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CRITICAL POINT APPROACHES FOR A CLASS OF
DIFFERENTIAL EQUATIONS WITH STURM-LIOUVILLE TYPE

NONHOMOGENEOUS BOUNDARY CONDITIONS

SHAPOUR HEIDARKHANI AND FARAHNAZ AYAZI

Abstract. A class of p-Laplacian equations with Sturm-Liouville type nonhomoge-
neous boundary value problem with nonlinear derivative depending on two control
parameters is investigated. Existence and multiplicity of solutions are discussed by
means of variational methods and critical point theory. Two examples supporting
our theoretical results are also presented.

1. Introduction

Various generalizations of classical Sturm-Liouville problems for ordinary linear
differential equations have attracted a lot of attention because of appearance of new
important applications in physical sciences and applied mathematics. Sturm-Liouville
boundary value problems have received a lot of attention in recent years. There have
been many papers studying the existence of solutions for boundary value problems, for
a small sample of recent work, we refer the reader to [1,7,8,11,13,16–18] that authors
have studied the existence of solutions of Sturm-Liouville boundary value problem
by using critical point theorem and fixed point theorem. For example, Bonanno and
Riccobono in [8] have established the existence of multiple solutions for the second
order Sturm-Liouville boundary value problem(ρϕp(x′))′ + sϕp(x) = λf(t, x), t ∈ [a, b],

αx′(a) − βx(a) = A, γx′(b) + σx(b) = B,
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where p > 1, ϕp(x) = |x|p−2x, ρ, s ∈ L∞([a,b]) with essinf[a,b]ρ > 0 and essinf[a,b]s > 0,
A, B ∈ R, α, β, γ, σ > 0, f : [a, b] × R → R is an L1-Carathéodory function and
λ is a positive real parameter. In [18] Tian and Ge, applying a three critical point
theorem due to Averna and Bonanno discussed the existence of three solutions for a
Sturm-Liouville boundary value problem depending upon the parameter λ, while in
[17] using lower and upper solutions approach and variational methods they proved
the existence of multiple solutions for second order Sturm-Liouville boundary value
problem −Lu = f(x, u), x ∈ [0, 1],

R1(u) = 0, R2(u) = 0,

where Lu = (p(x)u′)′ − q(x)u is a Sturm-Liouville operator R1(u) = αu′(0) − βu(0),
R2(u) = γu′(1) + σu(1). In [13] using critical point theory and Ricceri’s variational
principle, the existence of infinitely many classical solutions to a boundary value
system with Sturm-Liouville boundary conditions was obtained.

In the present paper, we investigate the existence of solutions for the Sturm-Liouville
type nonhomogeneous boundary value problem
(1.1)

−(ϕp(u′))′ =
λf(x, u(x)) +

∫ u′(x)

0

∂

∂x

(
(p − 1)|τ |p−2

h(x, τ)

)
dτ

h(x, u′(x)), x ∈ (a, b),

αu(a) − βu′(a) = A, γu(b) + σu′(b) = B,

where p > 1, ϕp(t) = |t|p−1t, λ > 0, is a parameter, α, γ, β, σ > 0 and A, B are
arbitrary constants. The function h : [a, b] × R → R satisfies the conditions

(i) 0 < m := inf(x,t)∈[a,b]×R h(x, t) ≤ M := sup(x,t)∈[a,b]×R h(x, t);
(ii) the function t → h(x, t) is continuous for all x ∈ [a, b] and the function

x → h(x, t) is in C1([a, b]) for all t ∈ R.
We also assume that the function f : [a, b] × R → R is an L1-Carathéodory function.

In [14] Sun et al. established the new criteria for the existence of infinitely many
solutions for a class of one-dimensional p-Laplacian equations with Sturm-Liouville
type nonhomogeneous boundary problem (1.1) with the perturbation term µg(x, u(x)).

We also refer the interested reader to the papers [3, 12] in which using variational
methods and critical point theory, the existence of solutions for boundary value
problems with nonlinear derivative dependence have been discussed. A second-order
impulsive differential inclusion with Sturm-Liouville boundary conditions is studied.
By using a nonsmooth version of a three critical point theorem of Ricceri, the existence
of three solutions is obtained in [15]. In [4] utilizing variational methods the existence
of at least one weak solution for elliptic problems on the real line was discused.

Here, we study the existence of multiple solutions for the problem (1.1). In Theorem
3.1 we prove the existence of at least two solutions for the problem (1.1). As a special
case of Theorem 3.1, we investigate the existence of at least two solutions, when
w(x) = d, that d is a constant; see Corollary 3.1. In Theorem 3.2 we show that the



STURM-LIOUVILLE TYPE NONHOMOGENEOUS BOUNDARY CONDITION EQUATIONS 505

problem (1.1) has at least three solutions. We also show that for small values of the
parameter and requiring an additional asymptotical behaviour of the potential at zero
if f(x, 0) = 0 for all x ∈ [a, b], the solutions are nontrivial; see Remark 3.1. Moreover,
we deduce the existence of solutions for small positive values of the parameter λ such
that the corresponding solutions have smaller and smaller energies as the parameter
goes to zero; see Remark 3.2. Finally, we give two examples to show the application
of our results.

2. Preliminaries

Let X be a real Banach space and for two functions Φ, Ψ : X → R for all r, r1, r2 >
infX Ψ, with r1 < r2 we define the following functions

φ1(r) = inf
u∈Ψ−1(]−∞,r[)

Φ(u) − inf
u∈Ψ−1(]−∞,r[)ω Φ(u)
r − Ψ(u) ,(2.1)

φ2(r1, r2) = inf
u∈Ψ−1(]−∞,r1[)

sup
v∈Ψ−1([r1,r2[)

Φ(u) − Φ(v)
Ψ(v) − Ψ(u) ,(2.2)

where Ψ−1(] − ∞, r[)ω is the closure Ψ−1(] − ∞, r[) in the weak topology.

Theorem 2.1. ([5, Theorem 1.1.]) Let X be a reflexive real Banach space, and let
Φ, Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux differen-
tiable functions. Assume that Ψ is (strongly) continuous and satisfies lim∥u∥→+∞ Ψ(u)
= +∞. Assume also that there exist two constants r1 and r2 such that

(a1) infX Ψ < r1 < r2;
(a2) φ1(r1) < φ2(r1, r2);
(a3) φ1(r2) < φ2(r1, r2).

Then, there exists a positive real number σ such that, for each

λ ∈

 1
φ2(r1, r2)

, min
{

1
φ1(r1)

,
1

φ1(r2)

},

the equation Ψ′ + λΦ′ admits at least two solutions whose norms are less than σ.

For all r1, r2, r3 > infX Ψ we define

φ3(r1, r2, r3) = inf
u∈Ψ−1([r1,r2[)

sup
v∈Ψ−1([r2,r3[)

Φ(u) − Φ(v)
Ψ(v) − Ψ(u) .(2.3)

Clearly, φ2(r2, r3) ≤ φ3(r1, r2, r3).

Theorem 2.2. ([5, Theorem 2.2.]) Let X be a reflexive real Banach space, and let
Φ, Ψ : X → R be two sequentially weakly lower semicontinuous and Gâteaux differen-
tiable functions. Assume that Ψ is (strongly) continuous and satisfies lim∥u∥→+∞ Ψ(u)
= +∞. Assume also that there exist two constants r1, r3 and r3 such that

(b1) infX Ψ < r1 < r2 < r3;
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(b2) max{φ1(r1), φ1(r2), φ1(r3)} < min{φ2(r1, r2), φ3(r1, r2, r3)}.
Then there exists a positive real number σ such that for each

λ ∈

max
{

1
φ2(r1, r2)

,
1

φ3(r1, r2, r3)

}
, min

{
1

φ1(r1)
,

1
φ1(r2)

,
1

φ1(r3)

},

the equation Ψ′ + λΦ′ = 0 admits at least three solutions whose norms are less than σ.

Theorems 2.1 and 2.2 have been used to the existence of multiple solutions for
a two point boundary value problem driven by one-dimensional p-Laplacian and a
second-order Sturm-Liouville boundary value problem in [5, 16], respectively. The
present paper paper is a continuation for the application of the critical point theorems.

Let X be the Sobolev space W 1,p([a, b]) equipped with norm

∥u∥ :=
∫ b

a
|u(t)|p + |u′(t)|pdt

 1
p

, for all u ∈ X.

Then, the space (X, ∥.∥) is a real reflexive Banach space and max{∥u∥Lp , ∥u′∥Lp} ≤
∥u∥ for each u ∈ X. By the Sobolev embedding theorem (see [9]), X is compactly
embedded into C([a, b]). We also denote ∥ · ∥∞ as the usual norm of L∞([a, b]).

For all x ∈ [a, b] and s ∈ R, define the functions

Jx(s) = J(x, s) :=
∫ s

0

(p − 1)|δ|p−2

h(x, δ) dδ

and
Hx(s) = H(x, s) :=

∫ s

0
J(x, τ)dτ.

For any fixed x ∈ [a, b], the fact that H ′′
x(s) = J ′

x(s) = (p−1)|s|p−2

h(x,s) ≥ 0 implies that Hx

is a strictly convex C2 function and Jx is a strictly increasing C1 function. Simple
calculation shows that for every x ∈ [a, b], s ∈ R,

(2.4) |s|p−1

M
≤ |J(x, s)| ≤ |s|p−1

m
,

|s|p

pM
≤ |H(x, s)| ≤ |s|p

pm
.

For each u ∈ X, let the functionals Ψ, Φ : X → R be as follows

(2.5) Ψ(u) =
∫ b

a
H(x, u′(x))dx + β

α
H

(
a,

α

β
u(a) − 1

β
A

)
+ σ

γ
H

(
b, −γ

σ
u(b) + 1

σ
B

)
and

(2.6) Φ(u) =
∫ b

a
F (x, u(x))dx,

where
F (x, t) :=

∫ t

0
f(x, s)ds, for all (x, t) ∈ [a, b] × R.
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In view of (2.4), one has
1

Mp

(
∥u′∥p

Lp + αp−1

βp−1

∣∣∣∣∣u(a) − 1
α

A

∣∣∣∣∣
p

+ γp−1

σp−1

∣∣∣∣∣u(b) − 1
γ

B

∣∣∣∣∣
p)

≤Ψ(u) ≤ 1
mp

(
∥u′∥p

Lp + αp−1

βp−1

∣∣∣∣∣u(a) − 1
α

A

∣∣∣∣∣
p

+ γp−1

σp−1

∣∣∣∣∣u(b) − 1
γ

B

∣∣∣∣∣
p)

.

(2.7)

Lemma 2.1. ([14, Lemma 2.1]) Assume that u ∈ X and there exists r > 0 such that
Φ(u) ≤ r, then, we have

∥u∥∞ ≤ (Mpr)
1
p

(β

α

) 1
q

+ (b − a)
1
q

+ 1
α

|A|,

where q is the conjugate of p, i.e., 1
p

+ 1
q

= 1.

Definition 2.1. We say that u is a classical solution to (1.1) if u ∈ C1([a, b]),
|u′|p−2u′ ∈ AC1([a, b]), αu(a)−βu′(a) =

∫ b
a ξ(x)u(x)dx, γu(b)−σu′(b) =

∫ bη(x)
a u(x)dx

and

−(ϕp(u′(x)))′ =
λf(x, u(x)) +

∫ u′(x)

0

∂

∂x

(
(p − 1)|τ |p−2

h(x, τ) dτ

)h(x, u′(x)),

for almost every complete x ∈ [a, b], where AC1([a, b]) denotes the space of those
functions whose first derivatives along with themselves are absolutely continuous on
[a, b].

Definition 2.2. We say that u is a weak solution to (1.1) if u ∈ X and∫ b

a
J(x, u′(x))v′(x)dx + J

(
a,

α

β
u(a) − 1

β
A

)
v(a) − J

(
b, −γ

σ
u(b) + 1

σ
B

)
v(b)

− λ
∫ b

a
f(x, u(x))v(x)dx = 0,

for any v ∈ X.

Lemma 2.2. ([14, Lemma 2.4]) Weak solutions of (1.1) coincide with classical solu-
tions of (1.1).

Lemma 2.3. ([14, Lemma 2.5]) Assume that the functional Ψ : X → R is de-
fined by (2.5). Then Ψ is sequentially weakly lower semicontinuous, continuous,
lim∥u∥→+∞ Ψ(u) = +∞ and its Gâteaux derivative u ∈ X is the functional Ψ′(u)
given by

Ψ′(u)(v) =
∫ b

a
J(x, u′(x))v′(x)dx + J

(
a,

α

β
u(a) − 1

β
A

)
v(a)

− J

(
b, −γ

σ
u(b) + 1

σ
B

)
v(b),

for every v ∈ X.
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Remark 2.1. If u ∈ X is a critical point of Iλ = Ψ + λΦ in view of Definition 2.2, then,
u is a classical solution of the problem (1.1).

3. Main Results

For any ν > 0, we define

Q(ν) :=
{

t ∈ R : |t| ≤ ν

(β

α

) 1
q

+ (b − a)
1
q

+ 1
α

|A|
}

.

We formulate our first main result as an application of Theorem 2.1 as follows.

Theorem 3.1. Assume there exist two positive constants c1 < c2 and a function
w ∈ X such that

(A1) cp
1 ≤ Kw ≤ m

M
cp

2, where

Kw :=
(

∥w′∥p
Lp + αp−1

βp−1

∣∣∣∣∣w(a) − 1
α

A

∣∣∣∣∣
p

+ γp−1

σp−1

∣∣∣∣∣w(b) − 1
γ

B

∣∣∣∣∣
p)

;

(A2) Aci
Mp <

∫ b
a F (x, w(x))dx −

∫ b
a supt∈Q(c1) F (x, t)dx

Ψ(w) for i = 1, 2.

Then, for each

λ ∈

 Ψ(w)∫ b
a F (x, w(x))dx −

∫ b
a supt∈Q(c1) F (x, t)dx

,
min{ 1

Ac1
, 1

Ac2
}

Mp

,

the problem (1.1) has at least two classical solutions whose norms in C([a, b]) are less
than c2 where Aci

= 1
cp

i

∫ b
a supt∈Q(ci) F (x, t)dx.

Proof. Let Ψ, Φ be as given by (2.5) and (2.6), respectively. By Lemma 2.3 we observe
that Ψ, Φ : X → R are two sequentially weakly lower semicontinuous and Gâteaux
differentiable functions and Ψ is continuous and satisfies lim∥u∥→+∞ Ψ(u) = +∞. We
want to obtain at least two critical points of Iλ = Ψ+λΦ by applying Theorem 2.1. It
remains to verify condition (a1), (a2) and (a3) in Theorem 2.1. Let ri = cp

i

Mp
, i = 1, 2.

By (2.7) and (A1) we have

r1 <
1

Mp
Kw ≤ Ψ(w) ≤ 1

mp
Kw < r2.

It is easy to see that (a1) holds since r1, r2 > 0. Now we will show that (a2) in Theorem
2.1 is satisfied. Taking into account that the function u ≡ 0 on [a, b] obviously belongs
to Ψ−1(] − ∞, r[) and that Ψ(0) = Φ(0) = 0, we get

φ1(r) = inf
u∈Ψ−1(]−∞,r[)

Φ(u) − inf
u∈Ψ−1(]−∞,r[)ω Φ(x)
r − Ψ(u) ≤ −1

r
inf

u∈Ψ−1(]−∞,r[)ω

Φ(u).(3.1)
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Noticing Ψ−1(] − ∞, r[)ω = Ψ−1(] − ∞, r[) by Lemma 2.1 we obtain
Ψ−1(−∞, r) = {u ∈ X : Ψ(u) < r}

⊆

u ∈ X : ∥u∥∞ ≤ (Mpr)
1
p

(β

α

) 1
q

+ (b − a)
1
q

+ 1
α

|A|


=

u ∈ X : max
x∈[a,b]

|u(x)| ∈ Q(c)

.

Then

φ1(r) ≤
supu∈Ψ−1(−∞,r)

∫ b
a F (x, u(x))dx

r

≤
∫ b

a supt∈Q(c) F (x, t)dx

r
,

and therefore, we have

φ1(ri) ≤ Mp

cp
i

∫ b

a
sup

t∈Q(ci)
F (x, t)dx, i = 1, 2.

On the one hand, by Lemma 2.1 and r1 ≤ Ψ(w) ≤ r2 we have

φ2(r1, r2) = inf
u∈Ψ−1(]−∞,r1[)

sup
v∈Ψ−1([r1,r2[)

Φ(u) − Φ(v)
Ψ(v) − Ψ(u)

≥ inf
u∈Ψ−1(]−∞,r1[)

Φ(u) − Φ(w)
Ψ(w) − Ψ(u)

≥ inf
u∈Ψ−1(]−∞,r1[)

1
Ψ(w) − Ψ(u)

(∫ b

a
F (x, w(x))dx −

∫ b

a
F (x, u(x))dx

)

≥
∫ b

a F (x, w(x))dx −
∫ b

a supt∈Q(c1) F (x, t)dx

Ψ(w) − Ψ(u) .

By (A2) we have that
∫ b

a F (x, w(x))dx −
∫ b

a F (x, u(x))dx > 0, so

φ2(r1, r2) ≥
∫ b

a F (x, w(x))dx −
∫ b

a supt∈Q(c1) F (x, t)dx

Ψ(w) .

Then, from (A2), (a2) and (a3) in Theorem 2.1 are fulfilled. By choosing σ = r2, the
conclusion follows. Therefore, it follows that the functional Iλ has two critical points
which are the weak solutions of the problem (1.1), and since from Lemma 2.3 the
weak solutions coincide with the classical solutions, we have the desired result. □

In Theorem 3.1, the condition (A2) is related to the function w ∈ W 1,p. A different
function w ∈ W 1,p would lead to a different condition, which is similar to (A2). For
example, we let w(x) = d where d is a constant. We have the following result.

Corollary 3.1. Assume there exist three positive constants c1, d, c2 such that



510 S. HEIDARKHANI AND F. AYAZI

(A′
1) cp

1 < Kd < m
M

cp
2, where

Kd :=
(

α

β

)p−1 ∣∣∣∣d − 1
α

A

∣∣∣∣p +
(

γ

σ

)p−1
∣∣∣∣∣d − 1

γ
B

∣∣∣∣∣
p

;

(A′
2) Aci

M
m

< B(d,c1)
Kd

,
where Aci

is defined in Theorem 3.1 and

B(d, c1) =
∫ b

a
F (x, d)dx −

∫ b

a
sup

t∈Q(c1)
F (x, t)dx.

Then, for every

λ ∈

 Kd

mpB(d, c1)
,
min{ 1

Ac1
, 1

Ac2
}

Mp

,

the problem (1.1) has at least two classical solutions whose norms in C([a, b]) are less
than c2.

Next, we state our second main result as an application of Theorem 2.2 as follows.

Theorem 3.2. Assume that there exist five constants c1, d1, c2, d2, c3 with

cp
i < Kdi

≤ cp
i+1

m

M
, i = 1, 2,

such that

(3.2) M

m
A∗(c1, c2, c3) ≤ B∗

c1,c2(d1, d2),

where
A∗(c1, c2, c3) = max{Aci

: i = 1, 2, 3}
and

B∗
c1,c2(d1, d2) = min

{
B(d1, c1)

Kd1

,
B(d2, c2)

Kd2

}
.

Then, for each

λ ∈

 1
mpB∗

c1,c2(d1, d2)
,

1
Mp A∗(c1, c2, c3)

,

the problem (1.1) admits at least three classical solutions whose norms in C([a, b]) are
less than c3.

Proof. Take the Banach space X and the functionals Ψ, Φ on X are defined by (2.5)
and (2.6). Let ri = cp

i

Mp
and w1 = d1, w2 = d2. By the same arguing as given in the

proof of Theorem 3.1 one has
r1 < Ψ(w1) < r2 < Ψ(w2) < r3,

φ2(r1, r2) ≥ mp

Kd1

B(d1, c1),

φ2(r1, r2, r3) ≥ φ2(r2, r3) ≥ mp

Kd2

B(d2, c2)
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and
φ(ri) ≤ Mp Aci

, i = 1, 2, 3.

Therefore, taking into account (3.2), there exist at least three classical solutions.
Not taking into account the zero solution, there are at least three nonzero classical
solutions whose norms in C([a, b]) are less than c3. Then, taking into account the
fact that the weak solutions of the problem (1.1) are exactly critical points of the
functional Iλ, also by using Lemma 2.3, we know the weak solutions coincide with the
classical solutions, so we have the desired conclusion. □

Remark 3.1. If f(x, 0) ̸= 0 for some x ∈ [a, b], then the ensured solutions in Theorem
3.1 are non-trivial. On the other hand, the non-triviality of the solution can be
achieved also in f(x, 0) = 0 for some x ∈ [a, b], requiring the extra condition at zero,
and there are a non-empty open set D ⊆ (a, b) and B ⊂ D such that

lim sup
ξ→0+

infx∈B F (x, ξ)
|ξ|p

= +∞

and

lim inf
ξ→0+

infx∈D F (x, ξ)
|ξ|p

> −∞.

Indeed, let 0 < λ < λ∗, where

λ∗ =
min

{
1

Ac1
, 1

Ac2

}
Mp

.

Let Φ and Ψ be as given in (2.5) and (2.6), respectively. Due to Corollary 3.1
for every λ ∈

(
Kd

mpB(d,c1) , λ
)

there exists a critical point of Iλ = Ψ + λΦ such that
uλ ∈ Ψ−1(−∞, r), where rλ = cp

λ

Mp
. In particular, uλ is a global minimum of the

restriction of Iλ to Ψ−1(−∞, r). We will prove that uλ cannot be trivial. Let us show
that

lim sup
∥u∥→0+

Φ(u)
Ψ(u) = +∞.(3.3)

Thanks to our assumptions at zero, we can fix a sequence {ξn} ⊂ R+ converging to
zero and two constants σ, κ (with σ > 0) such that for every ξ ∈ [0, σ]

lim
ξ→0+

infx∈B F (x, ξn)
|ξn|p

= +∞(3.4)

and
inf
x∈D

F (x, ξ) > κ|ξ|p.

We consider a set G ⊂ B of positive measure and a function v ∈ X such that
(k1) v(t) ∈ [0, 1] for every t ∈ (a, b);
(k2) v(t) = 1 for every t ∈ G;
(k3) v(t) = 0 for every t ∈ (a, b)\D.
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Finally, fix M > 0 and consider a real positive number η with

M <
mpη meas(G) + mpκ

∫
D\G |v(t)|dt

Ku

,

where

Ku = 1
mp

(
∥u′∥p

Lp + αp−1

βp−1

∣∣∣∣∣u(a) − 1
α

A

∣∣∣∣∣
p

+ γp−1

σp−1

∣∣∣∣∣u(b) − 1
γ

B

∣∣∣∣∣
p)

.

Then, there is n0 ∈ N such that ξn < σ and

inf
x∈B

F (x, ξn) ≥ κ|ξn|p,

for every n > n0. Now, for every n > n0, by considering the properties of the function
v (that is 0 ≤ ξnv(t) < σ for n large enough), one has

Φ(ξnv)
Ψ(ξnv) =

∫
G F (t, ξn)dt +

∫
D\G F (t, ξnv(t))dt

Ψ(ξnv)

>
mpη meas(G) + mpκ

∫
D\G |v(t)|dt

Ku

> M.

Since M could be arbitrarily large, it yields

lim
n→∞

Φ(ξnv)
Ψ(ξnv) = +∞

from which (3.3) clearly follows. Hence, there exists {ωn} ⊂ X strongly converging
to zero such that, ωn ∈ Ψ−1(−∞, r) and

Iλ(ωn) = Ψ(ωn) + λΦ(ωn) < 0.

Since uλ is a global minimum of the restriction of Iλ to Ψ−1(−∞, r), we conclude that

(3.5) Iλ(uλ) < 0.

Remark 3.2. From (3.5) we easily observe that the map

(3.6)
(

Kd

mpB(d, c1)
, λ∗

)
∋ λ 7→ Iλ(uλ)

is negative. Also, one has
lim

λ→0+
∥uλ∥ = 0.

Indeed, bearing in mind that Ψ is coercive and for every λ ∈
(

Kd

mpB(d,c1) , λ∗
)

the
solution uλ ∈ Ψ−1(−∞, r), one has that there exists a positive constant L such that
∥uλ∥ ≤ L for every λ ∈

(
Kd

mpB(d,c1) , λ∗
)
. Then, there exists a positive constant N such

that

(3.7)
∣∣∣∣ ∫ b

a
f(x, u(x))v(x)dx

∣∣∣∣ ≤ N∥uλ∥ ≤ NL,
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for every λ ∈
(

Kd

mpB(d,c1) , λ∗
)
. Since uλ is a critical point of Iλ, we have I ′

λ(uλ)(v) = 0
for every v ∈ X and every λ ∈

(
Kd

mpB(d,c1) , λ∗
)
. In particular I ′

λ(uλ)(uλ) = 0, that is

Ψ′(uλ)(uλ) = −λ
∫ b

a
f(x, uλ(x))uλ(x)dx,

for every λ ∈
(

Kd

mpB(d,c1) , λ∗
)
. Then, it follows

0 ≤ 1
Mp

(
∥u′

λ∥p
Lp + αp−1

βp−1

∣∣∣∣∣uλ(a) − 1
α

A

∣∣∣∣∣
p

+ γp−1

σp−1

∣∣∣∣∣uλ(b) − 1
γ

B

∣∣∣∣∣
p)

≤ Ψ′(uλ)(uλ)

= −λ
∫ b

a
f(x, uλ(x))uλ(x)dx,

for every λ ∈
(

Kd

mpB(d,c1) , λ∗
)
. Letting λ → 0+ by (3.7), we get

lim
λ→0+

∥uλ∥ = 0.

Then, we have obviously the desired conclusion. Finally, we have to show that the
map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈

(
Kd

mpB(d,c1) , λ∗
)
. We see that for any

u ∈ X one has

(3.8) Iλ = λ

(
Ψ(u)

λ
+ Φ(u)

)
.

Now, let us fix 0 < λ1 < λ2 < λ∗ and let uλi
be the global minimum of the functional

Iλi
restricted to Ψ(−∞, r) for i = 1, 2. Also, set

mλi
=
(

Ψ(uλi
)

λi

+ Φ(uλi
)
)

= inf
v∈Ψ−1(−∞,r)

(
Ψ(v)

λi

+ Φ(v)
)

,

for every i = 1, 2. Clearly, (3.6) together with (3.8) and the positivity of λ imply that

(3.9) mλi
< 0, for i = 1, 2.

Moreover

(3.10) mλ2 < mλ1 ,

due to the fact that 0 < λ1 < λ2. Then, by (3.8)–(3.10) and again by the fact that
0 < λ1 < λ2, we get

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 ,

so that the map λ 7→ Iλ(uλ) is strictly decreasing in λ ∈
(

Kd

mpB(d,c1) , λ∗
)
. The arbitrari-

ness of λ < λ∗ shows that λ 7→ Iλ(uλ) is strictly decreasing in λ ∈
(

Kd

mpB(d,c1) , λ∗
)
.

We now present the following example to illustrate Corollary 3.1.
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Example 3.1. Let a = 0, b = 1, α = β = 1, γ = 1, σ = 2, A = 0, B = 10, p = 2,
h(x, t) = 1+x+ | sin t| for every (x, t) ∈ [0, 1]×R and f(x, t) = 1

106

(
t9e−t(10−t) sin x

)
for every t ∈ R. By the expression of f , we have F (x, t) = 1

106

(
t10e−t sin x

)
for every

t ∈ R. We observe that m = 1, and M = 3. Choosing d = 10, c1 = 1
10 , c2 = 102, since

Q(c1) = 2
10 , Q(c2) = 2 × 102, Kd = 102, we see that all conditions in Corollary 3.1 are

satisfied. Therefore, taking Remark 3.2 it follows that for each

λ ∈

 102

9180e−10 ,
213 × 57375e−200

6

,

the problem
−(ϕp(u′))′ =

λf(u) +
∫ u′(x)

0

∂

∂x

( (p − 1)|τ |p−2

1 + x + | sin τ |

)
dτ


×(1 + x + | sin u′(x)|), x ∈ (0, 1),
u(0) − u′(0) = 0, u(1) + 2u′(1) = 10,

has at least two nontrivial solutions u1λ and u2λ in X such that
lim

λ→0+
∥uiλ∥ = 0

and the real function

λ →
∫ b

a
H(x, u′

iλ(x))dx + H

(
0, uiλ(0)

)
+ σ

γ
H

(
1, −1

2uiλ(1) + 1
210

)

+ λ

106

∫ 1

0
t10e−t sin uiλ(x)dx,

for i = 1, 2.
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