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NOTE ON THE MULTIFRACTAL FORMALISM OF COVERING
NUMBER ON THE GALTON-WATSON TREE

NAJMEDINE ATTIA1 AND MERIEM BEN HADJ KHALIFA2

Abstract. We consider, for t in the boundary of Galton-Watson tree (∂T), the
covering number Nn(t) by cylinder of generation n. For a suitable set I and a
sequence (sn,γ), we establish almost surely, and uniformly on γ, the Hausdorff and
packing dimensions of the set {t ∈ ∂T : Nn(t) − nb ∼ sn,γ} for b ∈ I.

1. Introduction and main results

Let (N,X) be a random vector with independent components taking values in
N2, where N denotes the set of non-negative integers. Then let {(Nu, Xu)}u∈

⋃
n≥0 Nn

+

be a family of independent copies of the vector (N,X) indexed by the set of finite
words over the alphabet N+: the set of positive integers (n = 0 corresponds to the
empty sequence denoted ∅). Let T be the Galton-Watson tree with defining elements
{Nu}: we have ∅ ∈ T, if u ∈ T and i ∈ N+ then ui, the concatenation of u and i,
belongs to T if and only if 1 ≤ i ≤ Nu and if ui ∈ T, then u ∈ T. Similarly, for each
u ∈ ⋃

n≥0 Nn
+, denote by T(u) the Galton-Watson tree rooted at u and defined by the

{Nuv}, v ∈ ⋃
n≥0 Nn

+.
We assume that E(N) > 1 so that the Galton-Watson tree is supercritical. We also

assume that the probability of extinction is equal to 0, so that P(N ≥ 1) = 1.
For each infinite word t = t1t2 · · · ∈ NN+

+ and n ≥ 0, we set t|n = t1 · · · tn ∈ Nn
+

(t|0 = ∅). If u ∈ Nn
+ for some n ≥ 0, then n is the length of u and it is denoted by |u|.

We denote by [u] the set of infinite words t ∈ NN+
+ such that t||u| = u.

Key words and phrases. Random covering, Hausdorff dimension, indexed martingale, Galton-
Watson tree.
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The set NN+
+ is endowed with the standard ultrametric distance

d : (u, v) 7→ e− sup{|w|:u∈[w],v∈[w]},

with the convention exp(−∞) = 0. The boundary of the Galton-Watson tree T is
defined as the compact set

∂T =
⋂
n≥1

⋃
u∈Tn

[u],

where Tn = T ∩ Nn
+.

We consider Xu as the covering number of the cylinder [u], that is to say, the
cylinder [u] is cut off with probability p0 = P(X = 0) and is covered m times with
probability pm = P(X = m), m = 1, 2, . . .

For t ∈ ∂T, set

Nn(t) =
n∑
k=1

Xt1···tk .

Since this quantity depends on t1 · · · tn only, we also denote by Nn(u) the constant value
of Nn(·) over [u] whenever u ∈ Tn. The quantity Nn(t) is called the covered number
(or more precisely the n-covered number) of the point t by cylinder of generation k,
k = 1, 2, . . . , n.

Consider an individual infinite branch t1 · · · tn · · · in ∂T. When E(X) is defined, the
strong law of large number yields limn→∞ n−1Nn(t) = E(X). It is also well known, in
the theory of the birth process, (see [15]) that almost surely (a.s.) limn→∞ Nn(t) = +∞
for every t ∈ D = {0, 1}N if and only if

p0 = P(X = 0) < 1
2 .

If this condition is satisfied, then a.s. every point is infinitely covered.
We consider, for b ∈ R, the set

Eb =
{
t ∈ ∂T : lim

n→∞

Nn(t)
n

= b
}
.

These level sets can be described geometrically through their Hausdorff dimensions.
They have been studied by many authors, see [3,8,11,14,16,21] and [4,7] for a general
case. All these papers also deal with the multifractal analysis of associated Mandelbrot
measures (see also [1, 2, 19] for the study of Mandelbrot measures dimension).

We will assume that the free energy of X defined as

τ(q) = logE
( N∑
i=1

eqXi

)
is finite over R. We will assume, without loss of generality, that X is not constant so
that the function τ is strictly convex. Let τ ∗ stand for the Legendre transform of the
function τ , defined as

τ ∗(b) := inf
q∈R

(
τ(q) − qb

)
, b ∈ R.



ON THE MULTIFRACTAL FORMALISM OF COVERING NUMBER 45

We say that the multifractal formalism holds at b ∈ R if
dimEb = DimEb = τ ∗(b),

where dim Eb is the Hausdorff dimension of Eb and Dim Eb is the packing dimension
of Eb (see Section A for the definition). In the following, we define the sets

J =
{
q ∈ R; τ(q) − qτ ′(q) > 0

}
,

Ω1
α = int

{
q : E

[∣∣∣ N∑
i=1

eqXi

∣∣∣α] < ∞
}
,

Ω1 =
⋃

α∈(1,2]
Ω1
α,

J = J ∩ Ω1 and I =
{
τ ′(q); q ∈ J

}
.

Remark 1.1. It is well known, see [6, Proposition 3.1], that L = {α ∈ R, τ ∗(α) ≥ 0},
is a convex, compact and non-empty set. In addition, if we assume that J = J

then I = int(L), where int(L) is the interior of L (see also [6, Proposition 3.1.]) In
particular, I is an interval.

Next, we define for b, γ ∈ R and for any positive sequence sγ = {sn,γ}n such that
sn,γ = o(n) and γ 7→ sn,γ is analytic function, the set

Eb,sγ =
{
t ∈ ∂T : Nn(t) − nb ∼ sn,γ as n → +∞

}
,

where Nn(t) − nb ∼ sn,γ means that (Nn(t) − nb)n and (sn,γ)n are two equivalent
sequences. It is clear that Eb,sγ ⊂ Eb. So, we can get with a simple covering argument,
with probability 1, for all b ∈ R and γ ∈ R,
(1.1) dimEb,sγ ≤ dimEb ≤ DimEb ≤ τ ∗(b),
(see Proposition 1 in [5] and Proposition 2.7 in [4]). Let us mention that the methods
used to compute Hausdorff dimension of the sets Eb in, for example, [4, 7, 17,18]) do
not give results on dim Eb,sγ . These sets were considered by Kahane and Fan in [15].
The authors considered the space {0, 1}N and they compute, for each b, almost surely
(a.s.), the Hausdorff dimension of Eb,sγ under the hypothesis :

sn,γ = o(n), ηn(γ) = sn,γ − sn−1,γ = o(1) and
√
n ln lnn = o(sn,γ).

A special case of a sequence satisfying the above hypothesis is sn,γ = nγ with γ ∈
(1/2, 1). Later, Attia in [5], gives a stronger result in the sense that, a.s. for all b ∈ I,
he computed the Hausdorff dimensions of the sets Eb,sγ under the hypothesis
(1.2) sn,γ = o(n), ηn(γ) = sn,γ − sn−1,γ = o(1)
and there exists ϵn → 0 such that

(1.3)
∑
n≥1

exp
(

− ϵ
n∑
k=1

ϵk ηk(γ)2
)
< +∞, for all ϵ > 0.
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In particular, we can choose

sn,γ =
n∑
k=1

1
kγ

with γ ∈ (0, 1/2).

Theorem 1.1 ([5]). Let sγ be a positive sequence satisfying (1.2) and (1.3). Then,
a.s. for all b ∈ I

dimEb,sγ = dimEb = τ ∗(b).

This requires, for a given sequence sγ , a simultaneous building of an inhomogeneous
Mandelbrot measure and a computing of their dimensions. In particular, for

sn,γ =
n∑
k=1

1
kγ
,

we have for all γ ∈ (0, 1/2), a.s. dimEb,sγ = τ ∗(b). To state our main result, let
sγ = (sn,γ)n be a positive sequence and we define the set Λs to be any set of R such
that

(1.4) Λs ⊆
{
γ ∈ R, such that (sn,γ) satisfies (1.2) and (1.3)

}
and, for k ≥ 1

(1.5) η̃k = inf
γ∈Λs

ηk(γ) > 0.

We suppose the following hypothesis.

Hypothesis 1.2. There exists a sequence ϵn → 0 such that∑
n≥1

exp
(

− ϵ
n∑
k=1

ϵkη̃
2
k

)
< +∞, for all ϵ > 0.

Clearly this hypothesis is satisfied, for sn,γ = ∑n
k=1

1
kγ , with Λs = [ϵ, 1/2), ϵ > 0.

Applying the previous theorem we get the conclusion for each γ ∈ Λs a.s. The goal
of this note is to give a uniform result on γ. In addition, we determine the packing
dimensions of the sets Eb,sγ . More precisely we have the following result.

Theorem 1.3. Let sγ = (sn,γ)n≥1 be a positive sequence and consider a set Λs

satisfying (1.4) and (1.5). Under Hypothesis 1.2, we have, a.s.. for all b ∈ I and for
all γ ∈ Λs

dimEb,sγ = dimEb = DimEb = DimEb,sγ = τ ∗(b).

2. Construction of Inhomogeneous Mandelbrot Measures

We define, for (q, p) ∈ J × [1,∞), the function

φ(p, q) = exp
(
τ(pq) − pτ(q)

)
.
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From [5], for all nontrivial compact sets K ⊂ J there exist 1 < pK < 2 and p̃K > 1
such that we have

(2.1) sup
q∈K

φ(pK , q) < 1, for all 1 < p ≤ pK ,

and

(2.2) sup
q∈K

E
(( N∑

i=1
eqXi

)p̃K
)
< ∞.

Now, we will construct the inhomogeneous Mandelbrot measure. For q ∈ J and
k ≥ 1, we define ψk(q, γ) as the unique t, such that

τ ′(t) = τ ′(q) + ηk(γ).

For u ∈ ⋃
n≥0 Nn

+ and q ∈ J we define, for 1 ≤ i ≤ Nu

V (ui, q) =
exp

(
qXui

)
E
( N∑
i=1

exp
(
qXi

)) = exp
(
qXui − τ(q)

)

and, for all n ≥ 0

Yn(q, γ, u) =
∑

v1···vn∈Tn(u)

n∏
k=1

V
(
u · v1 · · · vk, ψ|u|+k(q, γ)

)
.

When u = ∅, this quantity will be denoted by Yn(q, γ) and when n = 0, their values
equals 1.

The sequence
(
Yn(q, γ, u)

)
n≥1

is a positive martingale with expectation 1, which
converges almost surely and in L1 norm to a positive random variable Y (q, γ, u) (see
[9] or [10, Theorem 1]). However, our study will need the almost sure simultaneous
convergence of these martingales to positive limits.

Proposition 2.1. (a) Let K = K×Kγ be a compact subset of J×Λs. There exists pK ∈
(1, 2] such that for all u ∈ ⋃

n≥0 Nn
+ the continuous functions (q, γ) ∈ K 7→ Yn(q, γ, u)

converge uniformly, almost surely and in LpK norm, to a limit (q, γ) ∈ K 7→ Y (q, γ, u).
In particular, E(sup(q,γ)∈K Y (q, γ, u)pK) < ∞. Moreover, Y (·, ·, u) is positive almost
surely.

In addition, for all n ≥ 0, σ
(
{(Xu1, . . . , XuNu), u ∈ Tn}

)
and σ

(
{Y (·, ·, u), u ∈

Tn+1}
)

are independent, and the random functions Y (·, ·, u), u ∈ Tn+1, are indepen-
dent copies of Y (·, ·):= Y (·, ·, ∅).

(b) With probability 1, for all q ∈ J and γ ∈ Λs, the weights

µγq

(
[u]
)

=
[ n∏
k=1

exp
(
ψk(q, γ)Xu1...uk

− τ(ψk(q, γ))
)]
Y (q, γ, u)

define a measure on ∂T, where n = |u|.
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The measure µγq will be used to approximate from below the Hausdorff dimension
of the set Eb,sγ .

Proof. (a) Fix a compact K ⊂ J and a compact Kδ ⊂ Λs. Since ηk(γ) = ◦(1), we
can fix, without loss of generality, a compact neighborhood K ′ ⊂ J of K and suppose
that,

∀(q, γ) ∈ K = K ×Kγ, for all k ≥ 1, ψk(q, γ) ∈ K ′.

Fix a compact neighborhood K′′ = K ′′ ×K ′′
γ of K ′ ×Kγ . By (2.2), we can find p̃K′′ > 1,

such that

sup
q∈K′′

E
(( N∑

i=1
eqXi

)p̃K′′
)
< ∞.

By (2.1), we can fix 1 < pK ≤ min(2, p̃K′′) such that supq∈K′′ φ(pK, q) < 1. Then
for each (q, γ) ∈ K ′ × K, there exists a neighborhood Vq × Vγ ⊂ C2 of (q, γ), whose
projection to R2 is contained in K′′, and such that for all u ∈ T, (z, z′) ∈ Vq × Vγ and
k ≥ 1, the random variable

V (u, z) = exp(zXu)

E
( N∑
i=1

exp(zXi)
) , Γ(z) =

E
(∑N

i=1 Xi exp(zXi)
)

E
(∑N

i=1 exp(zXi)
)

and the analytic extension of ηk, denoted also by ηk, are well defined. For (z, z′) ∈
Vq × Vγ and k ≥ 1, we define ψk(z, z′) as the unique t such that

Γ(t) = Γ(z) + |ηk(z′)|.

Moreover, we have

sup
z∈Vq

φ(pK, z) < 1, where φ(pK, z) =
E
(∑N

i=1 |ezXi |pK

)
∣∣∣∣E( N∑

i=1
ezXi

)∣∣∣∣pK
.

By extracting a finite covering of K ′ ×Kγ from ⋃
q,γ Vq × Vγ , we find a neighborhood

V = VK × VKγ ⊂ C2 of K ′ ×Kγ such that

sup
z∈VK

φ(pK, z) < 1

and for all (z, z′) ∈ V, ψk(z, z′) is defined and belongs to VK . Since the projection
of VK to R is included in K ′′ and the mapping z 7→ E

(∑N
i=1 e

zXi

)
is continuous and

does not vanish on VK , by considering a smaller neighborhood of K ′ included in VK
if necessary, we can assume that

CVK
= sup

z∈VK

E
(∣∣∣∣∣

N∑
i=1

ezXi

∣∣∣∣∣
pK
)∣∣∣∣∣E

(
N∑
i=1

ezXi

)∣∣∣∣∣
−pK

< ∞.
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Now, for u ∈ T, we define the analytic extension to V of Yn(q, γ, u) given by

Yn(z, z′, u) =
∑

v∈Tn(u)

n∏
k=1

V (u · v1 · · · vk, ψ|u|+k(z, z′))

=
[

n∏
k=1

E
( N∑
i=1

eψk(z,z′)Xi

)]−1 ∑
v∈Tn(u)

n∏
k=1

eψ|u|+k(z,z′)X(uv|k).

We denote also Yn(z, z′, ∅) by Yn(z, z′). By Lemma 3 in [5], there exists a constant
CpK such that for all (z, z′) ∈ V

E
(

|Yn(z, z′) − Yn−1(z, z′)|pK
)

≤CpKE
(∣∣∣∣∣

N∑
i=1

V (i, ψn(z, z′))
∣∣∣∣∣
pK
)
n−1∏
k=1

E
(

N∑
i=1

|V (i, ψk(z, z′))|pK

)
.

Notice that E
(∑N

i=1 |V (i, ψk(z, z′))|pK

)
= φ(pK, ψk(z, z′)). Then

E
(

|Yn(z, z′) − Yn−1(z, z′)|pK
)

≤ CpKE
(∣∣∣∣∣

N∑
i=1

V (i, ψn(z, z′))
∣∣∣∣∣
pK
)
n−1∏
k=1

φ
(
pK, ψk(z, z′)

)
.

≤ CpKCVK

n−1∏
k=1

sup
z∈VK

φ(pK, z),

where we have used the fact that ψk(z, z′) ∈ VK for all k ≥ 1. With probability
1, the functions (z, z′) ∈ V 7→ Yn(z, z′), n ≥ 0, are analytic. Fix a closed polydisc
D(z0, 2ρ) ⊂ V with z0 = (z1, z

′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
(z,z′)∈D(z0,ρ)

|Yn(z, z′) − Yn−1(z, z′)| ≤ 4
∫

[0,1]2
|Yn(ζ(t)) − Yn−1(ζ(t))| dt,

where, for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Jensen’s inequality and Fubini’s Theorem give

E
(

sup
z∈D(z0,ρ)

|Yn(z, z′) − Yn−1(z, z′)|pK

)
≤ E

((
4
∫

[0,1]2
|Yn(ζ(t)) − Yn−1(ζ(t))| dt

)pK
)

≤ 4pKE
(∫

[0,1]2
|Yn(ζ(t)) − Yn−1(ζ(t))|pK dt

)

= 4pK

∫
[0,1]2

E |Yn(ζ(t)) − Yn−1(ζ(t))|pK dt

≤ 4pKCVK
CpK

n−1∏
k=1

sup
z∈VK

φ(pK, z).



50 N. ATTIA AND M. BEN HADJ KHALIFA

Since sup
z∈VK

φ(pK, z) < 1, it follows that

∑
n≥1

∥∥∥∥∥ sup
(z,z′)∈D(z0,ρ)

|Yn(z, z′) − Yn−1(z, z′)|
∥∥∥∥∥
pK

< ∞.

This implies, (z, z′) 7→ Yn(z, z′) converges uniformly, almost surely and in LpK norm
over the compact D(z0, ρ) to a limit (z, z′) 7→ Y (z, z′). This also implies that∥∥∥∥ sup

z∈D(z0,ρ)
Y (z, z′)

∥∥∥∥
pK

< ∞.

Since K can be covered by finitely many such discs D(z0, ρ) we get the uniform
convergence, almost surely and in LpK norm, of the sequence ((q, γ) ∈ K 7→ Yn(q, γ))n≥1
to (q, γ) ∈ K 7→ Y (q, γ). Moreover, since J×Λs can be covered by a countable union of
such compact K we get the simultaneous convergence for all (q, γ) ∈ J×Λs. The same
holds simultaneously for all the functions (q, γ) ∈ J × Λs 7→ Yn(q, γ, u), u ∈ ⋃

n≥0 Nn
+,

because ⋃n≥0 Nn
+ is countable.

To finish the proof of Proposition 2.1 (1), we must show that with probability 1,
(q, γ) ∈ K 7→ Y (q, γ) does not vanish. Without loss of generality we can suppose
that K = [0, 1]2. If I is a dyadic closed subcube of [0, 1]2, we denote by EI the event
{∃ (q, γ) ∈ I : Y (q, γ) = 0}. Let I0, I1, I2, I3 stand for the 22 dyadic intervals of
I in the next generation. The event EI being a tail event of probability 0 or 1. If
we suppose that P(EI) = 1, then there exists j ∈ {0, 1, 2, 3} such that P(EIj

) = 1.
Suppose now that P(EK) = 1. The previous remark allows to construct a decreasing
sequence (I(n))n≥0 of dyadic subcubes of K such that P(EI(n)) = 1. Let (q0, γ0)
be the unique element of ∩n≥0I(n). Since (q, γ) 7→ Y (q, γ) is continuous we have
P(Y (q0, γ0) = 0) = 1, which contradicts the fact that (Yn(q0, γ0))n≥1 converges to
Y (q0, γ0) in L1.

(b) It is a consequence of the branching property

Yn+1(q, γ, u) =
N∑
i=1

exp
(
ψn+1(q, γ)Xui − τ(ψn+1(q, γ))

)
Yn(q, γ, ui). □

3. Proof of Theorem 1.3

The proof of Theorem 1.3 can be deduced from the two following propositions.
Their proof are developed in the next section.

Proposition 3.1. Suppose Hypothesis 1.2, with probability 1, for all q ∈ J and γ ∈ Λs,
Nn(t) − nb ∼ sn,γ, for µγq -almost every t ∈ ∂T,

where b = τ ′(q).

Proposition 3.2. With probability 1, for all (q, γ) ∈ J × Λs, for µγq -almost every
t ∈ ∂T

lim
n→∞

log Y (q, γ, t|n)
n

= 0.
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From Proposition 3.1, we have with probability 1, for all q ∈ J and γ ∈ Λs, that
µγq
(
Eb,sγ

)
= 1, (b = τ ′(q)). In addition, with probability 1, for all (q, γ) ∈ J× Λs, for

µγq -almost every t ∈ Eb,sγ , from the same Proposition and proposition 3.2, we have

lim
n→∞

log(µγq [t|n])
log(diam([t|n]))

= lim
n→∞

− 1
n

log
(

n∏
k=1

exp
(
ψk(q, γ)Xt1...tk − τ(ψk(q, γ))

)
Y (q, γ, t|n)

)

= lim
n→∞

− 1
n

n∑
k=1

ψk(q, γ)Xt1...tk + 1
n

n∑
k=1

τ(ψk(q, γ)) −
log Y (q, γ, t|n)

n

= lim
n→∞

− 1
n

n∑
k=1

ψk(q, γ)Xt1...tk + 1
n

n∑
k=1

τ(ψk(q, γ)).

Since ηk(γ) = ◦(1) and then ψk(q, γ) → q, we get

lim
n→∞

log(µγq [t|n])
log(diam([t|n])) = −qτ ′(q) + τ(q) = τ ∗(τ ′(q)).

We deduce the result from the mass distribution principle (Theorem A.1) and (1.1).

4. Proof of Propositions 3.1 and 3.2

4.1. Proof of Proposition 3.1. Let K = K×Kγ be a compact subset of J× Λs. For
b = τ ′(q), q ∈ J, γ ∈ Λs, n ≥ 1, ϵ > 0 and sγ = (sn,γ)n≥1 we set

E1
b,n,γ,ϵ =

{
t ∈ ∂T :

n∑
k=1

(
Xt1···tk(t) − b− ηk(γ)

)
≥ ϵ

n∑
k=1

ηk(γ)
}
,

E−1
b,n,γ,ϵ =

{
t ∈ ∂T :

n∑
k=1

(
Xt1···tk(t) − b− ηk(γ)

)
≤ −ϵ

n∑
k=1

ηk(γ)
}
.

Suppose that we have shown that for, λ ∈ {−1, 1}, we have:

(4.1) E
(

sup
(q,γ)∈K

∑
n≥1

µγq (Eλ
b,n,γ,ϵ)

)
< ∞.

Then, with probability 1, for all (q, γ) ∈ J × Λs, λ ∈ {−1, 1}, and ϵ ∈ Q∗
+,∑

n≥1
µγq (Eλ

b,n,γ,ϵ) < ∞,

consequently, by the Borel-Cantelli lemma, for µγq -almost every t, we have
n∑
k=1

Xt1···tk(t) − b− ηk(γ) = ◦
( n∑
k=1

ηk(γ)
)
, so Nn(t) − nb ∼ sn,γ,

which yields the desired result.
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Let us prove (4.1) when λ = 1 (the case λ = −1 is similar ). Let θ = (θn) be a
positive sequence and (q, γ) ∈ K. One has

sup
(q,γ)∈K

µγq

(
E1
b,n,γ,ϵ

)
≤ sup

(q,γ)∈K

∑
u∈Tn

µγq ([u]) 1{
E1

b,n,γ,ϵ

}(tu),

where tu is any point in [u]. Denote tu simply by t, then

sup
(q,γ)∈K

µγq

(
E1
b,n,γ,ϵ

)

≤ sup
(q,γ)∈K

∑
u∈Tn

µγq [u]
n∏
k=1

exp
(
θkXt1···tk − θkb− θkηk(γ)(1 + ϵ)

)

≤ sup
(q,γ)∈K

∑
u∈Tn

n∏
k=1

exp
(

(ψk(q, γ) + θk)Xt1···tk − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)

× Y (q, γ, u).
For (q, γ) ∈ K, θ = (θn) and n ≥ 1, we set

Hn(q, γ, θ)

=
∑
u∈Tn

n∏
k=1

exp
(

(ψk(q, γ) + θk)Xt1···tk − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)
M(u),

where
M(u) = sup

(q,γ)∈K
Y (q, γ, u).

Recall the proof of Proposition 2.1, there exists a neighborhood V = VK × VKγ ⊂ C2

of K = K ×Kγ such that

Γ(z) =
E
(∑N

i=1 Xi exp(zXi)
)

E
(∑N

i=1 exp(zXi)
)

is well defined for z ∈ VK , for k ≥ 1, ηk(z′) is defined for z′ ∈ VKγ and ∀(z, z′) ∈ V,
ψk(z, z′) is defined and belongs to VK .

For ϵ > 0, (z, z′) ∈ V and n ≥ 1, we define

Hn(z, z′, θ) =
∑
u∈Tn

n∏
k=1

exp
(

(ψk(z, z′) + θk)Xu|k − θkΓ(z) − θkηk(z′)(1 + ϵ)
)

× E
( N∑
i=1

exp
(
ψk(z, z′)Xi

))−1
M(u).

Proposition 4.1. There exist a neighborhood V′ ⊂ V of K, a positive constant CK
and a positive sequence θ such that for all (z, z′) ∈ V′, for all n ∈ N∗

E(|Hn(z, z′, θ)|) ≤ CK exp
(

− ϵ

4

n∑
k=1

ϵkη̃
2
k

)
,
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where the sequences (ϵn)n and (η̃n)n are the sequences used in Hypothesis 1.2.

Lemma 4.1. There exist a positive sequence θ = (θn) and a positive constant CK such
that for all (q, γ) ∈ K we have

E
(
Hn(q, γ, θ)

)
≤ CK exp

(
− ϵ

2

n∑
k=1

ϵkη̃
2
k

)
.

Proof of Lemma 4.1. Let θ = (θn) be a positive sequence, clearly we have

E
(
Hn(q, γ, θ)

)
=

n∏
k=1

E
( N∑
i=1

exp
(

(ψk(q, γ) + θk)Xi

)

× exp
(

− τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)
)
E(M(u))

≤C′
K

n∏
k=1

exp
(
τ(ψk(q, γ) + θk) − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)

)
,

where, by Proposition 2.1, C′
K = E

(
M(u)

)
= E

(
M(∅)

)
< ∞ for all u ∈ ⋃

n≥0 Nn
+.

Since ηk(γ) = o(1), we can fix a compact neighborhood K ′ of K and suppose that
for all k ≥ 1 and (q, γ) ∈ K, we have ψk(q, γ) ∈ K ′. For (q, γ) ∈ K and k ≥ 1, writing
the Taylor expansion with integral rest of order 2 of the function g : θ 7→ τ(ψk(q, γ)+θ)
at 0, we get

g(θ) = g(0) + θg′(0) + θ2
∫ 1

0
(1 − t)g′′(tθ)dt,

with g′′(tθ) ≤ mK = sup
t∈[0,1]

sup
q∈K′

sup
γ∈Kγ

g′′(tθ). It follows that for all k ≥ 1

τ(ψk(q, γ) + θk) − τ((ψk(q, γ)) − θkτ
′((ψk(q, γ)) ≤ θ2

kmK.

Recall that τ ′(ψk(q, γ)) = τ ′(q) + ηk(γ). Then

E
(
Hn(q, γ, θ)

)
≤ C′

K

n∏
k=1

exp
(
τ(ψk(q, γ) + θk) − τ(ψk(q, γ)) − θkb− θkηk(γ)(1 + ϵ)

)
,

≤ C′
K

n∏
k=1

exp
(

− θkηk(γ)ϵ+ θ2
kmK

)
.

Choose the sequence θ such that θk = ϵkη̃k. Then

E
(
Hn(q, γ, θ)

)
≤ C′

K

n∏
k=1

exp
(

− ϵkη̃
2
k(ϵ− ϵkmK)

)
.

Since ϵk → 0 then for k large enough we have ϵ − ϵkmK >
ϵ

2 . Then, there exists a
constant CK such that

E
(
Hn(q, γ, θ)

)
≤ CK exp

(
− ϵ

2

n∑
k=1

ϵkη̃
2
k

)
. □
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Proof of Proposition 4.1. Since E(|Hn(q, γ, θ)|) ≤ CK exp
(

− ϵ
2
∑n
k=1 ϵkη̃

2
k

)
for q ∈ K,

there exists a neighborhood Vq,γ ⊂ V of (q, γ) such that for all (z, z′) ∈ Vq,γ we have

E(|Hn(z, z′, θ)|) ≤ CK exp
(

− ϵ

4

n∑
k=1

ϵkη̃
2
k

)
.

By extracting a finite covering of K from ⋃
(q,γ)∈K Vq,γ , we find a neighborhood V′ ⊂ V

of K such that
E(|Hn(z, z′, θ)|) ≤ CK exp

(
− ϵ

4

n∑
k=1

ϵkη̃
2
k

)
. □

With probability 1, the functions (z, z′) ∈ V′ 7→ Hn(z, z′, θ) are analytic. Fix a
closed polydisc D(z0, 2ρ) ⊂ V , with z0 = (z1, z

′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
(z,z′)∈D(z0,ρ)

∣∣∣Hn(z, z′, θ)
∣∣∣ ≤ 2

∫
[0,1]2

∣∣∣Hn(ζ(t), θ)
∣∣∣dt,

where for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Fubini’s Theorem gives

E
(

sup
z∈D(z0,ρ)

|Hs
n(z, z′, θ)|

)
≤ E

(
2
∫

[0,1]2
|Hn(ζ(t), θ)| dt

)
≤ 4

∫
[0,1]2

E |Hn(ζ(t), θ)| dt

≤ 4 exp
(

− ϵ

4

n∑
k=1

ϵkη̃
2
k

)
.

Finally, we get

E
(

sup
(q,γ)∈K

µγq
(
E1
b,n,γ,ϵ

))
≤ 4 exp

(
− ϵ

4

n∑
k=1

ϵkη̃
2
k

)
and, then, under Hypothesis 1.2, we get (4.1), which finish the proof of Proposition 3.1.

4.2. Proof of Propostion 3.2. Let K = K ×Kγ be a compact subset of J× Λs. For
a > 1, (q, γ) ∈ K and n ≥ 1, we set

E+
n,a =

{
t ∈ ∂T : Y (q, γ, t|n) > an

}
and

E−
n,a =

{
t ∈ ∂T : Y (q, γ, t|n) < a−n

}
.

It is sufficient to show that for E ∈ {E+
n,a, E

−
n,a}

(4.2) E
(

sup
(q,γ)∈K

∑
n≥1

µγq (E)
)
< ∞.
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Indeed, if this holds, then with probability 1, for each (q, γ) ∈ K and E ∈ {E+
n,a, E

−
n,a},∑

n≥1 µ
γ
q (E) < ∞, hence by the Borel-Cantelli lemma, for µγq -almost every t ∈ ∂T, if

n is big enough we have

− log a ≤ lim inf
n→∞

1
n

log Y (q, γ, t|n) ≤ lim sup
n→∞

1
n

log Y (q, γ, t|n) ≤ log a.

Letting a tend to 1 along a countable sequence yields the result.
Let us prove (4.2) for E = E+

n,a (the case E = E−
n,a is similar). At first we have,

sup
(q,γ)∈K

µγq (E+
n,a) = sup

(q,γ)∈K

∑
u∈Tn

µγq ([u])1{
Y (q,γ,u)>an

}
= sup

(q,γ)∈K

∑
u∈Tn

Y (q, γ, u)
n∏
k=1

exp
(
ψk(q, γ)X(u) − τ

(
ψk(q, γ)

))
1{

Y (q,γ,u)>an

}
≤ sup

(q,γ)∈K

∑
u∈Tn

(Y (q, γ, u))1+ν
n∏
k=1

exp
(
ψk(q, γ)Xu − τ

(
(ψk(q, γ)

))
a−ν ,

≤ sup
(q,γ)∈K

∑
u∈Tn

M(u)1+ν
n∏
k=1

exp
(
ψk(q, γ)Xu − τ

(
ψk(q, γ)

))
a−ν ,

where M(u) = sup(q,γ)∈K Y (q, γ, u) and ν > 0 is an arbitrary parameter. For q ∈ K,
γ ∈ Kγ and ν > 0 we set

Ln(q, γ, ν) =
∑
u∈Tn

M(u)1+ν
n∏
k=1

exp
(
ψk(q, γ)Xu − τ

(
ψk(q, γ)

))
a−ν .

Recall the proof of Proposition 2.1, there exists a neighborhood V ⊂ C2 of K such
that for all (z, z′) ∈ V and k ≥ 1 ψk(z, z′) is well defined and E

(∑N
i=1 e

ψk(z,z′)Xi

)
̸= 0.

Lemma 4.2. Fix a > 1. For (z, z′) ∈ V and ν > 0, let

Ln(z, z′, ν) =
 n∏
k=1

E
(

N∑
i=1

exp
(
ψk(z, z′)Xi

))−1


×
∑
u∈Tn

M(u)1+ν
n∏
k=1

exp
(
ψk(z, z′)Xu|k

)
a−ν .

There exist a neighborhood V′ ⊂ C2 of K and a positive constant CK such that, for all
(z, z′) ∈ V′, for all integer n ≥ 1

(4.3) E
(∣∣∣∣Ln(z, z′, pK − 1)

∣∣∣∣) ≤ CKa
−n(pK−1)/4,

where pK provided by Proposition 2.1.

Proof. Write V = VK × VKγ . For z ∈ VK and ν > 0, let

L̃1(z, ν) =
∣∣∣∣∣E
(

N∑
i=1

exp
(
zXi

))∣∣∣∣∣
−1

E
(

N∑
i=1

∣∣∣∣ exp
(
zXi

)∣∣∣∣
)
a−ν .
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Let q ∈ K. Since E(L̃1(q, ν)) = a−ν , there exists a neighborhood Vq ⊂ VK of q such
that for all z ∈ Vq we have E

(∣∣∣L̃1(z, ν)
∣∣∣) ≤ a−ν/2. Let γ ∈ Kγ. Recall the proof of

Proposition 2.1 and since ηk(γ) = ◦(1), we can find a neighborhood Vγ ⊂ VKγ of Kγ

such that, for all k ≥ 1, (z, z′) ∈ Vq × Vγ, we have

E
(∣∣∣L̃1(ψk(z, z′), ν)

∣∣∣) ≤ a−ν/3.

By extracting a finite covering of K from
⋃

(q,γ)
Vq×Vγ , we find a neighborhood V′ ⊂ V

of K such that for all (z, z′) ∈ V′ and k ≥ 1

E
(∣∣∣L̃1(ψk(z, z′), ν)

∣∣∣) ≤ a−ν/4.

Therefore,

E
(∣∣∣Ln(z, z′, ν)

∣∣∣)
=
 n∏
k=1

∣∣∣∣∣E
(

N∑
i=1

exp
(
ψk(z, z′)Xi

))∣∣∣∣∣
−1
E

∣∣∣∣∣ ∑
u∈Tn

M(u)1+ν
n∏
k=1

exp
(
ψk(z, z′)Xu

)∣∣∣∣∣
 a−nν

≤

 n∏
k=1

∣∣∣∣∣E
(

N∑
i=1

exp
(
ψk(z, z′)Xi

))∣∣∣∣∣
−1
E

 ∑
u∈Tn

M(u)1+ν
n∏
k=1

∣∣∣∣∣ exp
(
ψk(z, z′)Xu

)∣∣∣∣∣
 a−nν .

By Proposition 2.1, there exists pK ∈ (1, 2] such that for all u ∈ ⋃
n≥0 Nn

+,

E
(
M(u)pK

)
= E

(
M(∅)pK

)
= CK < ∞.

Now take ν = pK − 1 in the last calculation, it follows, from the independence of
σ
(
{Y (·, ·, u), u ∈ Tn}

)
and σ

(
{(Xu1, . . . , XuNu), u ∈ Tn−1}

)
for all n ≥ 1, that

E
(∣∣∣∣Ln(z, z′, pK − 1)

∣∣∣∣)

≤

 n∏
k=1

∣∣∣∣∣E
(

N∑
i=1

exp
(
ψk(z, z′)Xi

))∣∣∣∣∣
−1
 n∏
k=1

E
( N∑
i=1

∣∣∣∣ exp
(
ψk(z, z′)Xi

)∣∣∣∣)n CKa
−n(pK−1)

=CK

n∏
k=1

E
(∣∣∣L̃1(ψk(z, z′), pK − 1)

∣∣∣)
≤CKa

−n(pK−1)/4,

then lemma is now proved. □

With probability 1, the functions (z, z′) ∈ V′ 7→ Ln(z, z′, ν) are analytic. Fix a
closed polydisc D(z0, 2ρ) ⊂ V′, with z0 = (z1, z

′
1) and ρ = (ρ1, ρ2). Theorem B.1 gives

sup
z∈D(z0,ρ)

∣∣∣Ln(z, pK − 1)
∣∣∣ ≤ 4

∫
[0,1]2

∣∣∣Ln(ζ(t), pK − 1)
∣∣∣dt,
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where, for t = (t1, t2) ∈ [0, 1]2

ζ(t) = (ζ1(t1), ζ2(t2)) = (z1 + ρ1e
i2πt1 , z′

1 + ρ2e
i2πt2).

Furthermore Fubini’s Theorem gives

E
(

sup
z∈D(z0,ρ)

|Ln(z, pK − 1)|
)

≤ E
(

4
∫

[0,1]2
|Ln(ζ(t), pK − 1)| dt

)

≤ 4
∫

[0,1]2
E |Ln(ζ(t), pK − 1)| dt

≤ 4CKa
−n(pK−1)/4.

Since a > 1 and pK − 1 > 0, we get (4.2).

Appendix A. Hausdorff and Packing Dimensions

Given a subset K of NN+
+ endowed with a metric d making it σ-compact, s > 0 and

E a subset of K, the s-dimensional Hausdorff measure of E is defined as

Hs(E) = lim
δ→0+

inf
{∑
i∈N

(diam(Ui)s
}
,

the infimum being taken over all the countable coverings (Ui)i∈N of E by subsets of K
of diameters less than or equal to δ. Then, the Hausdorff dimension of E is defined as

dimE = sup{s > 0 : Hs(E) = ∞} = inf{s > 0 : Hs(E) = 0},

with the convention sup ∅ = 0 and inf ∅ = ∞.
Packing measures and dimensions are defined as follows. Given s > 0 and E ⊂ K

as above, one first defines

P
s(E) = lim

δ→0+
sup

{∑
i∈N

(diam(Bi)s
}
,

the supremum being taken over all the packings {Bi}i∈N of E by balls centered on
E and with diameter smaller than or equal to δ. Then, the s-dimensional packing
measure of E is defined as

P s(E) = lim
δ→0+

inf
{∑
i∈N

P
s(Ei)

}
,

the infimum being taken over all the countable coverings (Ei)i∈N of E by subsets of K
of diameters less than or equal to δ. Then, the packing dimension of E is defined as

DimE = sup{s > 0 : P s(E) = ∞} = inf{s > 0 : P s(E) = 0},

with the convention sup ∅ = 0 and inf ∅ = ∞. For more details the reader is referred
to [13,20].
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If µ is a positive and finite Borel measure supported on K, then its lower Hausdorff
and packing dimensions is defined as

dim(µ) = inf
{

dimF : F Borel, µ(F ) > 0
}

Dim (µ) = inf
{
DimF : F Borel, µ(F ) > 0

}
and its upper Hausdorff and packing dimensions are defined as

dim(µ) = inf
{

dimF : F Borel, µ(F ) = ∥µ∥
}

Dim (µ) = inf
{
DimF : F Borel, µ(F ) = ∥µ∥

}
.

We have (see [12])

dim(µ) =ess infµ lim inf
r→0+

log µ(B(t, r))
log(r) ,

Dim (µ) =ess infµ lim sup
r→0+

log µ(B(t, r))
log(r)

and

dim(µ) =ess supµ lim inf
r→0+

log µ(B(t, r))
log(r) ,

Dim (µ) =ess supµ lim sup
r→0+

log µ(B(t, r))
log(r) ,

where B(t, r) stands for the closed ball of radius r centered at t. If dim(µ) = dim(µ)
(resp. Dim (µ) = Dim (µ)), this common value is denoted dimµ (resp. Dim (µ)), and
if dimµ = Dimµ, one says that µ is exact dimensional.

Recall the mass distribution principle.

Theorem A.1. ([13, Theorem 4.2]). Let ν be a positive and finite Borel probability
measure on a compact metric space (X, d). Assume that M ⊆ X is a Borel set such
that ν(M) > 0 and

M ⊆
{
t ∈ X : lim inf

r→0+

log ν(B(t, r))
log r ≥ δ

}
.

Then the Hausdorff dimension of M is bounded from below by δ.

Appendix B. Cauchy Formula in Several Variables

Let us recall the Cauchy formula for holomorphic functions in several variables.

Definition B.1. Let d ≥ 1, a subset D of Cd is an open polydisc if there exist
open discs D1, . . . , Dd of C such that D = D1 × · · · × Dd. If we denote by ζj the
centre of Dj, then ζ = (ζ1, . . . , ζd) is the centre of D and if rj is the radius of Dj

then r = (r1, . . . , rd) is the multiradius of D. The set ∂D = ∂D1 × · · · × ∂Dd is the
distinguished boundary of D. We denote by D(ζ, r) the polydisc with center ζ and
radius r.
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Let D = D(ζ, r) be a polydisc of Cd and g ∈ C(∂D) a continuous function on ∂D.
We define the integral of g on ∂D as∫

∂D
g(ζ)dζ1 · · · dζd = (2iπ)dr1 · · · rd

∫
[0,1]d

g(ζ(θ))ei2πθ1 · · · ei2πθddθ1 · · · dθd,

where ζ(θ) = (ζ1(θ), . . . , ζd(θ)) and ζj(θ) = ζj + rje
i2πθj for j = 1, . . . , d.

Theorem B.1. Let D = D(a, r) be polydisc in Cd with a multiradius whose compo-
nents are positive, and f be a holomorphic function in a neiborhood of D. Then, for
all z ∈ D

f(z) = 1
(2iπ)d

∫
∂D

f(ζ)dζ1 · · · dζd
(ζ1 − z1) · · · (ζd − zd)

.

It follows that
sup

z∈D(a,r/2)
|f(z)| ≤ 2d

∫
[0,1]d

|f(ζ(θ))| dθ1 · · · dθd.
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