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LOCAL EXISTENCE AND BLOW UP FOR A NONLINEAR
VISCOELASTIC KIRCHHOFF-TYPE EQUATION WITH

LOGARITHMIC NONLINEARITY

ERHAN PIŞKIN1, SALAH BOULAARAS2, AND NAZLI IRKIL3

Abstract. The aim of this paper is to consider the initial boundary value prob-
lem of nonlinear viscoelastic Kirchhoff-type equation with logarithmic source term.
Firstly, we prove the local existence of weak solution by applying Banach fixed the-
orem. Later, we derive the blow-up results by the combination of the perturbation
energy method, concavity method and differential-integral inequality technique.

1. Introduction

In this article, we study the following viscolelastic Kirchhoff type problem

(1.1)


utt − M

(
∥∇u∥2

)
∆u +

t∫
0

g (t − s) △ u (s) ds = u ln |u| , (x, t) ∈ Ω × R+,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω × R+,

where Ω is a bounded domain in R3 with smooth boundary ∂Ω, M (s) = β1 + β2s
γ,

γ, s ≥ 0. Specially, we take β1 = β2 = 1. We impose some conditions to be specified
on the kernel function g (t) .

The equation with the logarithmic source term is related with many branches of
physics. Cause of this is interest in it occures naturally in inflation cosmology, nuclear
physics, supersymmetric field theories and quantum mechanics (see [3, 5, 10]). Later,
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by the motivation of this work, some authors gave necessary and sufficient conditions
for the hyperbolic equation with logarithmic source term (see [6, 12,15,16]).

The Kirchhoff-type problem without the viscoelastic term has been extensively
studied and many results for the existence, blow up and asymptotic behaviour of
solutions have been established. For example, the following equation

utt − M
(
∥∇u∥2

)
∆u + |ut|p−1 ut − ∆ut = uk−1 ln |u| ,

has been considered by Yang et al. [19], where M (s) = α + βsγ , γ > 0, α ≥ 1, β > 0.
They studied the local existence, asymptotic behavior and finite time blow up of
solutions in cases subcritical energy and critical energy. And also, they proved the
finite time blow up solutions in case arbitrary high energy.

In 2019, Pişkin and Irkıl [9] considered the global existence for the following equation

utt + M
(
∥∆u∥2

)
△2 u + g (ut) ut = |u|p−1 ln |u|k .

In recent years, when by g ̸= 0 and M is a constant function, problem have been
offered by many authors. Al-Gharabli et al. [2] considered the following equation

(1.2) |ut|ρ utt + ∆2utt + ∆2u −
t∫

0

g (t − s) ∆2uds + u = u ln |u|k .

They investigated the local existence, global existence and stability for the problem
(1.2). Later, they [11] proved the existence and decay results of problem (1.2) for
ρ = 0 and absence ∆2utt term. Pişkin and Irkıl [18] studied the exponential growth
of solutions of problem (1.2) for ρ = 0 and higher order viscoelastic term. In [17], the
same authors studied the following equation

utt + [Putt + Put] + Pu + u −
t∫

0

g (t − s) Puds + ut = u ln |u|k ,

where P = (−△)m, m ≥ 1, and m ∈ N. They obtained local existence by using Faedo-
Galerkin method and a logaritmic Sobolev inequality. Later, they proved general
decay results of solutions.

In [13], Peyravi considered

(1.3) utt − ∆u + u +
t∫

0

g (t − s) ∆u ds + h (ut) ut + |u|2 u = u ln |u|k ,

in Ω ⊂ R3 with h (s) = k0 + k1 |s|m−1 . He studied the decay estimate and exponential
growth of solutions for the problem (1.3).

In [20], Ye studied the logarithmic viscoelastic wave equation

utt − ∆u +
t∫

0

g (t − s) △ u (s) ds = u ln |u| ,



LOCAL EXISTENCE AND BLOW UP 337

in three-dimensional space. The local and global existence for this problem are proved
and the blow up of solutions is obtained.

In 2019, Boulaaras et al. [4] studied viscoleastic Kirchhoff equation with Balakris-
hnan-Taylor damping and logarithmic nonlinearity. They obtained an arbitrary rate
of decay, which is not necessarily of polynomial or exponential decay.

In wiev of the articles mentioned above, much less effort has been devoted to initial
boundary value problem for viscoelastic Kirchhoff type equation with logarithmic
nonlinearity to our knowledge. Our purposes of this paper are to prove the local
existence and blow up result by combining of Banach fixed point theorem, potential
well theory and Logarithmic Sobolev inequality.

The structure of the work is as follows. To facilitate the description, firstly we give
some definitions, notations, energy functional and some lemmas which will be used in
our proof in Section 1. In Section 2 and in Section 3, respectively, we pove the local
existence and blow up results for the solution of problem (1.1).

2. Preliminaries

In this part, we will present some notations and lemmas which will be used through-
out this paper. We will write ∥·∥2 and ∥·∥p for the usual L2 (Ω) norm and Lp (Ω)
norm, respectively. We will use the Standart Lebesque Space L2 (Ω) with the inner
product and the norm. The inner product can take as

⟨u, v⟩ =
∫

u(x)v(x)dx,

and the norm is defined as
∥u∥2 = ⟨u, u⟩

1
2 .

Let us begin with defining the following total energy functional

E(t) =1
2 ∥ut∥2 + 1

2

1 −
t∫

0

g (s) ds

 ∥∇u∥2 + 1
4 ∥u∥2

+ 1
2 (γ + 1) ∥∇u∥2(γ+1) + 1

2 (g ◦ ∇u) (t) − 1
2

∫
Ω

u2 ln |u| dx.(2.1)

The potential energy functional

J(u) =1
2

1 −
t∫

0

g (s) ds

 ∥∇u∥2 + 1
4 ∥u∥2

+ 1
2 (γ + 1) ∥∇u∥2(γ+1) + 1

2 (g ◦ ∇u) (t) − 1
2

∫
Ω

u2 ln |u| dx,

and the Nehari functional

(2.2) I(u) =
1 −

t∫
0

g (s) ds

 ∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx,
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for u ∈ H1
0 (Ω) , where

(g ◦ ∇u) (t) =
t∫

0

g (t − s) ∥∇u (s) − ∇u (t)∥2 ds.

Then, it is easy to show that for u ∈ H1
0 (Ω) ,

J(u) =1
2I(u) + 1

4 ∥u∥2 − γ

γ + 1 ∥∇u∥2(γ+1) ,(2.3)

E(t) =1
2 ∥ut∥2 + J(u).(2.4)

The potential well depth is defined as

W =
{
u ∈ H1

0 (Ω) | J (u) < d, I (u) > 0
}

∪ {0} ,

and the outer space of the potential well

V =
{
u ∈ H1

0 (Ω) | J (u) < d, I (u) < 0
}

.

The depth of potential well is defined as

(2.5) d = inf
u∈N

J (u) .

Now, we present following assumptions and some useful lemmas.
(A1) g : R+ → R+ is a C1 nonincreasing function satisfying

g (0) ≥ 0,1 −
∞∫

0

g (s) ds = l0 > 0,

where
∞∫

0

g (s) ds >

∥∇u∥2 + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx

∥∇u∥2 .

(A2) There exists positive constant ϑ such that

g′ (t) ≤ ϑg (t) , t ≥ 0.

Lemma 2.1 ([7,8] Logarithmic Sobolev Inequality). Let u be any function u ∈ H1
0 (Ω),

Ω ⊂ R3 be a bounded smooth domain and a > 0 be any number. Then∫
Ω

ln |u| u2dx <
α2

2π
∥∇u∥2 + ln ∥u∥ ∥u∥2 − 3

2 (1 + ln α) ∥u∥2
2 .

Lemma 2.2 ([1, 14]). Let n = 3. Then H1
0 (Ω) ↪→ L6 (Ω) and there exists a constant

cp, the smallest positive number, satisfying

∥u∥6 ≤ cp ∥∇u∥2 , for all u ∈ H1
0 (Ω).
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Lemma 2.3. Suppose that (A1) and (A2) hold. Then the energy functional E (t) is
decresing with respect to t and

E ′ (t) = 1
2
[
(g′ ◦ ∇u) (t) − g (t) ∥∇u (t)∥2

]
≤ 0,

where

(2.6) (g′ ◦ ∇u) (t) =
t∫

0

g′ (t − s)
∫
Ω

|∇u (s) − ∇u (t)|2 dxdt.

Proof. Multiplyingboth sides of (1.1) by ut and then integrating from 0 to t, we have

E (t) =
t∫

0

1
2
[
(g′ ◦ ∇u) (t) − g (t) ∥∇u (t)∥2

]
+ E (0) ,

which yields (2.6) by a simple calculation. □

Lemma 2.4. For any u ∈ H1
0 (Ω), ∥u∥ ≠ 0, we have

i) lim
λ→0

J (λu) = 0, lim
λ→∞

J (λu) = −∞;
ii) for 0 < λ < ∞ there exists a unique λ1 such that

d

dλ
J (λu) |λ=λ1= 0,

where λ1 is the unique root of equation

l0 ∥∇u∥2 + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx = ln λ
∫
Ω

u2dx − λ2γ ∥∇u∥2γ+2 ;

iii) J (λu) is strictly decreasing on λ1 < λ < ∞, strictly increasing on 0 < λ < λ1
and attains the maximum at λ = λ1;

iv) I (λu) > 0 for 0 < λ < λ1, I (λu) > 0 for λ1 < λ < ∞, and I (λ1u) = 0

I (λu) = λ
d

dλ
J (λu)


> 0, 0 ≤ λ ≤ λ1,

= 0, λ = λ1,

< 0, λ1 ≤ λ.

Proof. i) By the definition of J (u) , we get

J (λu) =λ2

2

1 −
t∫

0

g (s) ds

 ∥∇u∥2 + λ2

2 (g ◦ ∇u) (t)

+ λ2γ+2

2 (γ + 1) ∥∇u∥2(γ+1) + λ2

4

∫
Ω

u2dx

− λ2

2

∫
Ω

u2 ln |u| dx − λ2 ln λ

2

∫
Ω

u2dx.(2.7)

Considering ∥u∥ ≠ 0, so lim
λ→0

J (λu) = 0 and lim
λ→∞

J (λu) = −∞ hold.
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ii) Taking derivative of J (λu) with respect to λ, (2.7) yields

d

dλ
J (λu) =λ

1 −
t∫

0

g (s) ds

 ∥∇u∥2 + λ (g ◦ ∇u) (t)

+ λ2γ+1 ∥∇u∥2(γ+1) − λ
∫
Ω

u2 ln |u| dx − λ ln λ
∫
Ω

u2dx

=λ

l0 ∥∇u∥2 + (g ◦ ∇u) (t) + λ2γ ∥∇u∥2(γ+1) −
∫
Ω

u2 ln |u| dx

−ln λ
∫
Ω

u2dx

 ,

which means that there is a unique λ1 such that d
dλ

J (λu) |λ=λ1= 0, where λ1 is the
unique root of equation

l0 ∥∇u∥2 + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx = ln λ
∫
Ω

u2dx − λ2γ ∥∇u∥2(γ+1) ,

where l0 ∥∇u∥2 + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx < 0.
iii) A simple corollary of the ii) we get

d

dλ
J (λu) > 0, for 0 < λ < λ1,

and
d

dλ
J (λu) < 0, for λ1 < λ < ∞.

iv) From (2.2), we get

I (λu) =λ2

1 −
t∫

0

g (s) ds

 ∥∇u∥2 + ∥∇u∥2(γ+1) + λ2 (g ◦ ∇u) (t)

−
∫
Ω

(λu)2 ln |λu| dx

=λ2

l0 ∥∇u∥2 + (g ◦ ∇u) (t) + λ2γ ∥∇u∥2(γ+1) −
∫
Ω

u2 ln |u| dx − ln λ
∫
Ω

u2dx


=λ2 d

dλ
J (λu) ,

which implies I (λ1u) = 0, then I (λu) > 0 for 0 < λ < λ1, I (λu) > 0 for λ1 < λ <
∞. □

Lemma 2.5. Assume that u ∈ H1
0 (Ω). Then d = 1

4 (2πl0)
3
2 e3.
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Proof. Combining Logarithmic Sobolev inequality and (A1) yields that

I(u) =
1 −

t∫
0

g (s) ds

 ∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) −
∫
Ω

u2 ln |u| dx

≥
(

l0 − α2

2π

)
∥∇u∥2 + ∥∇u∥2(γ+1) + (g ◦ ∇u) (t) +

[3
2 (1 + ln α) − ln ∥u∥

]
∥u∥2 ,

(2.8)

for any α > 0. Taking α =
√

2πl0, by (2.8) and (A1), we arrive that

(2.9) I(u) >
[3
2 (1 + ln α) − ln ∥u∥

]
∥u∥2 .

From Lemma 2.4 and (2.3), we conclude that

sup
λ≥0

J (λu) = J(λ1u) = 1
2I(λ1u) + 1

4 ∥λ1u∥2 − γ

γ + 1 ∥λ1∇u∥2(γ+1)

≥ 1
2I(λ1u) + 1

4 ∥λ1u∥2 .(2.10)

It follows from (2.9) and Lemma 2.4 that

0 = I(λ1u) ≥
[3
2 (1 + ln α) − ln ∥λ1u∥

]
∥λ1u∥2 ,

which implies that

(2.11) ∥λ1u∥2 ≥ (2πl0)
3
2 e3.

We gain from (2.10) and (2.11) that

(2.12) sup
λ≥0

J (λu) ≥ 1
4 (2πl0)

3
2 e3.

By (2.5) and (2.12), d = 1
4 (2πl0)

3
2 e3 > 0. □

3. Local Existence

In this part, we state and prove the local existence result for the problem (1.1).
Firstly, we consider linear problem
(3.1)

utt − M
(
∥∇u∥2

)
∆u +

t∫
0

g (t − s) △ u (s) ds + u = v ln |v| , (x, t) ∈ Ω × (0, T ),

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = 0, x ∈ ∂Ω × R+,

in which T > 0.
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Lemma 3.1. Assume that (A1) and (A2) hold. Then for every (u0, u1) ∈ H1
0 (Ω) ×

L2 (Ω) and v ∈ C ([0, T ] ; H1
0 (Ω)) , problem (3.1) has a unique local solution for some

T > 0
u ∈ C

(
[0, T ) ; H1

0 (Ω)
)

, ut ∈ C
(
[0, T ) ; L2 (Ω)

)
.

Proof. Suppose that {wj}∞
j=1 be the eigenfunctions of the Laplace operator with the

Dirichlet boundary condition
−∆wj = λjwj, wj |∂Ω= 0.

Then, we choose an orthogonal basis {wj}∞
j=1 in H1

0 (Ω) which is orthonormal in
L2 (Ω) . Let Vm be the subspace of H1

0 (Ω) generated by {w1, w2, . . . , wm} , m ∈ N. We
search for an approximate solution

um (x, t) =
m∑

j=1
hm

j (t) wj (x) ,

which satisfies the following Cauchy problem in Vm

(3.2)



(um
tt (t) , wj) − M

(
∥∇mu∥2

)
(∆mu (t) , wj) +

t∫
0

g (t − s) (△mu (s) , wj) ds

= (v ln |v| , wj) , j = 1, 2, . . . , m ∈ Vm,

um (0) = um
0 =

m∑
j=1

(u0,wj) wj, in H1
0 (Ω) , m → ∞,

um
t (0) = um

1 =
m∑

j=1
(u1,wj) wj, in L2 (Ω) , m → ∞.

This leads to the initial value problem for a system second-order differantial equations
for unknown functions hm

j (t)

(3.3)


hm

jtt (t) + M
(
∥∇mu∥2

)
λjh

m
j (t) = Gj

(
hm

j (t)
)

, j = 1, 2, . . . , m,

hm
j (0) =

∫
Ω

u0wjdx, hm
jt (0) =

∫
Ω

u1wjdx, j = 1, 2, . . . , m,

where

Gj

(
hm

j (t)
)

=
t∫

0

g (t − s) λjh
m
j (s) ds +

∫
Ω

v ln |v| wj, j = 1, 2, . . . , m.

Multiplying (3.3) by hm
jt (t) and sum over j from 1 to m, and later integrating over

[0, t] , we obtain

∥um
t (t)∥2 +

1 −
t∫

0

g (s) ds

 ∥∇um∥2 + 1
γ + 1 ∥∇um∥2(γ+1) + (g ◦ ∇um) (t)

= ∥um
1 (t)∥2 + ∥∇um

0 ∥2 + 1
γ + 1 ∥∇um

0 ∥2(γ+1)

+ 2
t∫

0

∫
Ω

v(s) ln |v(s)| um
t (s) dxds +

t∫
0

[
(g′ ◦ ∇u) (s) − g (s) ∥∇u (s)∥2

]
ds
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≤ ∥um
1 (t)∥2 + ∥∇um

0 ∥2 + 1
γ + 1 ∥∇um

0 ∥2(γ+1) + 2
t∫

0

∫
Ω

v(s) ln |v(s)| um
t (s) dxds.(3.4)

We estimate the last term in the right-hand side as follows. By Hölder’s and Young’s
inequalities, we have

2
t∫

0

∫
Ω

v(s) ln |v(s)| um
t (s) dxds ≤2

t∫
0

∫
Ω

|v(s) ln |v(s)||2 dxds

t∫
0

∫
Ω

|um
t (s)|2 dxds

≤
t∫

0

∫
Ω

|v(s) ln |v(s)||2 dxds +
t∫

0

∥|um
t (s)|∥2 ds.(3.5)

For v ∈ H1
0 (Ω) , by direct calculation and using of Lemma 2.2, we obtain∫

Ω

|v ln |v||2 dx =
∫

{x∈Ω;|v(x)|≤1}

v2 (ln |v|)2 dx +
∫

{x∈Ω;|v(x)|>1}

v2 (ln |v|)2 dx

≤ e−2 |Ω| + 1
4

∫
{x∈Ω;|v(x)|>1}

|v|6 dx ≤ e−2 |Ω| + 1
4 ∥v∥6

6

≤ e−2 |Ω| + 1
4cp ∥∇v∥6 = C,(3.6)

since ln |u| < u2

2 , |u (x)| > 1,

u ln |u| < e−1, |u (x)| ≤ 1.

It follows from (A1), (3.4), (3.5) and (3.6) that

∥um
t (t)∥2 + l0 ∥∇um∥2 + 1

γ + 1 ∥∇um
0 ∥2(γ+1)

≤ ∥um
1 (t)∥2 + ∥∇um

0 ∥2 + 1
γ + 1 ∥∇um

0 ∥2(γ+1) + CT +
t∫

0

∥|um
t (s)|∥2 ds

≤C∗ +
t∫

0

[
∥um

t (s)∥2 + l0 ∥∇um∥2 + 1
γ + 1 ∥∇um∥2(γ+1)

]
ds,(3.7)

where C∗ = ∥um
1 (t)∥2 + l0 ∥∇um

0 ∥2 + 1
γ+1 ∥∇um

0 ∥2γ+2 + CT. By using of Gronwall
inequality and (3.7), we get

(3.8) ∥um
t (t)∥2 + l0 ∥∇um∥2 + 1

γ + 1 ∥∇um∥2(γ+1) ≤ C2e
T .

We obtain from (3.8) thatum is a bounded sequence in L∞ ([0, T ] ; H1
0 (Ω)) ,

um
t is a bounded sequence in L∞ ([0, T ] ; L2 (Ω)) .
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Hence, there exists a subsequence of {um} , still denoted by {um} , such that

(3.9)


um → u, weakly star in L∞ (0, T ; H1

0 (Ω)) ,

umt → ut, weakly star in L∞ (0, T ; L2 (Ω)) ,

umtt → utt, weakly in L2
(
0, T ; H−1

0 (Ω)
)

.

Setting up m → ∞ and passing to the limit in (3.2), and combining by (3.9), we
obtain

(utt (t) , wj) − M
(
∥∇u∥2

)
(∆u (t) , wj) +

t∫
0

g (t − s) (△u (s) , wj) ds = (v ln |v| , wj) ,

for j = 1, 2, . . . Since {wj}∞
j=1 is a base in the corresponding space, we deduce that u

satisfies the equation in (3.1). We finished this section by proving a local existence
result of the problem (1.1). □

Theorem 3.1. Suppose that (A1) holds. Assume further that u0 ∈ H1
0 (Ω) and

u1 ∈ L2 (Ω) . Then problem (1.1) has a unique local solution

u ∈ C
(
[0, T ] ; H1

0 (Ω)
)

, ut ∈ C
(
[0, T ] ; L2 (Ω)

)
.

Proof. We define the following set

Xr0,T =
{
u ∈ Π | ∥u (t)∥Π ≤ r2

0, t ∈ [0, T ]
}

,

here the space

Π =
{
u | u ∈ C

(
[0, T ] ; H1

0 (Ω)
)

, ut ∈ C
(
[0, T ] ; L2 (Ω)

)}
,

equipped with the norm

∥u (t)∥Π = sup
0≤t≤T

(
∥um

t (t)∥2 + l0 ∥∇um∥2 + 1
γ + 1 ∥∇um∥2(γ+1)

)
.

Then Xr0,T is a complete metric space with the distance

d (u1, u2) = ∥u1 − u2∥Π .

By Lemma 3.1, we define the nonlinear mapping Ψ : v → u = Ψv in the following
way. For v ∈ Xr0,T , u = Ψv is the unique solution of problem (3.1). We claim that Ψ
is a contraction mapping from Xr0,T into itself for r0 > 0 and T > 0.

Let v ∈ Xr0,T , for t ∈ [0, T ] , we get from (A1) and (3.4) that

∥ut∥2 + l0 ∥∇u∥2 + 1
γ + 1 ∥∇u∥2(γ+1)

≤ ∥u1∥2 + ∥∇u0∥2 + 1
γ + 1 ∥∇u0∥2(γ+1) + 2

t∫
0

∫
Ω

v(s) ln |v(s)| ut (s) dxds
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≤ ∥u1∥2 + ∥∇u0∥2 + 1
γ + 1 ∥∇u0∥2(γ+1) +

t∫
0

∥v(s) ln |v(s)|∥2 ds +
t∫

0

∥|ut (s)|∥2 ds.

(3.10)

Next we estimate the
t∫

0
∥v(s) ln |v(s)|∥2 ds term in (3.10), by using of Hölder ineqality,

Lemma 2.2, the definition of ∥u (t)∥Π and the inequality ln x < x as x > 1 such that
we obtain

∥v(s) ln |v(s)|∥2 =
∫

{x∈Ω;|v(x)|≤1}

v2 (ln |v|)2 dx +
∫

{x∈Ω;|v(x)|>1}

v2 (ln |v|)2 dx

≤
∫

{x∈Ω;|v(x)|>1}

|v|4 dx

≤ 3
√

Ω ∥v∥4
6 ≤ 3

√
Ωc4

p ∥∇v∥4 ≤
3
√

Ωc4
pr4

0

l2
0

.(3.11)

By combining of (3.10) and (3.11) and using of the definition of ∥u (t)∥Π , we have

∥ut∥2 + l0 ∥∇u∥2 + 1
γ + 1 ∥∇u∥2(γ+1) ≤ Ξ (u0, u1, r0, T ) +

t∫
0

∥|ut (s)|∥2 ds

≤ Ξ (u0, u1, r0, T ) +
t∫

0

∥u (s)∥Π ds,(3.12)

where Ξ (u0, u1, r0, T ) = ∥u1∥2 + ∥∇u0∥2 + 1
γ+1 ∥∇u0∥2(γ+1) +

3√Ωc4
pr4

0
l20

T.

We get from (3.12) and Gronwall’s inequality that

(3.13) ∥u∥Π ≤ Ξ (u0, u1, r0, T ) eT .

Choosing

r0 >

√
∥u1∥2 + ∥∇u0∥2 + 1

γ + 1 ∥∇u0∥2(γ+1)

and

T <

r2
0 −

(
∥u1∥2 + ∥∇u0∥2 + 1

γ+1 ∥∇u0∥2(γ+1)
)

l2
0

3
√

Ωc4
pr4

0

 ,

such that Ξ (u0, u1, r0, T ) ≤ r2
0, we see that u ∈ Xr0,T by (3.13). This shows that Ψ

maps Xr0,T into itself.
Next, we shall show that Ψ is a contraction mapping. Let v1, v2 ∈ Xr0,T and u1 =

Ψv1, u2 = Ψv2, be the corresponding solution for problem (3.1). Taking U = u1 − u2,
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V = v1 − v2, then U satisfies the following problem

(3.14)



Utt − M
(
∥∇U∥2

)
∆U +

t∫
0

g (t − s) △ U (s) ds

= v1 ln |v1| − v2 ln |v2| , (x, t) ∈ Ω × (0, T ) ,

U (x, 0) = Ut (x, 0) = 0, x ∈ Ω,
∂jU(x,t)

∂vj = 0, j = 0, 1, 2, . . . , m − 1, (x, t) ∈ ∂Ω × (0, T ) .

Multiplying (3.14) by Ut and then integrate it over Ω × (0, T ) , we obtain

∥Ut∥2 +
1 −

t∫
0

g (s) ds

 ∥∇U (t)∥2 + 1
γ + 1 ∥∇U (t)∥2(γ+1)

+ (g ◦ ∇U) (t) −
t∫

0

[
(g′ ◦ ∇U) (s) − g (s) ∥∇U (s)∥2

]
ds

=2
t∫

0

∫
Ω

(v1 ln |v1| − v2 ln |v2|) Ut (x, s) dxds.(3.15)

Thanks to Lagrange mean value Theorem, we get v1 ln |v1|−v2 ln |v2| = V (1 + ln |β|) ,
where |β| = |v1 + θ (v2 − v1)| = |(1 − θ) v1 + θv2| , 0 < θ < 1. Thus, by applying the
same process as (3.11), we estimate the last term in (3.15) as follows

t∫
0

∫
Ω

(v1 ln |v1| − v2 ln |v2|) Ut (x, s) dxds

≤
t∫

0

∫
Ω

V Ut (x, s) dxds +
t∫

0

∫
Ω

V (|v1| + |v2|) Ut (x, s) dxds

≤
t∫

0

∥V ∥ ∥Ut∥ ds +
t∫

0

∥V ∥6 ∥|v1| + |v2|∥3 ∥Ut∥ ds

≤cp

t∫
0

∥∇V ∥ ∥Ut∥ ds + c2
p

t∫
0

∥∇V ∥ (|∇v1| + |∇v2|) ∥Ut∥ ds

≤
t∫

0

cp

(
1 + 2l

− 1
2

0 cpr0

)
∥∇V ∥ ∥Ut∥ ds

≤1
2

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]2 t∫
0

∥∇V ∥2 + 1
2

t∫
0

∥Ut (s)∥2 ds.(3.16)

We have from (A1) , (3.15) and (3.16) that

∥Ut∥2 + l0 ∥∇U (t)∥2 + 1
γ + 1 ∥∇U (t)∥2(γ+1)
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≤
[
cp

(
1 + 2l

− 1
2

0 cpr0

)]2 t∫
0

∥∇V ∥2 +
t∫

0

∥Ut (s)∥2 ds,

which implies that

(3.17) ∥U∥Π ≤ l−1
0

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]2
T ∥V ∥Π +

t∫
0

∥U∥Π ds.

By the Gronwall inequality and (3.17), we have

∥U∥Π ≤ l−1
0

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]2
T ∥V ∥Π eT .

By choosing

T < l0

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]−2
e−T ,

such that
l−1
0

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]2
T ∥V ∥Π eT < 1,

then Ψ is a contraction mapping.
In summary, when we choose

r0 >

√
∥u1∥2 + ∥∇u0∥2 + 1

γ + 1 ∥∇u0∥2(γ+1),

and

T < min

r2
0 −

(
∥u1∥2 + ∥∇u0∥2 + 1

γ+1 ∥∇u0∥2(γ+1)
)

l2
0

3
√

Ωc4
pr4

0
,

l0

[
cp

(
1 + 2l

− 1
2

0 cpr0

)]−2
e−T

,

Ψ is a contraction mapping from Xr0,T to itself. According to Banach fixed point
theorem, we have the local existence result. The proof is completed. □

4. Blow Up

In this part, we prove the blow up result of solution for the problem (1.1). We give
some lemmas which will e used in our proof.

Lemma 4.1. If a solution u of the problem (1.1) meets u ∈ V, then
I(u (t)) < 2 (J (u) − d) .

Proof. By u ∈ V and Lemma 2.4, there exists a λ1 such that 0 < λ1 < 1 and
I(λ1u) = 0. By taking of I(λ1u) = 0, definition of d in (2.5) and (2.3), we get

d < J(λ1u) = 1
2I(λ1u) + 1

4 ∥λ1u∥2 − γ

γ + 1 ∥λ1∇u∥2(γ+1)
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< λ2
1

(
1
4 ∥u∥2 − γ

γ + 1 ∥∇u∥2(γ+1)
)

<
1
4 ∥u∥2 − γ

γ + 1 ∥∇u∥2(γ+1) .(4.1)

Combining (4.1) and (2.3) yields that

d < J(u) − 1
2I(u),

which implies that
□(4.2) I(u) < 2 (J(u) − d) .

Lemma 4.2. Assume that u (t) is a solution of the problem (1.1). If u0 ∈ V and
E (0) < d, then E (t) < d for all t ≥ 0.

Proof. By Lemma 2.3 and (2.1), we get
J(u) ≤ E (t) ≤ E (0) < d, for all t ≥ 0.

Suppose that there exists t∗ ∈ [0, ∞) such that u (t∗) /∈ V, then by continuity of
I(u (t)), we obtain I(u (t∗)) = 0. This means that u (t∗) ∈ N. Thus, from definition
of d, we get that J(u (t∗)) ≥ d, which is a contradiction with (4.2). Consequently,
Lemma 4.1 is valid. □

Theorem 4.1. Assume that u0 ∈ V, u1 ∈ L2 (Ω),
∫
Ω

u0u1dx > 0 and E (0) < d. Then

the solution u (t) in Theorem 3.1 of the problem (1.1) blows up as time t goes to
infinity.

Proof. We set

(4.3) G (t) =
∫
Ω

u2dx,

for all t ∈ [0, ∞) . It is obvious that G (t) > 0. Moreover, by using of (4.3) and (1.1),
we get

(4.4) G′ (t) = 2
∫
Ω

utudx

and

G′′ (t) =2 ∥ut∥2 + 2
∫
Ω

uttudx

=2 ∥ut∥2 − 2
∫
Ω

M
(
∥∇u∥2

)
∥∇u∥2 dx

+ 2
t∫

0

g (t − s) ∇u (s) ∇u (t) dsdx + 2
∫
Ω

u2 ln |u|
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=2 ∥ut∥2 − 2 ∥∇u∥2 − 2 ∥∇u∥2(γ+1) + 2
t∫

0

g (t − s) ds ∥∇u∥2

+ 2
t∫

0

g (t − s)
∫
Ω

∇u (t) (∇u (s) − ∇u (t)) dxds + 2
∫
Ω

u2 ln |u| .(4.5)

By using Young inequality, we have
(4.6)

t∫
0

g (t − s)
∫
Ω

|∇u (t)| |∇u (s) − ∇u (t)| dxds ≤
t∫

0

g (s) ds ∥∇u∥2 + 1
4 (g ◦ ∇u) (t) .

Combining (4.5) and (4.6) yields that

G′′ (t) ≥2 ∥ut∥2 − 2 ∥∇u∥2 − 2 ∥∇u∥2(γ+1)

− 2
t∫

0

g (s) ds ∥∇u∥2 + 2
∫
Ω

u2 ln |u| − 1
2 (g ◦ ∇u) (t)

≥2 ∥ut∥2 − 2I(u).(4.7)

From (4.4) and (4.3) and using of the Cauchy inequality, we have

|G′ (t)|2 ≤ 4
∫
Ω

|ut|2 dx
∫
Ω

|u|2 dx = 4G (t) ∥ut∥2 .(4.8)

Combining (4.7), (4.8) and (2.4), we arrive at

G′′ (t) G (t) − (G′ (t))2 ≥ G (t)
(
2 ∥ut∥2 − 2I(u)

)
− 4G (t) ∥ut∥2

= −2G (t)
(
∥ut∥2 + I(u (t))

)
≥ −2G (t) (2E (t) − 2J (u (t)) + I(u (t))) .(4.9)

Combining u0 ∈ V , E (0) < d with Lemma 4.2 obtain u ∈ V , E (t) < d. By Lemma
4.1, we have

2E (t) − 2J (u (t)) + I(u) ≤ 2d − 2J (u (t)) + 2 (J(u (t)) − d) = 0.(4.10)

It follows from (4.9) and (4.10) that

G′′ (t) G (t) − (G′ (t))2
> 0.

By directly calculation, we have

(ln |G (t)|)′ = G′ (t)
G (t)

and

(4.11) (ln |G (t)|)′′ = G′′ (t) G (t) − (G′ (t))2

(G (t))2 > 0.
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By (4.11), we know that (ln |G (t)|)′ is increasing with respect to t. Integrating both
sides of (4.11) over [0, t] , we get

ln |G (t)| − ln |G (0)| =
t∫

0

(ln |G (τ)|)′ dτ =
t∫

0

G′ (τ)
G (τ) dτ ≥ G′ (0)

G (0) t,

which implies that

G (t) ≥ G (0) exp
(

G′ (0)
G (0) t

)
.

G (t) tends to infinity as time goes to infinity. This completed our proof. □
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