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GROWTH ESTIMATE FOR RATIONAL FUNCTIONS WITH
PRESCRIBED POLES AND RESTRICTED ZEROS

N. A. RATHER1, M. SHAFI2, AND ISHFAQ DAR3∗

Abstract. Let Rn be the set of all rational functions of the type r(z) = f(z)/w(z),
where f(z) is a polynomial of degree at most n and w(z) =

∏n
j=1(z − aj), |aj | > 1

for 1 ≤ j ≤ n. In this paper, we extend some famous results concerning to the
growth of polynomials by T. J. Rivlin, A. Aziz and others to the rational functions
with prescribed poles and thereby obtain the analogous results for such rational
functions with restricted zeros.

1. Introduction

Let Pn be the set of all complex polynomials f(z) = ∑n
j=1 ajz

j of degree at most n
and let Dk− = {z : |z| < k}, Dk+ = {z : |z| > k} and Tk = {z : |z| = k}.

For aj ∈ C with j = 1, 2, . . . , n, we set

w(z) =
n∏

j=1
(z − aj), B(z) =

n∏
j=1

(
1 − ājz

z − aj

)

and

Rn = Rn(a1, a2, . . . , an) =
{

f(z)
w(z) : f ∈ Pn

}
.

Then clearly Rn is the space of all rational functions with at most n poles a1, a2, . . . , an

with finite limit at infinity. We note that B(z) ∈ Rn. Throughout this paper, we shall
assume that all the poles a1, a2, . . . , an lie in D1+.
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For a polynomial f(z) of degree n having no zeros in D1−, T. J. Rivlin [8] proved
that, for ρ < 1 and z ∈ T1,

|f(ρz)| ≥
(

ρ + 1
2

)n

|f(z)|.(1.1)

The result is best possible and equality holds for f(z) = α(z − β)n, |β| = 1.
A. Aziz [2] generalizes inequality (1.1) and proved that, if f(z) is a polynomial of

degree n having no zeros in Dk−, then for z ∈ T1,

|f(ρz)| ≥
(

ρ + k

1 + k

)n

|f(z)|, k ≥ 1 and ρ < 1,(1.2)

and

|f(ρz)| ≥
(

ρ + k

1 + k

)n

|f(z)|, k ≤ 1 and 0 ≤ ρ ≤ k2.(1.3)

The result is sharp and equality holds for f(z) = (z + k)n.
Analogous to the above inequality, we have a result when 1 < R ≤ k2, k > 1, which

can be found in [7, page 432], which states that if f(z) is a polynomial of degree n
having all its zeros in Dk+ ∪ Tk, where k > 1, then for z ∈ T1 and 1 < R ≤ k2

|f(Rz)| ≤
(

R + k

1 + k

)n

|f(z)|.(1.4)

The result is sharp and equality holds if and only if f(z) = c(z − keiγ)n for some c ̸= 0
and γ ∈ R.

In literature there exist various results in this direction related to the growth of
polynomials for reference see [1, 3–6].

The main aim of this paper is to obtain certain growth estimates for rational
functions r(z) ∈ Rn having no zero in Dk−. In this direction we first present an
extension of inequality (1.2) to the rational functions. More precisely, we prove the
following.

Theorem 1.1. Let r ∈ Rn with no zero in Dk−, where k ≥ 1, then for ρ < 1 and
z ∈ T1,

|r(ρz)| ≥
(

ρ + k

1 + k

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)
|r(z)|.(1.5)

Remark 1.1. If we take k = 1 in Theorem 1.1, we get the following extension of
inequality (1.1) to the rational functions.

Corollary 1.1. Let r ∈ Rn with no zeros in D1−, then for ρ < 1 and z ∈ T1,

|r(ρz)| ≥
(

ρ + 1
2

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)
|r(z)|.
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Remark 1.2. Taking w(z) = (z − α)n, |α| > 1, in Theorem 1.1, then inequality (1.5)
reduces to the following inequality

|f(ρz)| ≥
(

ρ + k

1 + k

)n ( |α| − 1
|α| + ρ

)n ∣∣∣∣ρz − α

z − α

∣∣∣∣n |f(z)|.(1.6)

Letting |α| → ∞ in inequality (1.6), we get inequality (1.2).

Theorem 1.2. Let r ∈ Rn with no zeros in Dk−, where k ≤ 1, then for 0 ≤ ρ ≤ k2

and z ∈ T1,

|r(ρz)| ≥
(

ρ + k

1 + k

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)
|r(z)|.(1.7)

Remark 1.3. By taking w(z) = (z − α)n, |α| > 1, in Theorem 1.2, inequality (1.7)
reduces to the following inequality

|f(ρz)| ≥
(

ρ + k

1 + k

)n ( |α| − 1
|α| + ρ

)n ∣∣∣∣ρz − α

z − α

∣∣∣∣n |f(z)|.(1.8)

Letting |α| → ∞ in inequality (1.8), we get inequality (1.3).

Theorem 1.3. Let r ∈ Rn with no zeros in Dk−, where k > 1, then for 1 < R ≤ k2

and z ∈ T1,

|r(Rz)| ≤
(

R + k

1 + k

)n n∏
j=1

 |aj| + 1∣∣∣|aj| − R
∣∣∣
 |r(z)|.(1.9)

Remark 1.4. Taking w(z) = (z −α)n, |α| > 1, in Theorem 1.3, inequality (1.9) reduces
to the following inequality

|f(Rz)| ≤
(

R + k

1 + k

)n
 |α| + 1∣∣∣|α| − R

∣∣∣
n ∣∣∣∣Rz − α

z − α

∣∣∣∣n |f(z)|.(1.10)

Letting |α| → ∞ in inequality (1.10), we obtain inequality (1.4).

2. Proofs of the Theorems

Proof of Theorem 1.1. By hypothesis r ∈ Rn, therefore we have r(z) = f(z)
w(z) , where

w(z) = ∏n
j=1(z − aj), |aj| > 1. Since all the zeros of f(z) lie in Dk+ ∪ Tk, k ≥ 1,

therefore if zj = ρje
iθj , 0 ≤ θ < 2π, 1 ≤ j ≤ n, are the zeros of f(z), then we write

f(z) = c
∏n

j=1(z − ρje
iθj ), where ρj ≥ k ≥ 1, j = 1, 2, . . . , n. Hence, for ρ < 1 and
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0 ≤ θ < 2π, we have ∣∣∣∣∣r(ρeiθ)
r(eiθ)

∣∣∣∣∣ =
∣∣∣∣∣ f(ρeiθ)
w(ρeiθ)

∣∣∣∣∣
/∣∣∣∣∣ f(eiθ)

w(eiθ)

∣∣∣∣∣
=
∣∣∣∣∣f(ρeiθ)

f(eiθ)

∣∣∣∣∣ ·
∣∣∣∣∣ w(eiθ)
w(ρeiθ)

∣∣∣∣∣
=

n∏
j=1

∣∣∣∣∣ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣
n∏

j=1

∣∣∣∣∣ eiθ − aj

ρeiθ − aj

∣∣∣∣∣.(2.1)

Now,
n∏

j=1

∣∣∣∣∣ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣ρei(θ−θj) − ρj

ei(θ−θj) − ρj

∣∣∣∣∣
=

n∏
j=1

(
ρ2 + ρ2

j − 2ρρj cos(θ − θj)
1 + ρ2

j − 2ρj cos(θ − θj)

)1/2

≥
n∏

j=1

ρ + ρj

1 + ρj

(as ρ < 1)

≥
n∏

j=1

ρ + k

1 + k
(as ρj ≥ k)

=
(

ρ + k

1 + k

)n

.(2.2)

Also for |aj| > 1, j = 1, 2, . . . , n, we have
n∏

j=1

∣∣∣∣∣ eiθ − aj

ρeiθ − aj

∣∣∣∣∣ ≥
n∏

j=1

|aj| − 1
|aj| + ρ

.(2.3)

Using inequalities (2.2) and (2.3) in equation (2.1), we obtain for 0 ≤ θ < 2π∣∣∣∣∣r(ρeiθ)
r(eiθ)

∣∣∣∣∣ ≥
(

ρ + k

1 + k

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)
.

That is, for z ∈ T1 and ρ < 1, we have

|r(ρz)| ≥
[(

ρ + k

1 + k

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)]
|r(z)|.

This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. By hypothesis r ∈ Rn, therefore we have r(z) = f(z)
w(z) , where

w(z) = ∏n
j=1(z − aj), |aj| > 1. Since all the zeros of f(z) lie in Dk+ ∪ Tk, k ≤ 1,

therefore if zj = ρje
iθj , 0 ≤ θ < 2π, 1 ≤ j ≤ n, are the zeros of f(z), then we write
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f(z) = c
∏n

j=1(z − ρje
iθj ), where ρj ≥ k, k ≤ 1, j = 1, 2, . . . , n. Hence, for 0 ≤ ρ ≤ k2

and 0 ≤ θ < 2π, we have∣∣∣∣∣r(ρeiθ)
r(eiθ)

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣
n∏

j=1

∣∣∣∣∣ eiθ − aj

ρeiθ − aj

∣∣∣∣∣.(2.4)

Now,

n∏
j=1

∣∣∣∣∣ρeiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣ρei(θ−θj) − ρj

ei(θ−θj) − ρj

∣∣∣∣∣
=

n∏
j=1

(
ρ2 + ρ2

j − 2ρρj cos(θ − θj)
1 + ρ2

j − 2ρj cos(θ − θj)

)1/2

≥
n∏

j=1

ρ + ρj

1 + ρj

(as 0 ≤ ρ ≤ k2)

≥
n∏

j=1

ρ + k

1 + k
(as ρj ≥ k)

=
(

ρ + k

1 + k

)n

.(2.5)

Again as before, for |aj| > 1, we have

n∏
j=1

∣∣∣∣∣ eiθ − aj

ρeiθ − aj

∣∣∣∣∣ ≥
n∏

j=1

|aj| − 1
|aj| + ρ

.(2.6)

Using inequalities (2.5) and (2.6) in equation (2.4), we have for z ∈ T1 and 0 ≤ ρ ≤ k2,

|r(ρz)| ≥
[(

ρ + k

1 + k

)n n∏
j=1

(
|aj| − 1
|aj| + ρ

)]
|r(z)|,

which is the desired result. □

Proof of Theorem 1.3. Since all the zeros of r(z) lie in Dk+ ∪ Tk, where k > 1,
therefore it follows that all the zeros of polynomial f(z) lie in Dk+∪Tk, k > 1, therefore
if zj = ρje

iθj , 1 ≤ j ≤ n, are the zeros of f(z), then we write f(z) = c
∏n

j=1(z −ρje
iθj ),

where ρj ≥ k > 1, j = 1, 2, . . . , n. Hence, for 1 < R ≤ k2 and 0 ≤ θ < 2π, we have
∣∣∣∣∣r(Reiθ)

r(eiθ)

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣Reiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣
n∏

j=1

∣∣∣∣∣ eiθ − aj

Reiθ − aj

∣∣∣∣∣.(2.7)
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Now,
n∏

j=1

∣∣∣∣∣Reiθ − ρje
iθj

eiθ − ρjeiθj

∣∣∣∣∣ =
n∏

j=1

∣∣∣∣∣Rei(θ−θj) − ρj

ei(θ−θj) − ρj

∣∣∣∣∣
=

n∏
j=1

(
R2 + ρ2

j − 2Rρj cos(θ − θj)
1 + ρ2

j − 2ρj cos(θ − θj)

)1/2

≤
n∏

j=1

R + ρj

1 + ρj

(as 1 < R ≤ k2)

≤
n∏

j=1

R + k

1 + k
(as ρj ≥ k)

=
(

R + k

1 + k

)n

.(2.8)

Also for |aj| > 1, j = 1, 2, . . . , n, we have
n∏

j=1

∣∣∣∣∣ eiθ − aj

Reiθ − aj

∣∣∣∣∣ ≤
n∏

j=1

1 + |aj|
|R − |aj||

.(2.9)

Using inequalities (2.8) and (2.9) in equation (2.7), we obtain for 0 ≤ θ < 2π,∣∣∣∣∣r(Reiθ)
r(eiθ)

∣∣∣∣∣ ≤
(

R + k

1 + k

)n n∏
j=1

(
|aj| + 1

|R − |aj||

)
.

That is, for z ∈ T1 and 1 < R ≤ k2, we have

|r(Rz)| ≤
[(

R + k

1 + k

)n n∏
j=1

(
|aj| + 1

|R − |aj||

)]
|r(z)|.

That completes the proof of Theorem 1.3. □
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