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STRONGLY EXTENDING MODULAR LATTICES

SHAHABADDIN EBRAHIMI ATANI1, MEHDI KHORAMDEL1,
SABOURA DOLATI PISH HESARI1, AND MAHSA NIKMARD ROSTAM ALIPOUR1

Abstract. In this paper, our purpose is to initiate the study of the concept of
strongly extending modular lattices based on the similar notion of strongly extending
modules. We will prove some basic properties of strongly extending modular lattices
and employ this results to give applications to the category of modules with a fixed
hereditary torsion class and Grothendieck categories.

1. Introduction

The notion of CC or extending for modules and related notions is an interesting top-
ics for several authors that were extensively studied in the literature ([18]). A module
M is said to be an extending (or a CS) module provided that every submodule of M is
contained in a direct summand of M as an essential submodule. A module M is called
a FI-extending module provided that each of its fully invariant submodule is essential
in a direct summand ([12]). Another interesting related concepts of the extending
modules is strongly FI-extending ([13, 15]). The strongly FI-extending property of
modules has been used for the existence and description of the FI-extending module
hull of any finitely generated projective module over a semiprime ring ([14]). A module
M is said to be a strongly FI-extending module if each fully invariant submodule is
essentially contained in a fully invariant direct summand. In [19], a subclass of ex-
tending modules, strongly extending modules, introduced and investigated. A module
M is said to be strongly extending provided that each submodule is essential in a fully
invariant direct summand. Recently, the known conditions on modules (extending,
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FI-extending, strongly FI-extending, etc.) have been introduced and considered in
lattices, in order to give some interesting results to Grothendieck categories and the
category of modules with hereditary torsion theories [5–7,9, 10].

When we study the classes of extending, FI-extending, strongly FI-extending lat-
tices, it is an ambition to study the notion of strongly extending in lattices. Also one
of the motivations to study this topic is the following questions.

(1) If a lattice L is strongly extending, then is it true that every complement is
fully invariant?

(2) Is it true that every idempotent linear endomorphism of a lattice L commutes
with another linear endomorphism of L if and only if every complement of L is fully
invariant in L?

This paper is allocated to initiate the strongly extending condition for lattices, and
investigate their properties that are similar to results on modules introduced and
studied in [19]. We will adopt the results from [19] to strongly extending lattices,
however it is not always easy because some theoretical tools and techniques in modules
do not work in lattices.

In Section 2, we recall some preliminaries and definitions about lattices from [1–11].
We recall the useful notion of linear morphisms between two lattices introduced by
Albu and Iosif [5]. This concept is used in our main results. In Section 3, we define the
conditions strongly extending and Abelian for lattices, and some of their structural
properties are studied. We will answer the previous questions affirmatively. We
will show that every idempotent linear endomorphism of a lattice L commutes with
another linear endomorphism of L if and only if D(L) ⊂ FI(L). Also, it is shown that,
a strongly extending lattice L is extending and every idempotent linear endomorphism
of a lattice L commutes with another linear endomorphism of L. Moreover, if L is
complete and strongly extending, then D(L) is a sublattice of L and every its subset
has a greatest lower bound. Further, we prove that the strongly extending condition
of lattices is preserved by their complement intervals, and consider when direct joins
have this property. In Section 3 and Section 4 we exhibit some usage of the results to
Grothendieck categories and the category of modules with a fixed hereditary torsion
class.

2. Preliminaries

Throughout this paper, by L, we will indicate a modular lattice (L,≤,∧,∨, 0, 1)
that has least element 0 and greatest element 1. For any l, k ∈ L, where l ≤ k, let
k/l denote the interval {x ∈ L | l ≤ x ≤ k}. For basic terminology and notation
on lattices, we refer the reader to [4, 16, 17, 20] and [21], but particularly to [4]. For
a lattice L, by D(L), P (L), E(L) and C(L), we denote the set of all complement
elements of L, the set of all pseudo-complement elements of L, the set of all essential
elements of L and the set of all closed elements of L, respectively.

A lattice L is said to be extending or CC if, for any l ∈ L, we have l is essential in
k/0, for some complement interval k/0 in L. Also, L is said to be quasi-continuous
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provided that it is extending and for any two complement elements l1, l2 of L with
l1 ∧ l2 = 0, we have l1 ∨ l2 ∈ D(L) ([8, Definition 1.2]).

By Albu and Iosif [5], a map θ : L → L′ between two lattices L with greatest
element 1L, least element 0L and a lattice L′ with greatest element 1L′ , least element
0L′ is called a linear morphism provided that there exist i ∈ L′ and k ∈ L (k is said
to be a kernel of θ) such that θ(l) = θ(l ∨ k), for each l ∈ L, and f induces a lattice
isomorphism:

θ̄ : 1L/k → i/0L′ , θ̄(l) = θ(l), for all l ∈ 1/k.

Assume that L is a lattice. By [6, Examples 0.2 (2)], if c, d ∈ L and c∧ d = 0, then
the mapping

pd,c : (c ∨ d)/0 → c/0, pd,c(a) := (a ∨ d) ∧ c,

is said to be the canonical projection on c/0, which is a linear morphism (surjective)
and its kernel is d. Notice that if L is a modular lattice, then pd,c(a) = a, for all a ∈ c/0.
In particular, if k ∈ L is a complement of l ∈ L, we will use the notation p̃l,k, the
linear endomorphism of L obtained by composing p̃l,k with the canonical inclusion
mapping i : k/0 → L. If there is not any ambiguity about l, the notation p̃k will be
used instead of p̃l,k.

Throughout this paper, End(L) denotes the collection of all linear endomorphisms
of a modular lattice L (it is a monoid, with respect to the composition “◦” of functions).
We will use the notation fg for the composition f ◦g of two linear morphisms f, g. An
element l ∈ L is said to be a fully invariant element, provided that θ(l) ≤ l for each
θ ∈ End(L) ([9]). By FI(L), we will indicate the set {l ∈ L | l is fully invariant in L}.
A linear endomorphism θ of a modular lattice L is said to be a left semicentral
idempotent of End(L) (or L) if θ2 = θ and θψ = θψθ for all ψ ∈ End(L) ([10]). We
exhibit by Sl(L) the collection of all left semicentral idempotents of L.

It is assumed throughout this paper that a ring R is an associative ring with unity
and all modules are unital right R-modules. The notation Mod − R denotes the
category of all unital right R-modules. We denote by MR a unital right R-module M .
Let L(MR) indicate the lattice of all submodules of a module MR. For submodules T
and H of M , T ≤ H will denote that T is a submodule of H.

3. Strongly Extending Lattices

This section is allocated to introduce and investigate our main concept, namely,
strongly extending lattices and give some properties of this class of lattices and
establish some relations between the notion of strongly extending and the other
notions in the literature. We begin with the following lemma which is a quite useful
in this note.

Lemma 3.1. Let θ be an idempotent linear endomorphism of L. Then θ(1) is a
complement of ker(θ) and p̃θ(1) = θ.
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Proof. Let k := ker(θ). We claim θ(1) ∨ k = 1 and θ(1) ∧ k = 0. As θ commutes
with arbitrary joins ([6, Lemma 06]), θ(θ(1) ∨ k) = θ(θ(1)) ∨ θ(k) = θ(1). Thus,
θ(θ(1) ∨ k) = θ(1). As θ is an isomorphism, θ(1) ∨ k = 1.

Since θ is an isomorphism, we have θ(1) ∧ k = θ(c), for some c ∈ 1/k. Thus,
θ(1) ∧ k = θ(c). Hence,

θ(θ(1) ∧ k) = θ(θ(c)) = θ(c).
As θ(1) ∧ k ≤ k, θ(θ(1) ∧ k) = 0. Therefore, 0 = θ(c) = θ(1) ∧ k, as desired.
Now we show that p̃θ(1) = h. As θ commutes with arbitrary joins and θ(k) = 0,

θ(x ∨ k) = θ(x) ∨ θ(k) = θ(x). Since θ is idempotent,
θ(x ∨ k) =θ(x ∨ k) = θ(x) = θ(θ(x))

=θ(θ(x) ∨ k) = θ(θ(x) ∨ k).

Thus, x ∨ k = θ(x) ∨ k, because θ is a lattice isomorphism. As L is modular and
θ(x) ≤ θ(1),

p̃θ(1)(x) =(x ∨ k) ∧ θ(1)
=(θ(x) ∨ k) ∧ θ(1) = θ(x) ∨ (θ(1) ∧ k)
=θ(x).

It completes the proof. □

Definition 3.1. A lattice L is said to be Abelian, if any idempotent linear endo-
morphism of L is central in End(L) (i.e., commute with any linear endomorphism of
L).

In the following, we provide a characterization for Abelian lattices.

Proposition 3.1. Let L be a lattice. Then the following statements are equivalent:
(1) D(L) ⊆ FI(L);
(2) L is Abelian.

Proof. (1) ⇒ (2) Let θ be an idempotent linear endomorphism of L. Put l := θ(1)
and m = ker(θ). By Lemma 3.1, l ∧ m = 0, l ∨ m = 1 and p̃l = θ. By (1),
l,m ∈ FI(L). Therefore, we have p̃l, p̃m ∈ Sl(End(L)), by [10, Lemma 2.8] (it
is known that if e ∈ D(L), then p̃e ∈ Sl(End(L)) if and only if e ∈ FI(L) [10,
Lemma 2.8]). Let ψ ∈ End(L). We will show that ψθ = θψ. Let x ∈ L. Then
ψ(θ(x)) = ψ(p̃l(x)) = ψ((x ∨m) ∧ l). As (x ∨m) ∧ l ≤ l and l ∈ FI(L), we have

ψ((x ∨m) ∧ l) ≤ ψ(l) ≤ l.

Moreover, m ∈ FI(L) and (x ∨m) ∧ l ≤ x ∨m, hence
ψ((x ∨m) ∧ l) ≤ψ(x ∨m) = ψ(x) ∨ ψ(m) ≤ ψ(x) ∨m.

Thus,
ψ(θ(x)) = ψ(p̃l(x)) =ψ((x ∨m) ∧ l) ≤ (ψ(x) ∨m) ∧ l = p̃l(ψ(x)) = θ(ψ(x)).



STRONGLY EXTENDING MODULAR LATTICES 545

For the reverse, we have (x ∨ l) ∧m ≤ m ≤ x ∨m. Since L is modular,
((x ∨m) ∧ l) ∨ ((x ∨ l) ∧m) =(x ∨m) ∧ (l ∨ ((x ∨ l) ∧m))

=(x ∨m) ∧ ((l ∨m) ∧ (x ∨ l))
=(x ∨m) ∧ (x ∨ l).

Thus, we have
x ≤ (x ∨m) ∧ (x ∨ l) =((x ∨m) ∧ l) ∨ ((x ∨ l) ∧m) = p̃l(x) ∧ p̃m(x).

Hence, ψ(x) ≤ ψ((p̃l(x) ∧ p̃m(x))) and
θ(ψ(x)) ≤θ(ψ((p̃l(x) ∧ p̃m(x)))) = θ(ψ(p̃l(x))) ∨ θ(ψ(p̃m(x))).

Since p̃l = θ, p̃m ∈ Sl(End(L)), θψθ = ψθ and p̃mψp̃m = ψp̃m. Therefore,
θψθ(x) ∨ θfp̃m(x) = ψθ(x) ∨ θp̃mψp̃m(x).

As θ(p̃m)(c) = 0, for each c ∈ L, we have θψ(x) ≤ ψθ(x). Therefore, eθ = ψθ, as
desired.

(2) ⇒ (1) Let l ∈ D(L). By (2), p̃l is central and so p̃l ∈ Sl(End(L)), by [10,
Lemma 2.8]. Therefore, l ∈ FI(L) and D(L) ⊆ FI(L). □

In the following, we introduce the key definition of this paper.

Definition 3.2. A lattice L is said to be strongly extending, provided that for any
l ∈ L, l ∈ E(e/0) for some e ∈ (FI(L) ∩D(L)).

In the following observation, we give some characterizations of strongly extending
lattices.

Theorem 3.1. Let L be a lattice. Then the following statements are equivalent:
(1) L is a strongly extending lattice;
(2) L is extending and C(L) ⊆ FI(L);
(3) L is extending and P (L) ⊆ FI(L);
(4) L is extending and D(L) ⊆ FI(L);
(5) L is extending and L is Abelian.

Proof. (1) ⇒ (2) If L is strongly extending, then L is extending. Let e ∈ C(L).
Hence there exists l ∈ D(L) ∩ FI(L) such that e ∈ E(l/0). Thus, e = l, and so
C(L) ⊆ FI(L).

(2) ⇒ (3) ⇒ (4) It is clear, because D(L) ⊆ P (L) ⊆ C(L), by [8, Proposition 1.7
(1)].

(4) ⇒ (5) It is clear by Proposition 3.1.
(5) ⇒ (1) Let l ∈ L. Then l ∈ E(k/0), for some k ∈ D(L). By (5), p̃k ∈ Sl(End(L)).

Therefore, k ∈ FI(L), by [10, Lemma 2.8]. Hence, L is strongly extending. □

Corollary 3.1. If L is a uniform lattice, then L is strongly extending.

The converse of Corollary 3.1 is true, provided that L is indecomposable.
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Theorem 3.2. Let L be a complete strongly extending lattice. Then D(L) is a
sublattice of L. Moreover, every subset of D(L) has a greatest lower bound.

Proof. Let e, f ∈ D(L) and e ∨ e′ = 1, e ∧ e′ = 0, f ∨ f ′ = 1 and f ∧ f ′ = 0. We are
going to show f ∨ e ∈ D(L). By Theorem 3.1, D(L) ⊂ FI(L), and so by [9, Lemma
1.8(4)], we have

e = (e ∧ f) ∨ (e ∨ f ′).
Therefore, e ∧ f ∈ D(e), and hence e ∧ f ∈ D(L), by [8, Proposition 1.7(3)].

Now, we will show that e ∨ f ∈ D(L). By [9, Lemma 1.8(4)], we have
f = (e ∧ f) ∨ (e′ ∨ f).

Therefore,
e ∨ f = e ∨ (f ∧ e) ∨ (f ∧ e′) = e ∨ (f ∧ e′).

By the previous argument, f ∧ e′ ∈ D(L), hence there exits t ∈ L such that 1 =
(f ∧ e′) ∨ t and (f ∧ e′) ∧ t = 0. Since e ∈ FI(L), we have

e = (e ∧ t) ∨ (e ∧ (f ∧ e′)) = e ∧ t,

by [9, Lemma 1.8 (4)]. Thus, e ≤ t and e ∈ D(t/0). Let t = e∨̇h. Then 1 =
(f ∧ e′) ∨ e ∨ h = (e ∨ f)∨̇h. Hence, e ∨ f ∈ D(L).

Now, suppose that {di}i∈I ⊂ D(L), where I is an arbitrary index set. Then∧
i∈I di ∈ E(a/0), for some a ∈ D(L) ∩ FI(L). Let d′

i ∈ D(L) be such that di ∨ d′
i = 1

for each i ∈ I. Since a ∈ FI(L), a = (a ∧ di) ∨ (a ∧ d′
i), by [9, Lemma 1.8 (4)]. Since∧

i∈I di ∈ E(a/0) and (∧
i∈I di) ∧ d′

i = 0, for each i ∈ I, we have d′
i ∧ a = 0. Therefore,

a = a ∧ di, for each i ∈ I, and so a ≤ di, for each i ∈ I. Hence, a ≤ ∧
i∈I di and

a = ∧
i∈I di ∈ D(L). Hence, every subset of D(L) has a greatest lower bound. □

Corollary 3.2. Let L be a strongly extending lattice. Then L is quasi-continuous.

Proof. Assume that L is a strongly extending lattice. Then L satisfies the condition
C1. Moreover, L has C3 property by Theorem 3.2. □

Next, we give some properties of a strongly extending lattice.

Proposition 3.2. Let L be a strongly extending lattice. Then the following statements
hold.

(1) If θ is a linear monomorphism, then θ(1) ∈ E(L).
(2) If θψ = 1End(L), for some ψ, θ ∈ End(L), then ψθ = 1End(L).

Proof. (1) Let θ be a linear monomorphism. Then θ(1) ∈ E(h/0), for some h ∈
D(L) ∩ FI(L). Since h ∈ D(L), 1 = h∨̇h′, for some h′ ∈ L. Hence, (p̃h′ ◦ θ)(1) = 0.
By Theorem 3.1, p̃h′ is central, therefore θ◦ p̃h′ = p̃h′ ◦θ. Thus, (θ◦ p̃h′)(1) = θ(h′) = 0.
Since θ is a linear monomorphism, θ(h′) = θ(0) implies that h′ = 0. Therefore, h = 1
and θ(1) ∈ E(L).

(2) Let θ, ψ ∈ End(L) and θ ◦ ψ(x) = x, for each x ∈ L. Then
ψ ◦ θ ◦ ψ ◦ θ(x) =ψ((θ ◦ ψ)(θ(x))) = ψ(θ(x)) = ψ ◦ θ(x).
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This proves that ψθ is an idempotent linear morphism of L. By Theorem 3.1, ψθ
is central in End(L). Therefore, θ ◦ (ψ ◦ θ) = (ψ ◦ θ) ◦ θ. Thus, we have

ψ ◦ θ(x) =(ψ ◦ θ)(θ ◦ ψ(x)) = ((ψ ◦ θ) ◦ θ)(ψ(x))
=(θ ◦ (ψ ◦ θ)(ψ(x)) = (θ ◦ ψ)(θ ◦ ψ(x))
=θ ◦ ψ(x) = x.

Therefore, ψθ = 1End(L). □

Lemma 3.2. Let L be a lattice and 1 = c∨̇d, for some c, d ∈ L. Then there is not
any non-zero linear morphism between c/0 and d/0 if and only if c ∈ FI(L).

Proof. Assume that c ∈ FI(L). Let θ : c/0 → d/0 be a linear morphism and λ the
composition

L
p̃c // c/0 θ // d/0 i // L,

where p̃c : L → c/0 is the canonical projection p̃d,c on c/0 and i : d/0 → L is
the mapping of canonical inclusion. Thus, λ ∈ End(L) as a composition of linear
morphisms of lattices. Since c ∈ FI(L), h(c) ≤ c. It is clear that λ(c) ≤ d. Hence,
λ(c) ≤ c ∧ d = 0 and so λ(c) = 0. This proves θ(c) = 0, and so θ = 0, as desired.

Conversely, assume that there is not any non-zero linear morphism between c/0
and d/0, for each i ̸= j ∈ I. Let θ ∈ End(L) and λ be the composition

c/0
θ|c/0 // L

pd // d/0 ,

where θ|c/0 is the restriction of θ to c/0. Then, by our assumption, λ = 0. Hence,
pd(θ(c)) = 0. Therefore, θ(c) ≤ ker(pd) = c, and so c is fully invariant. □

Corollary 3.3. Let L be a strongly extending lattice and 1 = c∨̇e, for some c, e ∈ L.
Then there is not any non-zero linear morphism between c/0 and e/0.

Proof. It is clear from Theorem 3.1 and Lemma 3.2. □

In the sequel, we show that the strongly extending property of a lattice is preserved
by complement intervals and also consider when direct joins have this property.

Proposition 3.3. Let L be a strongly extending lattice. If l ∈ D(L), then l/0 is
strongly extending.

Proof. Assume that L is strongly extending, l ∈ D(L) and x ∈ l/0. Then x ∈ E(p/0),
for some p ∈ D(L) ∩ FI(L). As l, p ∈ D(L), p ∨ q = 1 and p ∧ q = 0, also l ∨m = 1
and l ∧ m = 0, for some m, q ∈ L. Since x ∈ E(p/0), x ∈ E((p ∧ l)/0). We are
now going to prove that p ∧ l ∈ FI(l/0) ∩ D(l/0). As l ∨ m = 1 and p ∈ FI(L),
p = (p ∧ l) ∨ (p ∧m), by [9, Lemma 1.8 (4)]. Therefore, (p ∧ l) ∨ (p ∧m) ∨ q = 1. By
modularity, we have

l = l ∧ 1 =d ∧ ((p ∧ l) ∨ (p ∧m) ∨ q) = (p ∧ l) ∨ (l ∧ ((p ∧m) ∨ q)).
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Also, (p ∧ l) ∨ (l ∧ ((p ∧m) ∨ q)) ≤ l and
(p ∧ l) ∧ (l ∧ ((p ∧m) ∨ q)) =(p ∧ l) ∧ ((p ∧m) ∨ q)

≤p ∧ ((p ∧m) ∨ q)
=(p ∧m) ∨ (p ∧ q) = p ∧m

≤m.
Therefore,

(p ∧ l) ∧ (l ∧ ((p ∧m) ∨ q)) ≤ l ∧m = 0.
Hence, we have p ∧ l ∈ D(l/0). Moreover, p ∧ l ∈ FI(l/0), by [9, Lemma 1.8 (3)].

This proves that l/0 is strongly extending. □

Proposition 3.4. Let L be a strongly pseudo-complemented lattice and 1 = p∨̇q, for
some p, q ∈ L. Then the following statements are equivalent:

(1) L is strongly extending;
(2) each closed element t of L with t ∧ q = 0 or t ∧ p = 0 is a fully invariant

complement.

Proof. (1) ⇒ (2) It is clear by Theorem 3.1.
(2) ⇒ (1) We will show that, if t ∈ C(L), then t ∈ D(L) ∩ FI(L). Put c := t ∧ p.

Then there exists e ∈ C(t/0) such that c ∈ E(e/0), because t/0 is essentially closed
by [8, Lemma 1.6, Lemma 1.14]. As e ∈ C(t/0) and t ∈ C(L), we have e ∈ C(L),
by [8, Lemma 1.6, Lemma 1.11]. Since c ∧ q = 0 and c ∈ E(e/0), e ∧ q = 0. By (2),
e ∈ D(L) ∩ FI(L). Hence,

e ∨ e′ = 1 and e ∧ e′ = 0,
for some e′ ∈ L. By modularity and e ≤ t, we have t = e ∨ (e′ ∧ t). By the previous
argument, e′ ∧ t ∈ C(L). Since c ∈ E(e/0) and c∧ e′ = 0, we have (t∧ e′) ∧ p = 0. By
(2), t ∧ e′ ∈ D(L) ∩ FI(L). Hence,

1 = (t ∧ e′) ∨ d and (t ∧ e′) ∧ d = 0,
for some d ∈ L. Now, by modularity we have e′ = (t ∧ e′) ∨ (d ∧ e′). Therefore,

1 =e ∨ e′ = e ∨ (t ∧ e′) ∨ (d ∧ e′) = t ∨ (d ∧ e′).
Moreover,

t ∧ (d ∧ e′) = (t ∧ e′) ∧ d = 0.
Thus, t ∈ D(L). So L is extending by [8, Proposition 1.10 (4)]. Since e ∈ FI(L)

and e′ ∧t ∈ FI(L), we have t ∈ FI(L), by [9, Lemma 1.8 (1)]. Therefore, L is strongly
extending by Theorem 3.1. □

Theorem 3.3. Let L be a strongly pseudo-complemented lattice and 1 = m∨̇n, for
some m,n ∈ L. Then L is strongly extending provided that the following statements
hold.

(1) m/0 and n/0 are strongly extending.
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(2) For each sublattices H1 of m/0, there is not a non-zero linear morphisms from
H1 to n/0.

(3) For each sublattice H2 of n/0, there is not a non-zero linear morphisms from
H2 to m/0.

Proof. Assume that k is a closed element of L with k ∧ m = 0. Let p̃m : L → m/0
and p̃n : L → n/0 be the canonical projections p̃n,m and p̃m,n, respectively. We
consider p̃n|k/0 : k/0 → n/0, the restriction of p̃n to k/0. Let x = ker(p̃n|k/0). Then
x ≤ m = ker(p̃n). Therefore, x = 0. Thus, p̃n|k/0 : k/0 → p̃m(k/0) is a linear
monomorphism by [5, Corollary 1.6]. Therefore, p̃n|k/0 : k/0 → p̃n(k/0) is a lattice
isomorphism (by definition of linear monomorphism). Let ψ : p̃n(k/0) → k/0 be the
inverse of p̃n|k/0. Then we denote by θ the composition

p̃n|k/0(k/0) ψ // k/0
p̃m|k/0// m/0 .

Since p̃n|k/0(k/0) ⊆ n/0, we have θ = 0, by our assumption. Therefore,
p̃m(ψ(p̃n|k/0(k/0))) = p̃m(k/0) = 0.

Hence, k ≤ ker(p̃m) = n. Since k ∈ C(L), k ∈ C(n/0). Thus by strongly extending
property of n/0, k ∈ FI(n/0) ∩ D(n/0). By [8, Proposition 1.7 (3)], k ∈ D(L). By
Lemma 3.2, n ∈ FI(L), therefore k ∈ FI(L), by [9, Lemma 1.8 (2)]. Hence, by
Proposition 3.4, L is strongly extending. □

4. Applications to Grothendieck Categories

This section is allocated to employ the main results in Section 3 to Grothendieck
categories. First, we recall some notations and terminology from [1–11]. In this section
G will indicate a Grothendieck category. Let H be an object of G. We will denote by
L(H), the upper continuous modular lattice of all subobjects of H ([11], [21, Chapter
4, Proposition 5.3, and Chapter 5, Section 1]). According to [2], for any object H of
G, and for each subset W ⊆ L(H), we denote∧

W =
⋂
E∈W

E,
∨
W =

∑
E∈W

E.

We recall the next definition from [2], which is the key definition of this section.

Definition 4.1 ([2]). If P is a condition on lattices, then it is called H ∈ G is P,
provided that the lattice L(H) satisfies P. Further, a subobject H ′ of an object H ∈ G

is P if the element H ′ of the lattice L(H) satisfies P.

Now, by Definition 4.1, one can define the concepts of a strongly extending object
and fully invariant subobject, etc. Notice that we will use the term direct summand
subobject instead of complement subobject.

By [6, Lemma 5.1], it is known that if H1, H2 ∈ G and θ : H1 → H2 is a morphism,
then the canonical mapping φ : L(H1) → L(H2) defined by φ(K) := θ(K), for
each K ≤ H1, is a linear morphism of lattices. Notice that, the notions of linear
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morphism and morphism are different. For any two objects H1 and H2, we denote by
LHom(H1, H2), the set of all linear morphisms ψ : L(H1) → L(H2).

In the following, we give some results.

Theorem 4.1. If H is an object of a Grothendieck category G, then H is strongly
extending if and only if H is extending and every direct summand of H is fully
invariant in H.

Proposition 4.1. Let H = H1 ⊕H2, where H ∈ G and H1, H2 are subobject of H. If
H is strongly extending, then Hom(H1, H2) = 0 and Hom(H2, H1) = 0.

Proof. Assume that H = H1 ⊕ H2 and X is strongly extending. If θ : H1 → H2 is
a morphism, then the map ψ : L(H1) → L(H2) defined by ψ(A) := θ(A), for each
A ≤ H1, is a linear morphism ([6, Lemma 5.1]). By Corollary 3.3, ψ = 0, therefore
θ = 0. □

Theorem 4.2. Assume that H is an object of a Grothendieck category G and H is
strongly extending. Then the intersection of any family of direct summands of H is a
direct summand of H.

Theorem 4.3. Let H = H1 ⊕ H2, where H ∈ G and H1, H2 are subobject of H. If
H1 and H2 are strongly extending and for each subobject K1 of H1 and K2 of H2,
LHom(K1, H2) = 0 and LHom(K2, H1) = 0, then H is strongly extending.

5. Applications to Modules with a Hereditary Torsion Theory

In this section, some applications of the results proved in Sections 3 to the category
of modules with a fixed hereditary torsion class are given. Let τ = (T,F) be a
hereditary torsion theory in Mod−R, and τ(M) the τ -torsion submodule of a module
M . We recall some notations and terminology from [1–11]. For an R-module M , by
Satτ (M), we will denote the set {K | K ≤ M and M/K ∈ F}. Let K ≤ M . Then by
K, we will denote the τ -saturation of K (in M) defined by K/K = τ(M/K). Let K
be submodule of M . Then K is said to be τ -saturated if K = K. One can prove that
Satτ(M) = {K | K ≤ M, K = K}. By [21, Chapter 9, Proposition 4.1], it is known
that for a right R-module M , (Satτ (M),⊆,∧,∨, τ(M),M) is an upper continuous
modular lattice (the greatest element is M and the least element is τ(M)) and ∨ and∧ defined as follows:

∨
i∈J

Ki =
∑
i∈J

Ki and
∧
i∈J

Ki =
⋂
i∈J

Ki.

We refer to [21] the reader for the discussion of torsion theoretical concepts and
facts.

We recall the next definition from [2], which is the key definition of this section.

Definition 5.1 ([2]). Let C be a condition on lattices. Then it is called a right
R-module M is τ − C provided that the lattice Satτ (M) satisfies the condition C.
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Moreover, it is called a submodule K of a right R-module M is τ − C, provided that
its τ -saturation K, which is an element of Satτ (M), satisfies the condition C.

Therefore, we can define the notions of a τ -strongly extending module, τ -Abelian
module, etc, based on the Definition 5.1. By [2], we have the concepts of a τ -essential
submodule of a module, τ -fully invariant submodules, etc. As K = K, we have K is
τ − P if and only if K is τ − P. It is known that K is τ -essential in M if and only if
H ∩ K ∈ T implies that H ∈ T, for each H ≤ M , by [2, Proposition 5.3], moreover,
K is a τ -direct summand in M if and only if M/(K + H) ∈ T and K ∩ H ∈ T, for
some H ≤ M . In [6, Lemma 6.6], it is proved that, if f : M → N is a morphism of
right R-modules, then the canonical mapping fτ : Satτ (M) → Satτ (N) defined by
fτ (X) = f(X), for each X ∈ Satτ (M) is a linear morphism of lattices.

In the following, we give some results on the strongly τ -extending modules.

Theorem 5.1. An R-module M is τ -strongly extending if and only if M is τ -CS
(τ -extending) and every τ -direct summand of M is τ -fully invariant.

Proof. Assume that M is τ -strongly extending. It suffices to prove that every τ -direct
summand of M is τ -fully invariant. Let N be a τ -direct summand of M . Since M is
τ -strongly extending, Satτ (M) is a strongly extending lattice. Hence, N is τ -essential
in L, where L is fully invariant in lattice Satτ (M). As N is closed in Satτ (M), N = L.
Hence, N is τ -fully invariant in M . The converse is clear. □

Proposition 5.1. Each τ -direct summand a τ -strongly extending module is τ -strongly
extending.

Theorem 5.2. Suppose that M is a τ -strongly extending R-module and H1, H2 ≤ M
(H1, H2 /∈ T) such that H1 ∩ H2 ∈ T, M = H1 + H2. If f : Hi → Hj is an R-
homomorphism (1 ≤ i ̸= j ≤ 2), then f(Hi) ∈ T.

Proof. Since M = H1 +H2, we have
M = H1 +H2 ⊆ H1 +H2 ⊆ H1 +H2.

Therefore, M = H1 +H2. As H1 ∩ H2 ∈ T, we have H1 ∧ H2 = H1 ∩ H2 = τ(M).
Therefore, M = H1∨̇H2. Let f : H1 → H2 be a homomorphism of R-modules
H1 and H2. Then the canonical mapping fτ : Satτ (H1) → Satτ (H2) defined by
fτ (X) = f(X), for each X ∈ Satτ (H1) is a linear morphism of lattices. By [3,4], there
exist lattice isomorphisms h : Satτ (H1) → Satτ (H1) and g : Satτ (H2) → Satτ (H2).
By [5, Proposition 2.2(2)], h, g are linear morphisms. Take φ := g ◦ fτ ◦ h−1. By
Corollary 3.3, φ = 0, thus f(H1) = 0, in Satτ (M). Thus, f(H1) ∈ T. Similarly, if
f : H2 → H1 is a homomorphism between two R-modules H2 and H1, then we have
f(H2) ∈ T. □
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