2
q1q2

(1 − εΣ)(1 − εS) |b|(α+1)( 2
q1

−1)

(cαp1)
1

p1

(cαq1)
1

q1

α+1

∥f∥p2,α,

where q1 = p1
p1−1 .

Proof. Assume that |S| < +∞ and |Σ| < +∞. Let f ∈ Lp1,α ∩Lp2,α, 1 < p1 < p2 ⩽ 2.
Since F m

α (f) is εΣ-concentration to Σ in Lq2,α-norm, then, by Hölder’s inequality, we
obtain

∥F m
α (f)∥q2,α ⩽ εΣ∥F m

α (f)∥q2,α + ∥χΣF m
α (f)∥q2,α

⩽ εΣ∥F m
α (f)∥q2,α + |Σ|

q1−q2
q1q2 ∥F m

α (f)∥q1,α.

Thus, by (1.6),

(3.4) ∥F m
α (f)∥q2,α ⩽

|Σ|
q1−q2
q1q2

1 − εΣ
|b|(α+1)( 2

q1
−1)

(cαp1)
1

p1

(cαq1)
1

q1

α+1

∥f∥p1,α.

On the other hand, since f is εS-concentration to S in Lp1,α-norm, then by Hölder’s
inequality, we deduce that

∥f∥p1,α ⩽ εS∥f∥p1,α + ∥χSf∥p1,α ⩽ εS∥f∥p1,α + |S|
p2−p1
p1p2 ∥f∥p2,α.

Thus,

(3.5) ∥f∥p1,α ⩽
|S|

p2−p1
p1p2

1 − εS

∥f∥p2,α.

Combining (3.4) and (3.5), we obtain the result of this theorem. □

Corollary 3.1. Let S and Σ be two measurable subsets of R+ and f ∈ L2,α ∩ Lp,α,
1 < p < 2. If f is εS-concentration to S in Lp,α-norm and F m

α (f) is εΣ-concentration
to Σ in L2,α-norm, then

(1 − εΣ)(1 − εS) ⩽ |S|
2−p
2p |Σ|

q−2
2q |b|(α+1)( 2

q
−1)

(cαp)
1
p

(cαq)
1
q

α+1

,

where q = p
p−1 .

Let Bp(Σ), 1 ⩽ p ⩽ 2, be the set of functions g ∈ Lp,α that are bandlimited to Σ,
i.e., (g ∈ Bp(Σ) implies QΣg = g).

We say that f is εΣ-bandlimited to Σ in Lp,α-norm if there is a g ∈ Bp(Σ) with

∥f − g∥p,α ⩽ εΣ∥f∥p,α.

In the following, we state an Lp1,α ∩ Lp2,α bandlimited uncertainty principle of
concentration-type.
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Theorem 3.3 (Bandlimited principle-type). Let S and Σ be two measurable subsets
of R+ and f ∈ Lp1,α ∩ Lp2,α, 1 ⩽ p1 < p2 ⩽ 2. If f is εS-concentration to S in
Lp1,α-norm and εΣ-bandlimited to Σ in Lq2,α-norm, q2 = p2

p2−1 , then

∥f∥p1,α

⩽
|S|

p2−p1
p1p2

1 − εS

(1 + εΣ)cα|Σ|
1

p2 |S|
1

p2 |b|(α+1)( 2
q2

−2)

(cαp2)
1

p2

(cαq2)
1

q2

α+1

+ εΣ

 ∥f∥p2,α.

Proof. Assume that |S| < +∞ and |Σ| < +∞. Let f ∈ Lp1,α ∩ Lp2,α, 1 ⩽ p1 <
p2 ⩽ 2. Since f is εS-concentration to S in Lp1,α-norm, then by Hölder’s inequality,
we deduce that

∥f∥p1,α ⩽ εS∥f∥p1,α + ∥PSf∥p1,α ⩽ εS∥f∥p1,α + |S|
p2−p1
p1p2 ∥PSf∥p2,α.

Thus,

(3.6) ∥f∥p1,α ⩽
|S|

p2−p1
p1p2

1 − εS

∥PSf∥p2,α.

As f is εΣ-bandlimited to Σ in Lq2,α-norm, there is a g ∈ Bp2(Σ) with
∥f − g∥p2,α ⩽ εΣ∥f∥p2,α.

On the other hand, we have
∥PSf∥p2,α ⩽ ∥PSg∥p2,α + ∥PS(f − g)∥p2,α ⩽ ∥PSg∥p2,α + εΣ∥f∥p2,α.

But g ∈ Bp2(Σ), from (2.2), g(x) = F m−1
α (χΣF m

α (g))(x) and by (1.6) and Hölder’s
inequality, we deduce that

|g(x)| ⩽ cα

|b|α+1 |Σ|
1

p2 ∥F m
α (g)∥q2,α

⩽ cα|Σ|
1

p2 |b|(α+1)( 2
q2

−2)

(cαp2)
1

p2

(cαq2)
1

q2

α+1

∥g∥p2,α.

Hence,

∥PSg∥p2,α =
(∫

S
|g(x)|p2x2α+1dx

) 1
p2

⩽ cα|Σ|
1

p2 |S|
1

p2 |b|(α+1)( 2
q2

−2)

(cαp2)
1

p2

(cαq2)
1

q2

α+1

∥g∥p2,α.

Then by (3.6) and the fact that ∥g∥p2,α ⩽ (1 + εΣ)∥f∥p2,α, we get

∥f∥p1,α ⩽
|S|

p2−p1
p1p2

1 − εS

(1 + εΣ)cα|Σ|
1

p2 |S|
1

p2 |b|(α+1)( 2
q2

−2)

(cαp2)
1

p2

(cαq2)
1

q2

α+1

+ εΣ

 ∥f∥p2,α.

This completes the desired result. □
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Corollary 3.2. Let S and Σ be two measurable subsets of R+ and f ∈ Lp,α, 1 < p ⩽ 2.
If f is εS-concentration to S and εΣ-bandlimited to Σ in Lp,α-norm, then

1 − εS − εΣ

1 + εΣ
⩽ cα|Σ|

1
p |S|

1
p |b|(α+1)( 2

q
−2)

(cαp)
1
p

(cαq)
1
q

α+1

.

Theorem 3.4 (Matolcsi-Szücs-type inequality). Let f ∈ Lp1,α ∩ Lp2,α, 1 < p1 ⩽ p2 ⩽
2. Then

∥F m
α (f)∥q2,α ⩽ |b|(α+1)( 2

q1
−1)

(cαp1)
1

p1

(cαq1)
1

q1

α+1

|supp F m
α (f)|

q1−q2
q1q2 |supp f |

p2−p1
p1p2 ∥f∥p2,α,

where q1 = p1
p1−1 and q2 = p2

p2−1 .

Proof. Let f ∈ Lp1,α ∩ Lp2,α, 1 < p1 ⩽ p2 ⩽ 2, q1 = p1
p1−1 and q2 = p2

p2−1 . Then, by
relation (1.6) and Hölder’s inequality, we obtain

∥F m
α (f)∥q2,α

⩽|supp F m
α (f)|

q1−q2
q1q2 ∥F m

α (f)∥q1,α

⩽|b|(α+1)( 2
q1

−1)

(cαp1)
1

p1

(cαq1)
1

q1

α+1

|supp F m
α (f)|

q1−q2
q1q2 ∥f∥p1,α

⩽|b|(α+1)( 2
q1

−1)

(cαp1)
1

p1

(cαq1)
1

q1

α+1

|supp F m
α (f)|

q1−q2
q1q2 |supp f |

p2−p1
p1p2 ∥f∥p2,α,

which yields the desired result. □

Corollary 3.3. Let f ∈ L2,α ∩ Lp,α, 1 < p < 2 and q = p
p−1 . Then(cαp)

1
p

(cαq)
1
q

−(α+1)

|b|(α+1)(1− 2
q

) ⩽ |supp f |
2−p
2p |supp F m

α (f)|
q−2
2q .
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