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CRITICAL EXPONENTS CURVE FOR SEMILINEAR SYSTEM OF
WEAKLY COUPLED EFFECTIVELY DAMPED WAVES WITH

DIFFERENT POWER NONLINEARITIES

A. MOHAMMED DJAOUTI

Abstract. In this paper we prove a blow-up result for the semi linear system of
weakly coupled effectively damped waves with different power nonlinearities

utt − ∆u + b(t)ut = |v|p, vtt − ∆v + b(t)vt = |u|q,

u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),
where b(t) will be explained in detail in the next sections. We apply the so called
“test function method” to determine the range for the exponents p, q > 0 in the
nonlinear terms in which local in time existence may not globally prolonged with
respect to the t variable under suitable integral sign assumptions for the Cauchy
data u0, u1, v0, v1. Since we prove the blow-up in a complementary range for powers
of the nonlinear terms to that for the global existence of small data solutions (see
[7]), the main blow-up of this paper is optimal.

1. Introduction

The sharpness of the results for the global (in time) existence of small data solutions
or the notion of “blow-up of local (in time) solutions” means that if the pivotal
condition for the global (in time) existence is not satisfied, then the solution does, in
general, not exist globally (in time) regardless of the size of the data. Among several
methods to prove blow-up results, the test function method is an important method
which was introduced in the paper [19] and applied by Zhang for damped waves in
[28].
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A fundamental step to use this method consists in the modification of the choice of
a suitable scaling for the test function with respect to the time and space variables.
In particular, the scaling with respect to t is given by the function F (R), introduced
in [3, Definition 2.2] which is strongly related to the coefficient b(t).

Let us consider the Cauchy problem for the classical damped wave equation with
power nonlinearity

(1.1) utt − ∆u+ ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x),

where (t, x) ∈ [0,∞) × Rn.
The nonexistence result for p = pF uj(n) has been established in [28]. Todorova and

Yordanov proved in [26] that pF uj(n) = 1 + 2
n

is critical.
In the following we recall an important result which the reader can find in the

book of Ebert and Reissig [8]. The proof of Theorem 1.1 explains the basics and the
philosophy of the test function method.

Theorem 1.1. Let (u0, u1) ∈ A1,1 = (H1 ∩ L1) × (L2 ∩ L1) satisfy the assumption

(1.2)
∫
Rn

(
u0(x) + u1(x)

)
dx > 0,

with n ≥ 1 and p ∈ (1, 1 + 2
n
]. Then there exists a unique locally (in time) defined

energy solution u to (1.1) in C([0, T ), H1) ∩ C1([0, T ), L2) for some T > 0. This
solution cannot be continued to the interval [0,∞) in time.

The Cauchy problem (1.1) has also been investigated by many authors [9–17, 20–
23,28,29].

Let us now consider the weakly coupled system of semilinear classical damped waves
utt − ∆u+ ut = |v|p, vtt − ∆v + vt = |u|q,
u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),(1.3)

where (t, x) ∈ [0,∞) × Rn, p, q ≥ 1 and pq > 1. Motivated by some previous papers
concerned with the case of the Cauchy problem for a semilinear single equation, the
authors in [24] and [25] studied the blow-up behavior of solutions of the system (1.3).
In the following theorem we will recall the result of F. Sun and M. Wang published
in [25].

Theorem 1.2. Let n ≥ 1. Assume that q ≥ p ≥ 1 and n
2 ≤ q+1

pq−1 . If the data satisfy

(ui, vi) ∈ [W 1−i,1(Rn) ∩W 1−i,∞(Rn)]2, for i = 0, 1,

and ∫
Rn
ui(x)dx > 0,

∫
Rn
vi(x)dx > 0, for i = 0, 1,

then the Sobolev solution (u, v) of the Cauchy problem (1.3) does not exist globally (in
time).
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2. Blow-up Result for Weakly Coupled Systems of Semilinear Damped
Waves with Different Coefficients in the Dissipation Terms

Firstly, let us consider the Cauchy problem for a semilinear classical damped wave
equation, namely
(2.1) utt − ∆u+ b(t)ut = |u|p, u(0, x) = u0(x), ut(0, x) = u1(x),
where the dissipation term b(t)ut is supposed to be effective in the sense of Wirth [27].
The damping term b(t)ut is called effective in the model (2.1) if b = b(t) satisfies the
following properties:

• b is a positive and monotonic function with tb(t) → ∞ as t → ∞;
• ((1 + t)2b(t))−1 ∈ L1(0,∞);
• b ∈ C3[0,∞) and |b(k)(t)| ≲ b(t)

(1+t)k for k = 1, 2, 3;
• 1

b
/∈ L1(0,∞) and there exists a constant a ∈ [0, 1) such that tb′(t) ≤ ab(t).

Typical examples are

b(t) = µ

(1 + t)r
, b(t) = µ

(1 + t)r
(log(e+ t))γ, b(t) = µ

(1 + t)r(log(e+ t))γ
,

for some µ > 0, γ > 0 and r ∈ (−1, 1).
We introduce for m ∈ [1, 2) the function space

Am,1 := (H1 ∩ Lm) × (L2 ∩ Lm),
with the norm

∥(u, v)∥Am,1 := ∥u∥H1 + ∥u∥Lm + ∥v∥L2 + ∥v∥Lm .

We denote by B(t, 0) the primitive of 1/b(t) which vanishes at t = 0, that is,

B(t, 0) :=
∫ t

0

1
b(r)dr.

In [2] the authors determined the critical exponent p = pF uj(n) := 1 + 2
n
. That means

after proving the global existence for some admissible range p > pF uj(n), the authors
proved also that, in general, the solution cannot be globally defined for 1 < p ≤ pF uj(n)
under suitable sign assumptions for the Cauchy data. In other words, we have, in
general, only local solutions (in time). The case b(t) = µ

(1+t)r with µ > 0 and r > 0
was studied in [18].

Let us consider now the Cauchy problem for the following system:
utt − ∆u+ b(t)ut = |v|p, vtt − ∆v + b(t)vt = |u|q,
u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),(2.2)

where (t, x) ∈ [0,∞) × Rn. As we already remarked during the treatment of the
models (1.3) and (1.1) the test function method is not influenced by higher regularity
of the data. We restrict ourselves to prove the sharpness of our results for the
Cauchy problem (2.2), where the data are supposed to belong to the energy space
A1,1 := (H1 ∩ L1) × (L2 ∩ L1).
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In [7] the authors proved the global (in time) existence of small data solution to
(2.2), which means that the solution exists globally for

n

2 >
max{p; q} + 1

pq − 1 .

Theorem 2.1 ([7]). Let n ≤ 2m2

2−m
and n < 2m

m−1 . The data (u0, u1), (v0, v1) are
supposed to belong to Am,1 × Am,1 with m ∈ [1, 2). Finally, the exponents p and q
satisfy the assumptions

2
m

≤ min{p; q} < pF uj,m(n) < max{p; q}, if n ≤ 2,(2.3)
2
m

≤ min{p; q} < pF uj,m(n) < max{p; q} ≤ pGN(n), if n > 2,(2.4)

and
m

(max{p; q} + 1
pq − 1

)
<
n

2 .

Then there exists a small constant ϵ0 such that if
∥(u0, u1)∥Am,1 + ∥(v0, v1)∥Am,1 ≤ ϵ0,

then there exists a uniquely determined globally (in time) energy solution to (2.2) in(
C([0,∞), H1) ∩ C1([0,∞), L2)

)2
.

In the following we will prove the optimality of our results from Theorem 2.1. That
means, if

n

2 ≤ max{p; q} + 1
pq − 1 ,

then, under suitable integral sign assumptions on the initial data, the local (in time)
energy solution cannot be extended globally. The ideas of the proof of the following
theorem are based on the paper [3] which is devoted to study a general case of model
(2.1).
Theorem 2.2. Let b = b(t) such that b(t)ut, b(t)vt are effective dissipation terms.
Moreover, let

lim inf
t−→∞

b′(t)
b(t)2 > −1, lim sup

t−→∞

tb′(t)
b(t) < 1,

and let p, q such that
n

2 ≤ max{p, q} + 1
pq − 1 ,

where pq > 1. Then there exists no global classical solution (u, v) ∈ (C2([0,∞) × Rn))2

to (2.2) with initial data ((u0, u1), (v0, v1)) ∈ A1,1 × A1,1 such that∫
Rn
u0(x) + b̂−1

1 u1(x)dx >0,(2.5) ∫
Rn
v0(x) + b̂−1

1 v1(x)dx >0,
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where b̂1 is defined in (2.6).

Before proving this theorem we show the following lemma which will be used later
in the proof.

Lemma 2.1. Let g = g(t) ∈ C([0,∞)) be a solution of the following initial value
problem for an ordinary differential equation

(2.6) −g′(t) + g(t)b(t) = 1, g(0) = 1
b̂1
.

If b = b(t) satisfies the assumptions of Theorem 2.2, then it holds g(t) ≈ 1
b(t) and

(2.7) |g′(t) − 1| ≤ C.

The proof of Lemma 2.1 can be concluded from [3] and [18].
Proof. For the sake of brevity we assume that q > p. We multiply (2.2) by the positive
function g = g(t) which is defined in Lemma 2.1. In this way we obtain

(g(t)u)tt − ∆(g(t)u) − (g′(t)u)t + (−g′(t) + g(t)b(t))ut =g(t)|v|p,
(g(t)v)tt − ∆(g(t)v) − (g′(t)v)t + (−g′(t) + g(t)b(t))vt =g(t)|u|q.

From the definition of g = g(t) we may conclude
(g(t)u)tt − ∆(g(t)u) − (g′(t)u)t + ut = g(t)|v|p,
(g(t)v)tt − ∆(g(t)v) − (g′(t)v)t + vt = g(t)|u|q.

We introduce the test functions η ∈ C∞
0 [0,∞) with 0 ≤ η(t) ≤ 1, where

η(t) =
{

1, for 0 ≤ t ≤ 1
2 ,

0, for t ≥ 1,
ϕ ∈ C∞

0 (Rn) with 0 ≤ ϕ(x) ≤ 1, where

ϕ(x) =
{

1, for 0 ≤ |x| ≤ 1
2 ,

0, for |x| ≥ 1.
Moreover, one can choose test functions η, ϕ and 1 < α, β, α′, β′ < p such that

max
{

|η′(t)|β
η(t) ; |η′′(t)|α

η(t)

}
≤ C, for 1

2 ≤ t ≤ 1,

and
max

{
| ▽ ϕ(x)|β′

ϕ(x) ; |∆ϕ(x)|α′

ϕ(x)

}
≤ C, for 1

2 < |x| < 1,

where we choose 1 < α, β, α′, β′ < min{p; q}. Let R be a large parameter in [0,∞)
and

QR := [0, F (R)] ×BR, BR := {x ∈ Rn : |x| ≤ R}.
We define the test function

ψR(t, x) := ηR(t)ϕR(x) = η
(

t

F (R)

)
ϕ

(
x

R

)
,
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where F (R) = B−1(R2, 0) and B−1(t, 0) is the inverse function of B(t, 0). It fol-
lows that F : [0,∞) → [0,∞) is a strictly increasing function with F (0) = 0 and
lim

R→∞
F (R) = ∞. Moreover, we have R ≲ F (R) as a result of b(t) ≳ (1 + t)−1.

We have after integrating by parts∫
QR

g(t)|v|pψRd(t, x) = −
∫

BR

(u0 + b̂−1
1 u1)ψRdx

+
∫

QR

(
g(t)u∂2

t ψR + (g′(t) − 1)u∂tψR + g(t)u∆ψR

)
d(t, x)

and∫
QR

g(t)|u|qψRd(t, x) = −
∫

BR

(v0 + b̂−1
1 v1)ψRdx

+
∫

QR

(
g(t)v∂2

t ψR + (g′(t) − 1)v∂tψR + g(t)v∆ψR

)
d(t, x).

For sufficiently large R, thanks to (2.5), this implies∫
QR

g(t)|v|pψRd(t, x) ≲
∫

QR

∣∣∣g(t)u∂2
t ψR + (g′(t) − 1)u∂tψR + g(t)u∆ψR

∣∣∣ d(t, x)

and∫
QR

g(t)|u|qψRd(t, x) ≲
∫

QR

∣∣∣g(t)v∂2
t ψR + (g′(t) − 1)v∂tψR + g(t)v∆ψR

∣∣∣ d(t, x).

Using Lemma 2.1, Hölder’s inequality with 1
q

+ 1
q′ = 1 and (2.7) we get∫

QR

|ug(t)∂2
t ψR|d(t, x)(2.8)

≤
( ∫

QR

|u|qg(t)ψRd(t, x)
) 1

q
( ∫

QR

ψ
− q′

q

R g(t)|∂2
t ψR|q′

d(t, x)
) 1

q′
,∫

QR

|u(g′(t) − 1)∂tψR|d(t, x)(2.9)

≤
( ∫

QR

|u|qg(t)ψRd(t, x)
) 1

q
( ∫

QR

g(t)b(t)q′
ψ

− q′
q

R |∂tψR|q′
d(t, x)

) 1
q′
,∫

QR

|ug(t)∆ψR|d(t, x)(2.10)

≤
( ∫

QR

|u|qg(t)ψRd(t, x)
) 1

q
( ∫

QR

ψ
− q′

q

R g(t)|∆ψR|q′
d(t, x)

) 1
q′
.

We apply a change of variables t = F (R)τ and x = Ry. Then we have

d(t, x) = F (R)Rnd(τ, y), ∂tψR = F (R)−1∂τψR, ∂2
t ψR = F (R)−2∂2

τψR,

and

∆xψR = R−2∆yψR,
F (R)

2 ≤ t ≤ F (R), R2 ≤ |x| ≤ R ⇔ 1
2 ≤ τ, |y| ≤ 1.
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With this change of variables we get for (2.8) the chain of inequalities( ∫
QR

ψ
− q′

q

R g(t)|∂2
t ψR|q′

d(t, x)
) 1

q′

=
( ∫ 1

1
2

∫ 1

1
2

ψ
− q′

q

R g(t)(F (R)τ)F (R)−2q′ |ψR|
q′
α F (R)Rndτdy

) 1
q′

≲
(
F (R)−2q′

Rn
∫ F (R)

F (R)
2

g(t)dt
) 1

q′

≲
(
F (R)−2q′

Rn
∫ F (R)

F (R)
2

1
b(t)dt

) 1
q′

≲
(
F (R)−2q′

RnB(F (R), 0)
) 1

q′

≲F (R)
n+2−2q′

q′ .

Consequently, we arrive at

(2.11)
( ∫

QR

ψ
− q′

q

R g(t)|∂2
t ψR|q′

d(t, x)
) 1

q′
≲ F (R)

n+2−2q′
q′ .

In the same way we can prove for (2.10) the estimate

(2.12)
( ∫

QR

ψ
− q′

q

R g(t)|∆ψR|q′
d(t, x)

) 1
q′
≲ F (R)

n+2−2q′
q′ .

Finally, let us turn to (2.9). We have( ∫
QR

g(t)b(t)q′
ψ

− q′
q

R |∂tψR|q′
d(t, x)

) 1
q′
≲

(
F (R)−q′

∫
QR

b(t)q′−1ψ
− q′

q

R |ψR|
q′
β d(t, x)

) 1
q′

≲
(
F (R)−q′

Rn
∫ F (R)

F (R)
2

b(t)q′−1dt
) 1

q′
.

Since F (0) = 0 and

F ′(R) = (B−1(R2, 0))′ = 2R
B′(F (R)) = 2Rb(F (R)),

using b(t) ≈ b( t
2) and B(t, 0) −B( t

2 , 0) ≈ B(t, 0) from [2, Remark 4.1], we get∫ F (R)

F (R)
2

b(t)q′−1dt ≈ (b(F (R)))q′
∫ F (R)

F (R)
2

b(t)−1dt ≈ (b(F (R)))q′
R2.

Moreover, we have
b(F (R))
F (R) ≈ 1

B(F (R), 0) = R−2.

Finally, we obtain

(2.13)
( ∫

QR

g(t)b(t)q′
ψ

− q′
q

R |∂tψR|q′
d(t, x)

) 1
q′
≲ F (R)

n+2−2q′
q′ .
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Consequently, from (2.11) to (2.13) we get

(2.14)
∫

QR

g(t)|v|pψRd(t, x) ≲ F (R)
n+2−2q′

q′

( ∫
QR

|u|qgψRd(t, x)
) 1

q

.

Analogously, one can get also
(2.15)∫

QR

g(t)|u|qψRd(t, x) ≲ F (R)
n+2−2p′

p′

( ∫
QR

|v|pgψRd(t, x)
) 1

p

, where 1
p

+ 1
p′ = 1.

From (2.14) and (2.15) we obtain( ∫
QR

g(t)|v|pψRd(t, x)
) pq−1

pq

≤ F (R)s1 ,

( ∫
QR

g(t)|u|qψRd(t, x)
) pq−1

pq

≤ F (R)s2 ,(2.16)

where

s1 = n+ 2
q′ − 2 +

(
n+ 2
p′ − 2

)1
q

and s2 = n+ 2
p′ − 2 +

(
n+ 2
q′ − 2

)1
p
.

The assumption n
2 ≤ q+1

pq−1 implies that s2 ≤ 0. We consider two cases.
• If s2 < 0, then letting R → ∞ in the inequality (2.16) we obtain∫ ∞

0

∫
Rn
g(t)|u|qd(t, x) = 0.

This implies u ≡ 0. This is a contradiction to the assumptions.
• If s2 = 0, then there exists a positive number R0 such that∫

Ω
g(t)|u|qψRd(t, x) ≤ R0,

where Ω = {(t, x) ∈ [0,∞) × Rn : F (R)
2 ≤ t ≤ F (R), R

2 ≤ |x| ≤ R}. From
∂tψR = ∂ttψR = ∆ψR = 0 for (t, x) ∈ QR⧹Ω, one can prove similarly to (2.14)
and (2.15) the following estimates:∫ ∞

0

∫
Rn
g(t)|v|pψRd(t, x) +

∫
BR

(u0 + b̂−1
1 u1)ψRdx ≲ F (R)

n+2−2q′
q′

( ∫
Ω

|u|qgψRd(t, x)
) 1

q

,

∫ ∞

0

∫
Rn
g(t)|u|qψRd(t, x) +

∫
BR

(v0 + b̂−1
1 v1)ψRdx ≲ F (R)

n+2−2p′
p′

( ∫
Ω

|v|pgψRd(t, x)
) 1

p

.

Last estimates for s2 = 0 leads to∫ ∞

0

∫
Rn
g(t)|u|qd(t, x) +

∫
BR

(v0 + b̂−1
1 v1)ψRdx ≲ 0,

for R → ∞. This is also a contradiction. The proof is completed. □
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3. Concluding Remarks

Recently, in [1] the author proved the blow-up of solutions for a model with constant
coefficients considering the additional regularity Lm by taking a lower bound for the
initial data u0(x) ∈ L1

loc and u0(x) ≥ ϵ|x|− n
m log |x|. Assuming a similar condition in

our case by mixing additional regularities, we get from
∫

BR
(u0 + b̂−1

1 u1)ψR(0, x)dx
and

∫
BR

(v0 + b̂−1
1 v1)ψR(0, x)dx a lower bound with respect to R ≲ F (R) after using

ψR(0, x) = ϕR(x). This generated R cannot leads to the requested contraction. Finally,
this means that the mentioned approach is not suitable for our model.

Assuming the weakly coupled system of semilinear damped waves (2.2) with different
coefficients in the dissipation terms b1(t)ut and b2(t)ut.

(3.1) utt − ∆u+ b1(t)ut = |v|p, vtt − ∆v + b2(t)vt = |u|q,
u(0, x) = u0(x), ut(0, x) = u1(x), v(0, x) = v0(x), vt(0, x) = v1(x),

The global existence (in time) of solutions of this Cauchy problem was treated in [4–7],
where the data are defined in different classes of regularity which are the followings:
low regular data, data from energy space, data from Sobolev spaces with suitable
regularity and, finally, large regular data. The blow-up of (3.1) where b1(t) = µ

(1+t)r1 ,
b2(t) = µ

(1+t)r2 , r1, r2 ∈ (−1, 1), with data from energy space can be treated in a
separated forthcoming project.
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