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NUMERICAL METHOD FOR SOLUTION OF FOURTH-ORDER
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY GREEN’S
FUNCTION

FATMA A. AKGUN! AND ZAUR RASULOV?

ABSTRACT. In this paper, we generalize Picard-Green’s Embedded method for
solving fourth-order Volterra integro-differential equations. We prove the existence
and uniqueness theorems. Moreover, we illustrate some numerical examples to
present the better approximation with a minimum error. We use MATLAB for
numerical solutions.

1. INTRODUCTION

Several authors have been interested in differential equations since they are widely
used in applications in the technical field as well as in the science and engineering
sciences. Particularly elastic theory, biomechanics, electromagnetics, fluids models in
physics and biology such as dynamics, heat transfer, population dynamics, and the
spread of infectious diseases are frequently encountered.

Studies for the solution of integral and integro-differential equations (IDEs) have
continued since Volterra [1,9,19]. Although studies on these equations include linear
equations, it is often not possible to find their analytical solutions to these equa-
tions. For this reason, numerical approaches [2] find more place in the literature.
Various algorithms for finding the approximate numerical values are introduced and
implemented to find the best results.

Some of these are Wavelet-Galerkin method [6], monotone iterative methods [5,
20], homotopy perturbation method reproducing kernel [4], Adomian decomposition
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method [8], Picard-Green’s method [7, 18], Tau method [11], spectral collocation

methods [12], Taylor polynomials [14], Lagrange interpolation [16], exponential spline

method [17] and the references therein. Furthermore, higher-order boundary value

problems (BVPs) for IDEs have been researched by Agarwal [3] and Morchalo [15].
Consider the following boundary value problem

Lly] = po(t)y™ () + p1(£)y" (t) + p2(O)y"(t) + ps(O)y'(t) + pa(t)y(?)
(11) = 0+ [ Kt 5)gly()ds,
with the boundary conditions

Baly) = Ozly(a) + agy'(a) + azy”(a) + auy”(a) = (i,

[
(1.2) Byly] = Bry(b) + Bay’ (b) + Bsy" (b) + Bay™ (b) = (o,
B.ly| = %y(C) + Y2y’ (c) + 139" (¢) + 7ay" (¢) = s,
Baly] = wiy(d) + way/ (d) + w3y (d) + way™ (d) = (4,

where t € (a,b), (;, i = 1,...,4, are constants and either ¢ = a or ¢ = b and either
d = a or d =b. The existence and uniqueness results for (1.1)—(1.2) are given in [10].
The Green’s function G(t, s) of problem (1.1) and (1.2) is;

G(t,s) = aryr + agys + azys + asys, a4 <t <s,
’ b1y + baya + b3ys + by, s<t<hb,

where t # s, y; are linearly independent solutions of L[y] and a;, b; are constants for
1=1,...,4.

To implement the proposed methodology, we denote the linear integral operator
(1.3)

Tl) =yt | G 3) ()™ (5) 4 pa()y”"(5) 4oy (5) +p5)y/ () +pals)y(s) s,

where yj, is the homogeneous solution of (1.1)—(1.2). From (1.3), we get

Tly] =yn + /ab G(t,s) {po(S)y””(S) +p1(8)y"(s) + p2(s)y” (s) + p3(s)y'(s) + pa(s)y(s)

(1.4) —f@y—Aﬁqugymwmqﬁwifcwﬁ)( +/ de&

Let y, be the particular solution of (1.1), then

(1.5) yp=/ ( +/ dt)d

By applying y = vy, + yn, from (1.4) and (1.5), we obtain
Tlyl =y + /a b G(t,s) {po(S)y’”’(S) +pu(s)y"(s) + p2(s)y"(s) + pa(s)y'(s) + pals)y(s)

(16)  —f(s)— [ K(t.5)gy(t))de]ds
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Let the starting function 3y be the homogeneous solution of L[y] = 0 and y,+1 = T'[ya],
for all n > 0, then Picard-Green’s fixed point iteration method for (1.1) is defined as

Ynt1 =Yn + / ’ G(t,s) [po(S)yn””(S) +p1(8)yn’" () + p2(8)yn” () + p3(s)yn'(5)

A7) pals)un(s) = () = [ Kt )g(ya(0))dt|ds.

0

In this paper, we generalize Picard-Green’s Embedding method (PGEM) for the
fourth-order BVPs of Volterra IDEs. We show convergence and prove the convergence
theorem. We demonstrate that the developed method offers a better approach than
the existing methods by numerical examples.

2. CONVERGENCE ANALYSIS AND CONVERGENCE RATE

In this section, we will introduce convergence analysis using nonlinear differential
equations and the contraction principle and determine the convergence rate.
Consider the fourth-order BVP

QO ) = ey 000" 0) + [ Kt 9)g((s)ds
with the boundary conditions
(2.2) y(0) =y'(0) = y(1) = y'(1) = 0.

The solution of the problem (2.1)—(2.2) is as follows

(2.3) Yp = /01 G(t,s) [f(&yp,y'p,y”pyy”’p) +/OtK(t, S)Q(yp(S))dS] ds

and

(2.4 Tl = [ Gt ) [pols)y™ () + pa()” ()
+pa(8)" (5) + Pa(8)p' (5) + pals)yp(s) | ds,

where G(t, s) is

S (A Bt v (e
s (% —i—sQ(t 2;”), s<t<l.
From (2.3) and (2.4), we get

Tlyp] =yp

+ [0, 9) [l (6) + p () ) + pal(5) + pls)y () + pa(s)us)

- f(57 Yp, y/p7 y//p7 ymp) + /0 K(t, S)Q(yp(t)dt ds.
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By applying PGEM to the problem (2.1)-(2.2), we obtain the following iterative
scheme.

Yn+1
=yn+/ab G*(t,s) {yn””(S) — f(5,un(8), 4 (5), yn" (5), yn”’(S))—/os K(t,5)g(yn(t))dt| ds.

In particular, we have

(2.5)

b (=263 + 32— 1 o (1 =262+t
yn+1=yn—/ S +5° | —F—
0 6 2

26) % |5"(5) = F(sn(s) o (99" (5)o" () = [ Kt s)gan(e)) ) ds

_/1 3 —2s% +3s% — 1 L s —2s%+ s
t 6 2

o [1(5) = £ 0(8), ' (5). 0 (9), () = [ K (8 )9 (0] .

Theorem 2.1. Let X = C|0, 1] be a Banach space with the norm ||x|| = max;cjo,1) |(t)],
x € X. Assume that the function g satisfies the Lipschitz condition such that
lg(y) — g(v)| < Lly —v|, L € (0,1]. Then operator T defined in (1.6) is a Banach’s
contraction and the sequence y, converges strongly to the solution of the problem (2.1)
and (2.2) under the following conditions

1
=[—])A<1
@ (98) ’
where
a t / 1 " 1
[0,1]x R4 oy 2

Proof. Integrating (2.5) by parts, we get
Q1) =)+ [ G0 [ v 0 + [ K0 $)gn())ae] ds.
Let T¢ : [0,1] — [0, 1] be the right side of (2.7), then

ITatm) — Tolpm)l = [ 609 £, + [ K@ 990000

5 s s i) + [ B8 S (0)) | ds

By using the fact that
. 1
Gl = max [G°(t.s)| = .

0<t,s< 98
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we get

ITo(un) — Tolom) | <55 [

[f(s, Yns Yn» Yros Y ) + /0 K(t,8)g(yn(t))dt

¢
(5t o)+ [ K (1) ()it | s
Implementing Mean Value Theorem, we obtain
1
1T6(yn) — Ta(ym)|l < %A“yn — Ynll-
Therefore, we get
(2.8) 1Te(yn) = To(ym)ll < Qllyn(t) = ym ()],
where () € (0,1). From (2.8) we have
190 = Ymll = (W = Y1) + Yot = Yn—2) + -+ (Y1 — Y) |

< [Yn = Yn-1ll + 1Yn-1 = Yn2ll + -+ + [Ymt1 — Yl

<@ QT4+ Q™)lyn — woll

<QTI+Q+QM+ -+ Q" Ny — wol

. 1 — Qn—m

=Q <1—Q> ly1 — woll-

Since @ € (0,1), we have
Qm

2.9 n — Ym S - )
(2.9) [Yn = Y 1_QHy1 Yol|
which converges to zero, i.e., ||yn—Ym| — 0, while m — 0. Thus, T(y) is a contraction
mapping. 0

Let y* be the solution of problem (2.1) and (2.2). Then T'(y*) = y*. From (2.8)
and (2.9), we have

[y ="l = 1T (a) =51 < Qllyn — 7l < -+ < Q" lyo — 7.
Since 0 < @ < 1, it concludes that 1, converges strongly to y*. The rest proof can be
completed from the proof of [13, Proposition 1].

3. NUMERICAL EXAMPLES

In this section, we give numerical examples to confirm the applicability of the main

results.
FExample 3.1. Consider the fourth order BVP
. t
(3.) vt = £ + [ yls)ds

with the boundary conditions
(3.2) y(0)=y'(0)=1, y(1)=1+e, y'(1)=2e,
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where f(t) = —t + 5e! — 1 and the exact solution y(t) = 1 + te’ and the Green’s
function is

3 [ —2s343s2—1 2 (s3—=2s%+s
G(t,s):{t G §+t (222) o<t<s,

_ 943 2_ 3_ 042
83(2t+63t 1 +52(t 22t+t)’ s<t<l.

By applying PGEM, we get

t 23+ 32 -1 -2+t
(33) Yn+1 =Yn _/0 |:93 ( 6 ) + 82 <2

X [yflv(s)—l—s—5es+1—/syn(t)dt ds
0

_/1 9 —25% 4+ 3s? — 1 L s3—2s2+s
t 6 2

yr(s) +s—5ef+1— /s yn(t)dt} ds,
0

where the starting function is yo = > + (e — 2)t* + t + 1. The absolute error of the
problem is estimated by

X

Err = |y(t) — yn(t)].
Table 1 gives the maximum errors of the problem (3.1)—(3.2) to demonstrate the high
accuracy of the proposed method. Considering the values in the table, the margin of
error decreases considerably and approaches zero as the number of iterations increases.

TABLE 1. The maximum errors of Example 1

No. of iterations 6 8 10 12
Max Error(n) 2.96E-18 | 1.23E-24 | 5.13E-31 | 2.13E-37

Table 2 shows the absolute errors for the second and third iterations solved by two
different methods. The table shows that PGEM has a better convergence rate than
Adomian Decomposition Method (MADM). Meanwhile, the chart 1 represents the
line graphs of the absolute errors of both methods for the third iteration. Therefore,
it is clear that PGEM approaches 0 faster than MADM.

TABLE 2. The absolute errors (n) of Example 1

PGEM | PGEM | MADM | MADM

t Numerical Solution Error (2) | Error(3) | Error(2) | Error(3)
0.1 | 1.1111924502842667426690545607791 | 1.68E-06 | 1.08E-09 | 4.54E-05 | 2.29E-08
0.3 | 1.4086348815636588244756957461284 | 1.05E-05 | 6.75E-09 | 4.23E-05 | 4.74E-07
0.5 | 1.8295725879184859388029560326160 | 1.70E-05 | 1.10E-08 | 6.63E-05 | 3.37E-07
0.7 | 2.4133047634097381621411544034260 | 1.35E-05 | 8.81E-09 | 6.92E-05 | 4.78E-07
0.9 | 3.2143183796746349483923129747728 | 2.74E-06 | 1.80E-09 | 7.97E-06 | 5.81E-08
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F1GURE 1. The relative absolute errors of Example 1

Example 3.2. Consider non-linear BVP

) t
(3.4) yr =1 +/ e %2 (s)ds
0
corresponding to boundary conditions
(3.5) y(0) =y (0)=1, y(1)=y'(1)=

The exact solution of the problem given above is y(t) = e”, and the Green’s function
of (3.4)—(3.5) is

3 (—2s343s%2—1 2 (s3—2s%+s
G(ts)—{t (P2t §+t( i) 0 <t <s,

_ 943 2 3_
53(2t+63t 1) 4 g2 (t 22t+t)’ s<t<l,

where the starting function is yo = (—e — 3)t* + (2 — 5)t* + ¢ + 1.
By applying PGEM, we get

il (=2t +32 -1 o (1 —2t2 + 1
yn—i-l:yn_/ S + s
0 6 2

x[y” —1— Oe yn()dt}ds

56 / l < 243 +3s _1>+t2<s3—2282+s>]

y;<>_1_/06 Y2 (t)dt] ds.

Table 3 demonstrates the high accuracy of the proposed method for the problem
given in Example 2. It presents second iteration errors for PGEM, MADM, and
MDMGF (Modified Decomposition Method with Green function). The results of
recommended method PGEM converge to the exact solution faster.

Table 4 shows the third iteration errors for the methods discussed in Table 3. When
we examine these results, it is clear that the results of the PGEM method decrease
faster as the number of iterations increases and converge to zero faster than the other

X
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TABLE 3. The absolute errors (n) of Example 2

Numerical Solution Error(2)

PGEM

MADM

MDMGF

0.1

1.10517091732556092458244 73770908

5.85E-07

8.48E-05

1.43E-05

0.3

1.3498588028660124806131472805192

3.66E-06

9.16E-05

9.17E-05

0.5

1.64872126302656894334 71827882745

5.93E-06

3.66E-04

1.56E-04

0.7

2.0137527013290129690745570786289

4.71E-06

4.54F-04

1.34E-04

0.9

2.4596031099034457029111001120299

9.55E-07

3.00E-05

3.00E-05

TABLE 4. The other absolute errors (n) of Example 2

t

Numerical Solution Error(3)

MADM

PGEM

MDMGF

0.1

1.10517091732556092458244 73770908

2.32E-06

7.50E-10

4.32E-08

0.3

1.3498588028660124806131472805192

7.72E-05

4.71E-09

2.75E-07

0.5

1.64872126302656894334 71827882745

7.52E-05

7.67E-09

4.54E-07

0.7

2.0137527013290129690745570786289

4.72E-05

6.14E-09

3.72E-07

0.9

2.4596031099034457029111001120299

7.61E-06

1.25E-09

7.61E-08

methods, as in Table 3. These results clearly show that PGEM is more effective, as
we tried to demonstrate.

While the Figure 2 shows the comparisons of the values in the tables 3 and 4, Fig.
3 depicts the comparisons between the exact solutions and the numerical solutions
obtained in the third iteration. Overall, it is clear from the first graph that the values
obtained via PGEM tend to approach zero faster than other methods. Moreover, as
shown by the second graph, the numerical solutions got by PGEM are very close to
the exact values.

9.00E-05
8.00E-05
7.00E-05
6.00E-05
5.00E-05
4.00E-05
3.00E-05
2.00E-05

1.00E-05

0.00E+00

MDMGF MADM

F1GURE 2. The absolute errors of Example 2

4. CONCLUSION

In this study, we generalize Picard-Green’s fixed-point iteration method, one of
the most popular methods for fourth-order nonlinear and linear IVPs, by embedding
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FIGURE 3. Exact and numerical solutions

Green’s function. We proved the convergence and got the convergence rate. We solve
some examples to show the correctness and generality of the proposed scheme. We
compared the numerical results obtained by the determined method with the results
of the methods well known in the literature. For comparison, we considered the
MADM and MDMGF methods. We used MATLAB to calculate numerical results.
We presented the obtained results with the help of tables and figures. Our method
gives better results than other methods when comparing numerical results, exact
results, and calculated values. Therefore, the aim of our study has been revealed.

There are many iteration methods in the literature to find the best approach. This
study compared the results obtained for the fourth-order Volterra integro-differential
equations with the Adomian decomposition methods. However, solving higher order
linear and nonlinear differential and integro-differential equations with a better ap-
proach than other existing methods is still a problem to be developed. We believe its
solution will lead to many studies.
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