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ACENTRALIZERS OF SOME FINITE GROUPS
ZAHRA MOZAFAR! AND BIJAN TAERI!

ABSTRACT. Let G be a finite group. The acentralizer of an automorphism « of G,
is the subgroup of fixed points of «, i.e., Cg(a) = {g € G | a(g) = g}. In this paper
we determine the acentralizers of the dihedral group of order 2n, the dicyclic group
of order 4n and the symmetric group on n letters. As a result we see that if n > 3,
then the number of acentralizers of the dihedral group and the dicyclic group of
order 4n are equal. Also we determine the acentralizers of groups of orders pg and
pqr, where p, ¢ and r are distinct primes.

1. INTRODUCTION

Throughout this article, the usual notation will be used [17]. For example Z,
denotes the cyclic group of integers modulo n, Z! denotes the group of invertible
elements of Z,. The dihedral group of order 2n and the dicyclic group of order 4n
are denoted by D,,, and @),,, respectively. The symmetric group on a finite set of n
symbols is denoted by S, or Sym(X), where |X| = n. The symbol G = X x Y (or
G =Y x X) indicates that G is a split extension (semidirect product) of a normal
subgroup Y of G' by a complement X.

Let G be a finite group. We write Cent(G) = {Cs(g) | g € G}, where Cg(g) is the
centralizer of the element ¢ in G. The group G is called n-centralizer if |Cent(G)| = n.
There are some results on finite n-centralizers groups (see for instance [1-8,12,18]).
Let Aut(G) be the group of automorphisms of G. If & € Aut(G), then the acentralizer
of a in G is defined as

Cola) ={g € G | a(g) = g},
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which is a subgroup of G. In particular if & = 7, is an inner automorphisms of GG
induced by a € G, then Cg(1,) = Cg(a) is the centralizer of a in G. Let Acent(G) be
the set of acentralizers of GG, that is

Acent(G) = {Cq(a) | a € Aut(G)}.

A group G is called n-acentralizer, if |Acent(G)| = n. It is obvious that G is 1-
acentralizer group if and only if GG is a trivial group or Z,. Nasrabadi and Gholamian
[14] proved that G is a 2-acentralizer group if and only if G = Zy, Z, or Zs,, for some
odd prime p. Furthermore, they characterized 3,4, 5-acentralizer groups. Seifizadeh
et al. [16] characterized n-acentralizer groups, where n € {6,7,8}, and obtained a
lower bound on the number of acentralizer subgroups for p-groups, where p is a prime
number. They showed that if p # 2, there is no n-acentralizer p-group for n = 6, 7.
Moreover, if p = 2, then there is no 6-acentralizer p-group. In [13] we showed that
if G is a finite abelian p-group of rank 2, where p is an odd prime, then the number
of acentralizers of GG is exactly the number of subgroups of GG. Also we obtained
acentralizers of infinite two-generator abelian groups.

Throughout the paper we use the presentations of the dihedral group of order 2n,
D,,, and the dicyclic group of order 4n, @), as follows

D,={(a,b|la"=b"=1, bab™' =a ') = (b) x {a),
Qn="(a,b|a® =1, a" =b* bab™' =a™") = (b) x {(a).

We note that if n is a power of 2, then @), is the generalized quaternion group.
Computing the number of centralizers of finite group have been the object of some
papers. For instance Ashrafi [2,3] showed that |Cent(Q,)| = n + 2 and

n—+2, nisodd,

|Cent(D,,)| = {

5+2, niseven.

In this paper we compute |Acent(D,,)|, |Acent(Q,)|, |Acent(S,)| and the number of
acentralizers of groups of order pgr, where p, ¢ and r are distinct primes.

2. ACENTRALIZERS OF DIHEDRAL AND DicycLiC GROUPS

Recall that the dihedral group D,, have two type subgroups for n > 3, (a?) and
(a?,a"b), where d | n, 0 < r < d. The total number of these two type subgroups are
7(n) = X4, 1, that is the number of positive divisors of n, and o(n) = X4, d, that
is the sum positive divisors of n, respectively. Recall that if n = p’fl plz’” o pkr is the

A
prime factorization of n > 1, then 7(n) = [Tj_, (k; + 1) and o(n) = [Tj, pj;j%

For n > 2, the automorphism group of D,, is isomorphic to Z; x Z,, the semidirect
product of Z,, by Z;, with the canonical action of € : Z} — Aut(Z,) = Z. Explicitly,

Aut(D,) ={vs+ | s € Z;, t € Ly},
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where 7, is defined by
Ysp(a’) =a® and  y,(a’b) = a® D,
for all 0 <¢ <n — 1. Note that

a' e Cb, (78,15) <~ VS,t(ai) =a
&a”® =a
& is=1 (mod n)
<i(s—1)=0 (mod n)

and

a'b € Cp, (Vst) & Ysu(a'b) = a'b
o a b — aib
Sis+t=1i (mod n)
Si(s—1)+t=0 (mod n).

We use the following well-known theorem from elementary number theory.

Theorem 2.1. ([15, Page 102]) Let a, b and m be integers such that m > 0 and
let ¢ = ged(a,m). If ¢ does not divide b, then the congruence ax = b (mod m) has
no solutions. If ¢ | b, then axr = b (mod m) has exactly ¢ incongruent solutions
modulo m.

First we compute Acent(D,,). Clearly, D1 = Zy and Dy = ZyXZs. So |Acent(D;)| =
1 and |Acent(Ds)| = 5.

Lemma 2.1. The identity subgroup is not an acentralizer for any automorphism of
D,,. Also if n is even, the subgroups (a?), (a?, a"b), where d is a divisor of n such that
dt 5 and 0 < r < d, are not acentralizers of D,.

Proof. On the contrary, suppose that the identity subgroup (a™) = (1) is an acentral-
izer. Then there exists 75, € Aut(D,,) such that 7, fixes only the identity element.
If ¢ := ged(n, s — 1) # 1, then

n s—1 n
n n n
c c

’ys’t(a%):a’%s:a a c = Qa )

which is a contradiction. Hence ged(n,s —1) = 1, and so by Theorem 2.1, there exists
0 <i<n—1such that n|i(s— 1)+t Since y,.(a’b) = a™*'b = a'c=VHalh £ a'b,
nti(s — 1)+ t, which is a contradiction. Thus the identity subgroup can not be an
acentralizer.

Now suppose, for a contradiction, that H := (a%), where d is a divisor of n and
d t n/2 is an acentralizer of D,. Since a? € Cp,(7s+) we have a? = v,,(a?) = a*?
Thus n | (s —1)d and so s = 5k + 1, for some 0 < k < d. Since d |n and d{ 3, d is
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even. Also k is even, as s is odd. Hence, s = %"kl + 1, for some non-negative integer
k1, and so 2n | (s — 1)d. Thus, n | (s — 1) and

which is a contradiction, as a? ¢ H = Cp, (Vs.)-
Similarly if K := (a? a"b), where d is a divisor of n, d { n/2, 0 < r < d, and
Cp, (7st) = K, for some ~,; € Aut(D,,), we obtain a contradiction. O

Theorem 2.2. If n is an odd integer, then every non-identity subgroups of D,, is an
acentralizer of D,,. If n is even, then |Acent(D,,)| is equal to the number of subgroups
of D%, that is

7(n)+o(n) —1, nisodd,
|Acent(D,,)| :{ (n) +o(n)

7(5) +o(3), n is even.

Proof. First suppose that n is odd. Let d be a divisor of n and put d; := n/d. If
d = 1, then since 711(a) = a and for 0 < j < n —1, y11(a’b) = /b # a/b, we
have Cp, (v1.1) = {a) = {(a?). If d # 1, then y1,4,1(a?) = a4 = g Since
ged(n,dy) = dy 11, by Theorem 2.1, for every 0 < j < n —1, n{ jd; + 1, and so
Y1sdy1(a7b) = a? 3T = @7 h+1aip £ a7b. Tt follows that Cp, (Y144,.1) = (a?).

Now consider the subgroup H := (a? a"b) of D,,, where 0 <r < d. If d = 1, then
r=0and H =G = Cp,(110). If d =n, then (a?, a"b) = (a"b). Note that vo,_,(a’) =
a* # a', for all 1 <i < n — 1. On the other hand v5,,_,(a"b) = a**"~"b = a"b and
hence Cp, (Y2,n—r) = (a"b) = H.

If d ¢ {1,n}, then we put s =1+ d; and t = n — rd;. Since

ds _ ad(1+d1) d+n d

757,5(@‘1) =a =a =a“,

vs(a"b) = a

it follows that Cp, (vs+) = H. Therefore |Acent(D,)| = 7(n) + o(n) — 1.

Now suppose that n is even. Let d be a divisor of 2 and put d; := n/d. Let H := (a%).
If d = 1, then since vy 1(a) = a and 7;1(a?b) = a0 # a’b, for all 0 < j < n —1,
we have Cp, (v1.1) = {(a) = H. If d # 1, then yy44,1(a?) = a'T94 = g4 Since
ged(n,dy) = dy 1 1, by Theorem 2.1, for all 0 < j < n—1, n{ jd; + 1, and so
Yigd1(a?b) = a?IFHY = giit1qip £ gIb. Tt follows that Cp, (y14a,1) = (a?).

Now we consider the subgroup H := (a¢,a"b) of D,,, where 0 < r < d. If d = 1, then
H=G=Cp,(710) Ifd#1and r =0, then we have v, (a?) = a4 = gd+n = ¢
Yitdy.0(b) = b, and so Cp, (Vi4a,0) = (a%,b) = H. If d # 1 and t # 0, then we put
s=1+d; and t =n — rd;. Since

rsttp ar(1+d1)+n—rd1b _ CLTb,

d(1+d1) _ gdtn _ ,d
Y

’ys,t(ad) =a
Vs(a"b) = a” ,

we have Cp, (vs4) = H. It follows that |Acent(D,)| = 7(5) + (). O

(1+d1)+nfrd1b —a'b
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Now we compute Acent(Q),). Recall that if n > 2, then the automorphism group of
@, is isomorphic to Z}, X Za,, with the canonical action of € : Z5, — Aut(Zs,) = Z5,,.
In fact

Aut(Qy) = {vst | s € Z5,,t € Zay},

where
Yosla’) = a” and  (a'd) = a™ b,

for all 0 < ¢ < 2n — 1. Hence Aut(Q,,) = Aut(Ds,,), where m > 2. Note that
Aut(Qg) = S4 and Aut(D4) = D4. We have

al e Co, (Vi) & 757,5(@2') =q
& ad =d
&is=1 (mod 2n)
<i(s—1)=0 (mod 2n)
and
a'b € Co, (Yst) € Vsi(a'b) = a'b
o aiertb — aib
Sis+t=1i (mod 2n)
Si(s—1)+t=0 (mod 2n).

Lemma 2.2. (1) Every element, x € Q,, can be written uniquely as z = a't’, where
0<i<2nandj=0,1.

2) 2(Qn) = (") 2 Z,.

(3) Qu/Z(Qn) = D,. |

(4) o(a') =2n/i for 1 <i < 2n and o(a'b) = 4 for all i.

(5) Every subgroup of @, is either cyclic or a dicyclic group.

Proof. (1)—(4) are straightforward.

Let H be a subgroup of @,. Suppose that Z(Q,) < H. Then H/Z(Q,) is a
subgroup of D,,. Since every subgroup of D, is either cyclic or dihedral, the same is
true for H/Z(Q,). If H/Z(Q),) is cyclic, then H is cyclic (indeed H is a subgroup of
(a) or H = {a'b)). Therefore, we may assume H/Z(Q,) is dihedral. Thus, H/Z(Q,)
has a dihedral presentation (z,y | 2™ = y? = 1, yxy = 2~ '). Hence, H has the same
presentation with H/Z(Q,) and so H is a dicyclic group.

Finally, if H does not contain Z(@),) then H does not contain an element of the
form a'b. Therefore, H < (a) and so it is cyclic. O

In what follows we compute acentralizers of Q).

Lemma 2.3. Let H be a subgroup of @),, which does not contain Z(Q,). Then H is
not an acentralizer of Q).
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Proof. By Lemma 2.2, H = (a™), where m | 2n, m t n. Now suppose, for a contra-
diction that, H is an acentralizer of @),,. Then there exists vs; € Aut(Q,,) such that
Cq,(vse) = H. Thus, a™ = v,,(a™) = a*™, and so 2n | (s — 1)m, i.e., s = 22k + 1,
for some 0 < k < m. Since m | 2n and m { n, m is even. Also k is even, as s is odd.
Therefore, s = 2k, + 1, for some non-negative integer k;, and hence 4n | (s — 1)m.
Thus, 2n | (s — 1)% and

m m
S3 2

Yalad) =% =a

which is a contradiction, as a% ¢ H = Cg, (Vs)- O
Theorem 2.3. We have |Acent(Q,,)| = 7(n) + o(n).

Proof. Suppose d is a divisor of n such that 1 < d < n, and d; := 2n/d. Let H := (a%).
If d = 1, then since 1 1(a) = a and for 0 < j < 2n — 1, y11(a’b) = /b # a’b, we
have Cg, (71,1) = (a).

If d # 1, then 7144, (a?) = a’*9 = q?. Since ged(2n,d;) = d; { 1, by Theorem
2.1,2n 1 jd, +1, forall 0 < j < 2n—1, and s0 Y144,.1 (/) = /)1 = gihi+lgip £
a’b. Tt follows that Cog, (V1+4,1) = (a%).

Now consider the subgroup H := (a¢,a"b) of Q,,, where 0 < r < d. If d = 1, then
r=0and H =G = Cg,(mp). Ifd#1andr =0, then we put s = 1+ d; and
t = 0, where d; := 2. We have y,0(a?) = a® = ad1+d) = qd+2n — qd ~ ((b) = .
Hence, Co, (V1+d,0) = (a®,b) = H. If d # 1 and r # 0, then we put s =1+ d; and
t = 2n — rdy, where d; := 27”. We have

’YSt(ad) _ ads _ ad(1+d1) — ad+2n _ ad
’Ys t(arb) == a,rs+tb — a’r‘(1+d1)+2n*’l’dlb — a,rb
Hence Cq, (7s¢) = H. It follows that |Acent(Q,)| = 7(n) + o(n) — 1. B

Corollary 2.1. For all n > 3 we have |Acent(Q,)| = |Acent(Dy,)|.

3. ACENTRALIZERS OF GROUPS OF ORDER pgq

It is well-known that the groups of order pg, where p and ¢ are distinct primes,
with p > ¢, are

L
Tpq=(a,b|a? =b"=1,bab~" = a"), where o(u) =qin Z;and q|p— 1.
Using Theorem 3.1 below, we have |Acent(Z,,)| = |Acent(Z,)| |Acent(Z,)| = 2x2 = 4.

Theorem 3.1. ([14, Lemma 2.1]) Let H and T be finite groups with ged(|H|, |T|) = 1.
Then
|Acent(H x T')| = |Acent(H)| - |Acent(T)].

We compute |Acent(7,,)|. The proof of the following lemma is straightforward.

Lemma 3.1. Non-trivial subgroups of T}, are (a), (ba’), where 0 < j < p — 1.
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A Frobenius group of order pg, where p is prime and ¢ | p — 1 is a group with the
presentation F,, = (a,b | @ = b7 = 1,bab~" = a"), where o(u) = ¢ in Z. If ¢ is a
prime number, then F, , =T, ..

Theorem 3.2 ([10]). Let p be a prime number and q | p—1. Then Aut(F,,) = F, -1,
in fact
Aut(Fpg) = {aij [1<i<p-1,0<j<p—1}
where
i j(@™)=a™ and a;;(V"a™) = b et g im,
forall0<m<p—1landl <n<qg-1.
Note that if G := F}, 4, then
a™ € Co(oij) & a;j(a™) =a™
Sa™m=am
<im=m (mod p)
& (i—1)m=0 (mod p)
and
b'a™ € Calayj) < a;;(b"a™) =b"a™
o prgut T etut)jtim g m
Sim+ W '+ +u+1)j=m (mod p)
S@E—)m+ @'+ +u+1)j=0 (modp).

We note that if p | v ' +---+u+1, then p | " — 1 and " = 1 (mod p), which is a
contradiction. Therefore, pf vt + -+ 4+ u + 1.

Lemma 3.2. The identity subgroup is not an acentralizer for any automorphism of
Tp’q'

Proof. Suppose, contrary on our claim, that (1) is an acentralizer of 7, ,. Then there
exists a;; € Aut(7},,) such that «;; fixes only the identity element. If i = 1, then
ayj(a™) =a™, forall 1 <m < p—1, which is a contradiction. Hence ged(p,i—1) = 1,
and by Theorem 2.1, there exists 0 < m < p— 1, such that p | (i — 1)m + j. But since
a; ;(ba™) # ba™, we have p{ (i —1)m+ j, which is a contradiction. Thus, the identity
subgroup is not an acentralizer. 0

Theorem 3.3. Every non-identity subgroup of G := T, , is an acentralizer of an
automorphism, and therefore |Acent(7,,)| = p + 2.

Proof. Let H := (a), which is a unique Sylow p-subgroup of G. Note that oy ;(a™) =
a™. Since pfu™t+ -4 u+1,

n—1_ ... n—1_4 . .
OZ171(anLm) — bna(u +otutl)+m bnama(u +-+u+1) 7& bra™.
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Hence, Cg(ay ;) = H.

Let K := (ba™), where 0 < m < p — 1, which is a subgroup of G of order q.
If m = 0, then K = (b), and since ago(b) = b, asg(a) = a*> # a, it follows that
Colagg) = K. If 1 <m < p—1, then agy (ba™) = ba?~™ 2™ = ba™. Also since
Qopm(a™) =a® # a™, for all 1 <m < p—1, we have a™ ¢ Cg(azp_m). It follows
that Cg(a2p-m) = K. Hence, |Acent(T,,)|=1+1+p=p+2. O

4. ACENTRALIZERS OF GROUPS OF ORDER pqr

In this section we compute acentralizers of groups of order pqr, where p, ¢, and
r are distinct primes. The presentations of groups of order pqr, where p, ¢ and r
are primes such that p > ¢ > r are given in [11]. By [10] all groups of order pgr,
p > q > r, are isomorphic to one of the following groups:

Gy

Gy=2ZyxTyy q|lp—1;

Gs=Zyx Ty, r|p—1;

G4 = Fp,qra qr ‘ p— 1)7

Gs =ZpxTyp, 7| q—1;

ivs5 = {a,b,c|a? =01 =c" =1, ab = ba, ¢ tbc = b, ¢ lac = a“i), where
rlp—1,¢—1,0(u) =rinZ; and o(v) =7 in Z;, 1 <i <r—1.

Using the above result, Theorem 3.3 and Theorem 3.1 it is suffices to compute the

number of acentralizers of F,, and G;ys. The proof of the following lemma is

straightforward.

@

Lemma 4.1. Let F, ;. = (a,b | a? = b7 = 1,bab™' = a*) = (b) X (a) and o(u) = qr
in Zy where p,q,r are prime and ¢r | p — 1. Then non-trivial subgroups of Fj, . are
A= (a), B, := (ba*), C,, := (b%a®), D, := (b"a®), where 0 < x <p—1, H:= (0", a)
and K := (b7, a).

Lemma 4.2. Non-trivial subgroups of G;i5 are A := (a), B := (b), AB, H;; :=
(cbta?), Hy := (a,cb') and K; := (b,ca’), where 0 < j <p—-1,0<t<¢g—1. In
particular G, 5 have pq + p + ¢ + 5 subgroups.

Proof. One can easily see that the order of elements of GG;,5 is as in the Table 1,
Elements ‘ a b obal b

Orders ‘p q pq r

Table 1. The order of elements G5

where 1 <j<p—1,1<t<qg—-1,0<i<q¢—-1,0<j/<p—-1,1<k<r-—1.

It is clear that A = (a) is a unique Sylow p-subgroup of G, ;5 and B = (b) is a unique
Sylow g-subgroup of G;y5. Thus AB = (a,b) < G,45 is a unique subgroup of order
pq of Giys. It is also clear that H;; = (cb'a’), where 0 < j <p—1,0<t < q—1,
are subgroups of order r. Since A and B are normal in G, 5, every subgroups of
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order pr should contain A and every subgroups of order ¢r should contain B. Thus
K; = (b,ca’) and H, = {(a,cb"), where 0 < j <p—1,0 < ¢ < g — 1 are subgroups of
order pr and gr of G5, respectively. 0

Theorem 4.1 ([10]). Automorphism group of G;5 is isomorphic to F,,—1 X Fy4_1,
in fact

AUt(G’L+5) :{aj,t,jl,il | 1 S] Sp—lal Stéq_laog.]l Sp—laogzl Sq_l}a
where
it gir (@) = @™,
g gy (B7) = b,
ity (FD™ ™) = ckpin (wE T et )y g (07D e ) ma
forI<m<p—1,1<n<qg—1,0<m <p—-1,0<m<g—land1<k<r-—1.
Note that if G := G;,5, then
a™ e Cg<a]’,t7j1’i1) = Ot 1 iy (am) =a"
< a™=a™
< jm=m (mod p)
< m(j—1)=0 (mod p)

and
0" € Coljigiin) € Qi (B7) = b"
S ="
Stn=n (mod q)
ent—1)=0 (mod q)
and

FMa™ € Ca(rj i) & gy (FBMa™) = Fpma™
s Fpin (W dut ) tng g (0T ot D my kg ma
i+ dutl)+ing=n; (mod q),
J* Vet £ 1) 4 jmy =my (mod p)
i+ u+1)+(t—1ny =0 (mod q),
GF Y i D)+ (j—1)my =0 (mod p).

Lemma 4.3. The identity subgroup and the subgroups C, , D,, where 0 < x < p—1,

H and K (defined in Lemma 4.1) are not acentralizers for any automorphism of
G :=F, 4.
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Proof. As in the proof of Lemma 3.2 we can see that the identity subgroup is not an
acentralizer.

Now suppose, for a contradiction that C, := (b%a®), where 0 < z < p — 1 is
an acentralizers of G. Then there exists a;; € Aut(G) such that Cq(a; ;) = Cy,
where 1 <i<p—-1land0<j <p—1. Ifi=1, then oy (a™) = a™, for every
1 <m < p-—1, this contradicts a™ ¢ (b%a”). Hence ged(i — 1, p) = 1, by Theorem 2.1,
there exists 0 < m < p—1 such that p | j + (¢ — 1)m. But since ba™ ¢ C, = Ce(;),
;. j(ba™) = ba? T = ba™al =M £ g™ which implies that ptj + (i — 1)m, which
is a contradiction.

Similarly we have H, D,, and K are not acentralizers. [l

Theorem 4.2. We have |Acent(F, )| = p+ 2.
Proof. The proof is similar to that of Theorem 3.3. 0J

Lemma 4.4. The identity subgroup is not an acentralizer for any automorphism of
Giss.

Proof. On the contrary, suppose that (1) is an acentralizer of G;,5. Then there exists
Qjtgiin € Aut(Gigs) such that o, j, 4, fixes only the identity element. If j = 1 or
t =1, then aj;j,,(a™) = a™ and ;1 (b") = b", forall 1 < m < p—1 and
1 <n < g—1, which is a contradiction. Hence ged(j —1,p) = 1 and ged(t —1,¢) = 1.
Hence, by Theorem 2.1, there exist 0 < m; < p—1and 0 < ny < ¢ — 1 such that
p|j1+ (j—1)my and q | i1 + (¢t — 1)n;. But since

aj7t7j1’i1(cbn1am1) — cpirttm girtimi — opna gmapint(E=1n i+ —1)ma £ chMa™,

either p 1 j1 + (j — 1)my or q { i, + (¢t — 1)ny, which is a contradiction. Thus, the
identity subgroup is not an acentralizer. 0

Theorem 4.3. Every non-identity subgroup of G := G;,5 is an acentralizer of an
automorphism, that is |[Acent(G,y5)| = pg+p + ¢ + 4.

Proof. We use the notation of Theorem 4.1. Note that oy 1, is the identity automor-
phism of G and so Cg(a1,1,00) = G.

Now we show that A = (a) is an acentralizer. It is clear that ay2311(a) = a
and aj911(0") = b* = bW # b7, for all 1 < n < g — 1. Furthermore since
pt (v(k—l)i TS b )

k=1 ... (b=1)i ..oy i
31727171(Ckbn1am1) Ckb(u + +u+1)+2n1a(v +eFot 1) +my
k=1 .. (B=1)iy .. gy
Ckbma?mb(u + +u+1)+n1a(v +otv'+l) ckprigm
It follows that C(;(Oél,gJ,l) = A.

Let B = (b) be the unique Sylow g-subgroup of G. It is clear that a1 11(b") = b"
and so " € Cg(ag111). Since 1 <m <p—1, azy11(a™) = a*" = a™a™ # a™. Also

1yt
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since ged(u* 1 +---+u+1,¢) =1,50 ¢f (u** +---+u+1). Thus,
111 (FbM ™) = Fpt T rut D g (8D et ) F2m

k=1 .. (k=1)iy ... 4 i
_ Ckbnlamlb(u + +u+1)a(v 4+ 4v'41)4+my 7& Ckbnla,ml.

Hence, Cg(ag’LLl) = B.

Let AB = (a,b) be the unique subgroup of G of the order pq. It is clear that
Oé1’1’1’1<(lm) = a™ and 061’1’171(1371) = b". Thus, CLm, " e CG(aLLLl)' Since ng(Uk_l +
ot u+1,q) =1and ged(v* D ... 40 +1,p) = 1,80 ¢f (uF 1+ +u+1) and

pt (U(kz—l)i + -+ v'+1). Thus,
ap (M a™) = kp@t T g Dt )

k=1 .. (k=1)iy ... 4 i
:Ckbnlamlb(u + +u+1)a(v +-+v'+1) 7'éckbnlalml'

HGHCG, Cg(alyl’lyl) = AB.

Let Hpypy = (cb™a™) where 0 < m; < p—1and 0 < n; < g—1 be the
unique subgroup of G of order pq. First suppose m; = n; = 0. Then as200(c) = c.
Since 1 <m < p—-1,1<n < g—1, we have ass0o(a™) = a®™ # a™ and
2200(0") = 0*" # b". Thus Cg(aa200) = Hop = {(c¢). Now suppose n; = 0, m; # 0.
Then ag2,-m,0(ca™) = cal~™* 2™ = cag™ and a22pm, o(a™) = a*™ # a™ and
0[272’p_m170<bn) = an 7é b". So CG’(QQ,Q,p—ml,O) = Hm1,0 = (ca”“). Slmllarly, if my = O,
ny # 0, then aggggn, (™) = b2 = ™ ay90,, (a™) = a®™ # a™ and
Q22.p-my.0(0") = b* # b". Hence, Ca(a2204-n,) = Hon, = (cb™). Finally suppose
that my # 0 and ny # 0. Then

2.2 p—my .q—n1 (Cbmaml) — Cth*n1+2n1ap*m1+2m1 = cpItmigptm — Cbnlaml,

and so, cb™a™ € Ca(22p—myg—n,)- Oince 1 <m <p—-—Tland1l<n<g—1, we
have @92.p—my.q-n, (@™) = a*™ = a™a™ # a™ and 29 —m, g—n, (D") = b*" = b"b™ #£ b".
Hence, Ca(2.2,p—my.g-n1) = Himy ny-

Now we consider the unique subgroup AH,,, = (a,cb™), where 0 < n; < g—1 of
order rp. First suppose that ny = 0. Then aj200(a™) = a™. Also aj200(c") = *.
So a™, cF € Cg(ar900). Since 1 <n < q—1 we have ayz00(b") = b = b"b" # b".
Hence, Ce(a1200) = (a,c¢) = AHy. Now suppose that ny # 0. Then o 904-n, (a™) =
a™. Also, 120 g-n, (€b™) = 7™M T2 = cp?t™ = ch™ . So, a™, cb™ € Ca(01,2,0,9-n1)-
Since 1 < n < g—1, we have ay 50 g—n, (") = 0> = b"b" # b". Hence, Cq(a1204-n,) =
AH,,.

Now consider the unique subgroup BH,,, = (b,ca™), where 0 < m; < p —1, of
order rq. First suppose that m; = 0. Then ag100(b") = b". Also agq90(c*) =
. So b, € Cg(azi0p). Since 1 < m < p—1 we have agyj,0(a™) = a®™ =
a™a™ # a™. Hence, Cg(az100) = (b,¢) = BH,. Now suppose that m; # 0. Then
Q21 p-my0(b") = b". AlSo, ag1p-m,o(ca™) = caP~™ M = cqPt™ = g™, So,
b, ca™ € Cg(aa1p-my0). Since 1 < m < p—1 we have ag1p m,0(a™) = a® =
a™a™ # a™. Hence, Ca(®21 p—my0) = BHp,.
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Therefore, |[Acent(Giy5)|=14+14+1+1+pg+q+p=pg+p+q+4 [

5. ACENTRALIZERS OF FINITE SYMMETRIC GROUPS

In this section we compute |Acent(S,)|. First we note that Sy = Zy and so
|Acent(S2)| = 1. Also if n = 6, then Aut(Ss) = Sg X Zy and by GAP [9] we see
that |Acent(Sg)| = 443. Now since for every n # 6, Aut(S,) = Inn(S,) = S, we have
Acent(S,,) = Cent(S,,). Hence in order to find |Acent(.S,)| we need to find |Cent(S,)|.
Recall that the conjugacy class an element g of a group G, is the set of elements its
conjugate, that is

2% = {xga™' |z € G}.

Let A and G be groups, and let G act on a set X. Let B be the group of all of
functions from X into A. The product of two elements f and g of B fg(x) = f(x)g(z).
The group G acts on B via f9(x) = f(gwrg™'). The semidirect product of B and G
with respect to this action is called the general wreath product.

Theorem 5.1. ([17, Page 297]) Let a be an element of S, of cycle type (1, ... %),

then the centralizer of o in S, is a direct product of k groups of the form Z, @ Sy,,
the general wreath product. The order of Cg, («) is equal to [] /\i!r{\".

Every permutation « in .S,, can be written as the product of disjoint cycles a =
ay -y, where o = ajia 0+ jy,, j = 1,...k, is a product \; disjoint cycles of
length r; such that ry < ry <--- <r,. The cycle, type of a is

P = (Pl Tl Tl TR) = (770, 10F).
———— ——
A Ak
We will not omit those r; which are 1, so we have A\jry + - + Ayrp = n. The r;’s are
distinct and \;’s describe their multiplicities in the partition r of n. For j =1,...,k
let Y; be the of letters in a; = aj 02+ - ;. In fact
_J,m (2 (r3) CORNC)) (rj)
Y; = {ajﬁl,ajyl, coey G54 s GG GG - ..ajj\]} ,
) (2 ; 1 2 ; .
where o = (ag’l) ag-,l) ~~a§’r{)), o ajy, = ( ggﬂ ;/3] agrj])) Clearly, Y; is a-

invariant and Cg(a)-invariant; and the restriction of a to Y; is a;, A permutation
¢ commutes, with « if and only if a = 31+ B, where 8; = 8182+ Bj»,, Bj1 =

(b 0 02 Bia, = (B R, ), and 6(a%)) = BK). Now, 6
commutes with « if and only if each Y; is f-invariant and if the restriction /3, of
on Y; commutes with restriction of a; of a on Yj. Since Y; NY; = 0 for ¢ # j, the
permutation J is uniquely determined by giving its restrictions on Y;. Hence we have
Cs, (a) = Cy x - -+ x C, where C; is the centralizer of a; in Sym(Y).

Let 0 = 0109 - - -0y, where 07 = (a1 a11 - Q1,—1), 02 = (G20 G271 - A2p-1); - - -,
ox = (axo axy ---ax,—1) be the product of A cycles of length r. Let Y be the set of
all letters in o, that is

Y = {al,o a1l - A1e—1,020 A21 " A2p—15- -, A0, 051,--- ai,r—l}-
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Let M, :={m € N|m <r, ged(m,r) = 1}. Then we have |M,| = ¢(r), where ¢ is
the Euler’s totient function. For every ¢t € M,., since ged(r,t) = 1 and the order of
o is r, we have Cg(0) = Cg(o"), where G := Sym(Y"). It follows that the number of
different centralizers of permeations which are product of A cycles of the same length
r with letters in Y is

7m0
¢(r)
Now suppose that a = ay---ag, where o = ajia2---aj;, J = 1,...k, is a
product \; disjoint cycles of length 7 such that r; <7y <--- <. LetY;, 7 =1,...,r,

be the set of letters in «;. The cycle a; in the decomposition o = ajag - - - oy, in .S, can

be chosen in (IQ\) = (Tl’f\) ways. The cycle as can be chosen in ("ry\;"ﬂ) _ (n:;:q)

ways. In general o; can be chosen in

<n -y |Y,-|> 3 <n - AZ-) 3 <z§_j m-)
Y| riAj Y

ways. If ri =1, Ay =2, 1 =2, Ay = 1, and Zfzg Ajr; =n — 4, then let a; be two
cycles of length 1 with letters in as and as be a cycle of length 2 with letters in ;.
Then ajasas - - - oy, and aq asas - - -, have the same centralizers. Hence, in this case

we have
H |a Sym(Y] |<Zf]7ﬂz z)
) i\

different centralizers of permutatlons Whose cycle types are the same with .. Otherwise

there are
H o Sym(Yj) |<Zf T Z)
o(r;) TN
different centralizers of permutatlons whose cycle types are the same with a in S,,.

In the following tables we denote the number of acentralizers of the same type as a
permutation 7 by §Clg, (7).

m 10 (*7*) (%, %, %)

%] 1 2

cycle type | (13) ( 1 ah (31)

053(71') = Cl S3 53 ( 2 Sl) (Cl ! Sl) C 03 l Sl = 03
ﬂCSB (ﬂ-) 1 1

So, |Cent(S5)| = 5.

T g) (, %) (s, %,%) (o, %) (%, %) (%, %, %, %)

[757] 6 8 3 6
cycle type | (1) (1%2,2Y)  (11,3Y) (2?) (4Y)
054(71') = S4 02 X 02 03 D4 04
ﬁ054(77') 1 3 4 3 3

So, |Cent(S,)| = 14.
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T ‘ 0 (, %) Gk, k) () (s, k) Gy ok k) (o, k) (s, ok, k) (o, 5k, %, %, )
|5 1 10 20 15 30 20 24

cycle type | (1°) (1%,2') (12,3") (11,2?) (1t,4h)  (24,3Y (5)

C&%(ﬂj = |55 Oy xS3 C3x(Cy Dg Cy Cy x C5 Cs

1Cs, () 1 10 10 15 15 10 6

So, |Cent(S5)| = 67.

6. CONCLUSION

The acentralizer of an automorphism of a group is defined to be the subgroup of
its fixed points. In particular the acentralizer of an inner automorphism is just a
centralizer. In this paper we computed the acentralizers of some classes of groups,
namely dihedral, dicyclic and symmetric groups. As a result we see that if n > 3, then
the numbers of acentralizers of the dihedral group and the dicyclic group of order 4n
are equal. Also we determined the acentralizers of groups of orders pg and pgr, where
p, ¢ and r are distinct primes.
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