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APPROXIMATION BY MODIFIED SZASZ OPERATORS WITH A
NEW MODIFICATION OF BRENKE TYPE POLYNOMIALS

AJAY KUMAR!

ABSTRACT. In the present article we study the approximation properties of modi-
fied Szasz operators with a new modification of Brenke type polynomials. First, we
estimate the rate of convergence, for the newly defined operators, by means of modu-
lus of smoothness, Peetre’s K-functional and Lipschitz type functions. Furthermore,
we also prove a Voronovskaja type asymptotic theorem.

1. INTRODUCTION AND PRELIMINARIES

In 1950, Szész [18] extended the theory of well known Bernstein operators for the
finite interval [0, 1] to infinite interval Ry := [0, 00) and established the convergence
properties in the infinite interval R by defining the operators for f € C(R{) as

(1.1) Sn(fix) == e’mi <n]§)kf<k>, reRS neN
= k! n

A generalization of (1.1) was established by Jakimovski-Leviatan in [12] with the
help of the Appell polynomials as

e—nz o0 k
1.2 P,(f;z):= -1, R, N,
(12) (i) = S ];)pkmx)f(n) v eR e
where A(z) = >02,b,2", b, € R, is an analytic function on the disk |z| < R,

k1

R > 1, with A(1) # 0. The polynomials p,(z) = X%, bim’ k € N, are the Appell
polynomials which are generated by A(z)e** = 32, pr(z)2z* under the assumption
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112 A. KUMAR

that pg(z) > 0 for all x € [0,00). In particular, if A(z) =1, then pi(z) = %, and the
operators (1.2) reduce to the operators (1.1).

Ismail [11] defined another generalization of (1.1) and (1.2) with the help of Sheffer
type polynomials {ug(z)}x>1, which are generated by

A()ePO = S u(t)sh, 5| < R,
k=0

where A(s) = 302 aps®, ap # 0 and B(s) = 352, bes”, by # 0, are analytic functions
on the disc |s| < R, R > 1, and a;, and by, are the real coefficients. Under the following
assumptions:

(i) for t € Ry, up(t) >0, k € Ny := NU{0};
(ii) A(1) # 0 and BY(1) = 1,

Ismail introduced and studied some important approximation properties of the fol-
lowing operators

e—an(l)

(1.3) Qn(f,x)zmguk(nx)f<i>, reRy,neN.

In particular, when A(t) = ¢ and B(t) = 1, the operator (1.3) reduces to the Szdsz
operator (1.1) and for the case B(t) = t, the operator @, (f;z) yields the operator
P,(f;z) defined in (1.2).

Let vg(z) = ¥F_yar_.b.z”, k € NU {0}, be the Brenke type polynomials on the
disk |z| < R, (R > 1) which are generated by

(1.4) A(s)B(xs) = > vp(w)s",

where A(s) = Y02 aps®, ag # 0, and B(s) = 322, bs®, b, # 0, are analytic functions
on the disk |s| < R, R > 1.

Under the following assumptions:

(i) A(1) #0, %25 > 0,0 <r <k, ke NU{0};
(ii) B :R§ — (0,00);

(iii) (1.4) and the power series A(t) and B(t) converge for |t| < R, R > 1.

Varma et al. [20] presented a generalization of Szasz operators by means of the Brenke
type polynomials as

1

(1.5) R.(f;x) :zwivk(n@f(i), xr>0,neN.

In particular, if B(t) = €', the operator (1.5) reduces to the operator (1.2) and if
B(t) = e' and A(t) = 1 the operator (1.5) reproduces the Szdsz operator (1.1).
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Cheikh and Romdhane [6] defined the d-symmetric d-orthogonal polynomials of
Brenke type as

(1.6) JQ(tp+1)23(xt):::j§i ()",

where A(t) = 02, apt®, B(t) = 252, bit* with agby, # 0 for all k € N, are analytic
functions on the disk [t| < R, R > 1, and p is a positive integer. In particular case,
A(t) = exp(z) and B(t) = exp(x), the polynomials (1.6) reduce to the Gould-Hopper
polynomials [10] and also when p = 0, (1.6) reduces to (1.4).

Motivated by the work above, we present a new modification of Szasz operators
with the generalized form of Brenke type polynomials gx(z) as

w1 Dufa) :=W§qk<m>f(fj), v >0 eEN,

where gi(x) is defined in (1.6). The purpose of this article is to establish some
approximation properties for the operator (1.7), under the following certain conditions

(i) A1) #0, %z > 0,0 < k < m, m € Ny;
(i) B : Ry — (0, 00);
(iii) (1.6) and the power series for A(t) and B(t) converge for |[t| < R, R > 1.

In particular, the operator D,,(f;z) have the following reductions

(i) if p = 0, the operator (1.7) reduces to the operator (1.5);
(i) if p =0, and B(t) = €', the operator (1.7) reduces to the operator (1.2);
(iii) if p = 0, A(t) = €' and B(t) = 1, the operator (1.7) reproduces the Szész
operator (1.1).

For some other recent papers on the topic dealing with the generalization of Szasz
type operators using different classes of polynomials, see [1-3,5,7,8,13-15,17,19,21]
and the references cited therein.

The rest of the paper is organised as follows. In Section 2, we present some auxiliary
results. In Section 3, we estimate the rate of convergence with the help of classical
and second-order modulus of smoothness and Peetre’s K-functional and also give the
order of approximation for the Lipschitz type space. Lastly, we discuss a quantitative
Voronovskaja-type theorem.

2. AUXILIARY RESULTS

In this section, we present some important auxiliary results which will be used in
this later work.

Lemma 2.1. From the generating function (1.6) of the Brenke type polynomials, we
have the following equalities:

kfé qr(nz) =A(1)B(nz),
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Z kqe(nz) =(p + 1)AY (1)B(nz) + neBY (nz)A(1),

Z E*q.(nx) =(p + 1)2(A(2)(1) + A(l)(l))B(m:) +2n(p+ 1)1’./‘.(1)(1)'3(1)(71:6)

+n222A(1)BP (nx) + nzA(1)BY (n),
Z Eqe(nz) =(p+ 1)2(AP Q) + 3AP(1))B(nz) + (p* + 1)(p + DAY (1)B(nz)

+ 3n(p + 1)22AP(1)BY (nz) + 3n(p + 1)(p + 2)2AY (1)BY (nz)
+3(p+ D222 AV (1) B (nz) + 2> A(1) B (nx)
+ 3n%22A(1)B? (nz) + ne AW (1)B(nz),

i Egp(nx) =(p + DY AD (1) + 643 (1) + 7AD (1)) B(nz)

k=0
+ (p+ D) (p* + 3p* = 9p 4+ DAY (1) B(nx)
+ dnz(p + 1)2AP (1) BY (nx)
+9nz(p+2)(p + 1)?AP () BY (nz) + 6n222(p + 1)2AP (1) B@ (nz)
+3(p+7)(p + Nn?2? AN (1) B (nz) + 4(p + 1)n’a* AN (1)B) (na)
+ 02 A1) BW (nx) + 60323 A(1)BS) (na)
+ 7n22? A(1)BP (nz) + n:z:A(l)B )(nx)
+ (p+ 1) (p* +20p + 1AV (1) BY (na),
where A" (z) = % and B (z) = dT‘B ) for allr € N.
Proof. Differentiating (1.6) with respect to ¢, we have

Z kae(2)tF = =(p + DPAD P B(xt) + 2 AT BW (2t),

Z K2qu(2)t* 2 =(p 4+ D2* AP (P B(zt) + p(p + 1)tP LA (17T B(xt)

+ 22 AP TYBO (wt) + 2 AT BW (at)
+ (p+ DtPAD Pt (22BW (2t) + B(at)),

Zm JE5 (o + 1PPAD (17 B(at) + (p -+ DIPAD () (3B (at)

+ B(xt)) + 3p(p + 12t LAD (1) B (1)
+ (p+ DtP LAWY (3pB () + 32(p + 2)BW (2t))
+ 23 APTHBO) (wt) 4 322APTH)BP (2t) + 2 A THBW (21)
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+ (p + 1% A@ (171 (32BW (2t) + 3B(at))
+p(p? = D 2AD @) B(at),
Z Kg(a)th = =423 (p + DPAD ) BO) (2t) + 622 (p + 1)H2P AP (tp B (1)
+ 622 (p + 1) ptPLAD (YB3 (1)
+4z(p + 1)*P AP (1) B (1)
+ 6z(p + 1)?pt*LA@ (1B (11)
+ 6zp(p + 12t LA® (1P B (1t)
+ 3zp(p* — Dt 2AN P YBW (xt) + (p + DHMAD (#4)B(xt)
+ 6p(p + 133 1A (1) B (at)
+3p(p +1)°(2p — ) 2AP (#7) B (at)
+ap(p? = DPPAW () B (at)
+p(p? = D (p+ D 2AD (4 B(at)
+ p(p* = 1)(d — 2)t4 AV Y B(2t) + 2* AT BW (2t)
+ 6{3952(,0 + DtPAD (B (22)
+ 3z(p 4+ DAHP AP (P H)BWD (21)
+ 3zp(p 4+ Dt AW Y BW (2t) + (p + 1)3% A (1P B (xt)
+3p(p + 1! BE ) B(at) + p(p® — 1) 2AD (¢ B(at)
+ 23 AT BO) (2t) 43 lQm(p + DtrAD (Y BWD (22)
+(p+ D)2PBE () B(wt) + p(p + Dr AW () B(at)
+ 22 AT BP (wt) + (p + VP AD (7T B(at)

- xA(tp“)B(l)(:ct)]
—2 [(p + DtPAWD (Y B(wt) + J:A(t”H)B(l)(xt)} }
+ 6{(,0 + DtPAD P Y B (at) + xA(tﬂ“)B“)(a:t)}

— 11{2$(p + DAV P TYBD (2t) + (p 4 1)4P B (17T B(xt)

+ p(p+ Dtr AV Y B(2t) + 22 AP BP (1)
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+wp+UﬁAWQHUB@w+xA@”UBm@w}

The desired lemma is obtained by substituting ¢ = 1 and x = nz, in the above
computations. 0]

Lemma 2.2. For x € R{, the r™ order moments D,(t";x), r = 0,1,2,3,4, of the
operators D,, are defined as:

Du(l;2) =1,
D, (t;x) = xby + pay,

Dot 2) = 22by + by (1 42 2
(t%x) = 27by + - 1( + npal) +p (a2+a1)7
1
D, (t% 1) = 3paz?a by + 3xp*agh, + 3xp (p + n)albl + plas + 3p3as
2 2 322
(P g et b b
x3 x?
D, (t*; 2) = 2*by + —bs (6 + 4npa1) + —b2 (7 + 6np*ag + 3np(np + 6)&1)
n n
1
+ %bl (1 + 4n’*pias + In?p*(np + 1)a2) + 73(”2103 — 18np? — 8p>a1b1
n n

12, 12
+ﬁm+®%wﬁﬁ@+(4—2ﬁ+wﬁh
n n

where p = ﬂnl, a, = Azgl()l) and b, = 39(;27(5;5); r € N. These notations will be used

throughout the paper.

Proof. Using Lemma 2.1 and (1.7), the proof of this lemma can be easily obtained.
Hence the details are omitted. 0

As a consequence of Lemma 2.2, we have the following result.

Lemma 2.3. For x € Ry, the central moments D, ((t — z)™;x), m = 1,2,4, are
defined by

D, (t —x;x) =x(by — 1) + pay,
D, ((t — x)% ) 2172(62 —2by + 1) + 2xpay (bl - 1) + %bl + p*(ag + ay),

12 6
Da((t = )'52) = (1= 4by + 6b — 4by + ba) — 2*(— dpor = — by + dpasbs + by
n n
6 4
+ 12paby + —bs — 12pa162) + 22 (6p2a1 - a1+ 6p2as
n n
5 1 9 6 7
— 12p (Igbl — 12p<p + n)albl + 6p agbg + 3p<p + n)albg + nng)

2 2
— a:<4p3a3 — 12piay — 4<p3 — Zp?— 2p) a1 + 4pPagh,
n n



APPROXIMATION BY MODIFIED SZASZ OPERATORS 117

. 2 1 316 6
+ 9(]33 + p>a2b1 -+ 3b1> + (p + 72]92 - 3p)a1b1 +p4a4
n n n n n

P’ p
+ 6plas + Tp'as + (p4 — 12 + 123)a1.
n n

For the remainder of the work we denote £°(z) = D, ((t — x)?; x) and assume that

d"B(s)

: ds™
(2.1) lim B(s) =1, forl1<r<kkeNlN.

Also, let Cg(R{) be the space of all continuous functions on the interval R{ with
|f(t)] < ae’® for all t > 0 and positive finite numbers o and 3.

Theorem 2.1. Let f € Cg(Ry). If p €N, then
Tim Da(f:2) = f(2),
converges uniformly in each compact subset of Ry .

Proof. With the help of Lemma 2.2 and condition (2.1), we have
Jim Dp(t";x)=2", forr=0,1,2.
The above convergence is satisfied uniformly in every compact subset of Ry. Hence,

by applying Korokin’s type theorem (vi) of Theorem 4.1.4 in [4], we get the desired
result. OJ

Next, we present some useful definitions which are needed in the sequel.

Definition 2.1. Let § > 0 and f € C*(R{). Then the usual modulus of continuity
w(f;9) is defined as

w(f;0) == sup |f(z) = f(y)], forallz,yel0,00),

lz—y|<d

where C*(R{) be a space of uniformly continuous functions defined on [0, 00). It is
also known that, for any 6 > 0,

F@) — F)l < w(f;5><’“’gy’ " 1), for all .y € By,

Definition 2.2. Let f € Cp(R{). Then the second order modulus of smoothness is
defined by

wo(f50) = sup [[f(-+2t) = 2f(- + 1) + f()llc,

0<t<

where C5(Ry) is a class of bounded and uniformly continuous real-valued functions
with the norm || f]|c, = SUDcpt |f(x)].
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Definition 2.3 ([9] ). Let f € Cp(Ry). The Peetre’s K-functional is defined by
(22)  K(f;0) =t {If — gllc, +0llglez | forall g € CHRS),

where C%(Ry) := {g € Ca(RY) : ¢ € AC,.(Ry),g" € Cp(Ry)} endowed with the
norm ||glcz = llglloy + l9'lles + 19" llcp and g' € ACi(Rg) means that g’ is locally
absolutely continuous function. It is also known that from [9], there exists an absolute
constant C' > 0, such that

(2.3) K(f;6) < Cua(f; V).
It is clear that the following inequality
(2.4) K (f,0) < M {wa(f;V5) + min(L,6)[|fllc } »

is valid, for all 6 > 0. The constant M > 0 is independent of f and 9.

3. THE ORDER OF APPROXIMATION

In this section, we establish the rate of convergence for the operators D,, in terms
of Peetre’s K-functional, classical and second-order modulus of continuity.

Theorem 3.1. Let f € Cg(R{) and p € N. Then the operators D,, satisfy the

following inequality:
Du(f50) = f(a)] < 26 (£ /Eh(a) )

where £ .= & (x) = D, ((t—x)* 1) = 1:2(62—261—1-1)4-2:61)@1 (b1—1)+%b1+p2(a2+a1),

see Lemma 2.3.

Proof. In view of the fact that D (1' x) =1 and (1.7), we have

1Du(fi0) = 100 < gy 2o o[£ (1) = 0
< A0 2 ) (1]‘“—x #1)u(fd
3.1) s{l + ST )| o]0

In view of Lemma 2.3 and applying Cauchy—Schwarz inequality, we get

5 e[t o] < 3wt k}
(S (Satmalt )"

1/2

=\/A(1)B(nz) (A(l)B(nm)'Dn((t — )% x))
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—A(L)B(nz) (Da((t — 2)%2))"
(3.2) =A(1)B(nz)y/&0(x).
Combining (3.1) and (3.2), we have

&n(x)
[Dulfiz) = f@)l < {1+ T—5—pw(f: ).
Choosing § = /&h(z), we obtain the desired result. O

Remark 3.1. For p = 0, Theorem 3.1 represents the Theorem 2 for the operators given

by (1.5) (see [20]).

Theorem 3.2. Let f € C4(R{) and p € N. Then we have
Dn(f52) = (@) < PN llez, @)

where 1) := PP (x) = [% (b2 —2b; + 1>x2 + {n<b1 — 1) (pa1 + 1) + bl}% + pay + p?*(ay +

al)] Hf“C%(RS“)'

Proof. Let x € RJ. Applying Taylor’s expansion to the function f € C%(R{) and
using the linearity of D,,, we have

Du(f52) = £(2) = F@)Dalt = 232) + 2 FOEDal(t — 0)%2), €€ (5,0)

Using Lemma 2.3, we have
33)  IDu(fi) — f@)] <{xlb — 1)+ pa 1 o)

+ ;{xz (bg —2b; + 1) + 2zpay (bl - 1)

+ b1+ (a2 + a0) 1Pl e

<[5 (02— 201+ 1)+ (b — 1) (por +1) + 0.}

+pay + 5202 + 00)| I oy eg
This completes the proof of the theorem. OJ
Theorem 3.3. Let f € Cg(Ry). Then the following inequality satisfy:

Do) = ()] < 2M {wn(f;V0) + min(1,0) | fll s }
1

where 0 := 0f(x) = Y5 (x) and M is a positive constant which is independent of the

function f and 6. Also, YP(x) is defined in Theorem 3.2.
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Proof. Let h € C3(Ry). In view of the Theorem 3.2, we have
D (f32) = f(@)] =[Dnlf = h;2)| + [Dalh; 2) = h(2)| + | f(z) = h(z)]
<2|If = hlles + ¢lPll oz @)
<2([|If = hllcs + 6l1hllce )] -
Left-hand side of the above inequality is independent of h € C%(R{), so
Dn(f ) = f(2)] < 2K(f;9),

where K (f;0) is defined in (2.2). Taking into account the relation (2.4) in the above
inequality, we have

Do(f32) — f()] < 2M {ws(f;V8) +min(L, 6)|| | oy et } -
This is the required result. O
Theorem 3.4. Let x € R and f € Cz(Ry). Then we have the following relation

Da(fs0) = F(0)] < dwn(f5NE) + w(f572),

where

(3.4) A= M () = ; {{Z(x) + (x(bl — 1)+ pa; — a:)2}
and

(3.5) =) = |z(br — 1) + par — x| = [Dy((t — 2);2) — 2.

Proof. Let us consider a new auxiliary operators D,,(f;z) on Cp(R7) defined by
(3.6) D(f;2) = Du(fs2) = f((br — 1) + par) + f(x).

From the above auxiliary operators, it is observe that D, (1;x) = 1 and D, (t;x) = z.
Let h € C4(RY), CA4(RY) = {h € C(RY) : ', h?) € Cp(R{)}, then by Taylor series

theorem, we have
h(t) = h(z) + (t — o)W ( +/ ) (v

Using Lemma 2.3 and (3.6) and applying the operators D,, on both sides of the above
equation, we have

B, (h: ) — h(z) = D, ( / ‘(= )R (W) x)

It follows from (3.6) that
~ t
D (h; ) — h(x) :®n< / (t — )hD () dv: x)

x(bl—l)—f— a1
+/ ' (x(bl — 1)+ pay — V)h(Q)(V)dV



APPROXIMATION BY MODIFIED SZASZ OPERATORS 121

1A

5 R
< 5 ﬂn((t_x) ;CL’)+

(x(bl — 1)+ pa; — x>2

15> ¢ 2
:T{fn(x) + (x(bl — 1)+ pa; — x) },
considering (3.4), we obtain
(3.7) [Dn(h; z) — h(2)] < 4N |®]),

where N\ is given in (3.4).
In view of Lemma 2.3 and (3.6), we have

(3.8) Dl f52)| < IDalfs2)| +21f <3|l forall f € Cp(Ry).
Combining (3.6), (3.7) and (3.8), we obtain
[Du(f52) = F@) KIDalf = hiz) = (f = B)(@)] + [ Dn(hi ) = ()]
+|f(2(br = 1) + par) = f(x)]
)7

<A(1f = Al + MIAE) + (S
taking the infimum on the first term of the above inequality for h € C%(RJ) and
using the inequalities (3.5) and (2.2), we have
Dn(fi2) = f(2)] < 4K (f3 A7) +w(fih),

where 7# is given in (3.5) and in view of the relation (2.3), we get our desired result. [

x(by — 2) + pay

Remark 3.2. Tt is note that from Theorem 3.1- Theorem 3.4, the operators D,,(f;z) —
f(z), when X2 ~2 4% and £ tend to zero as n — oo with the assumption (2.1).

Now, we estimate the following local approximation result for the function belonging
to Lipschitz-type space.

For ;4 > 0, v > 0 to be fixed, the class of two parameteric Lipschitz type functions
[16] is defined as

LigY (a) = {f € CalRY) : (1) — flw) < =2l e <o,oo>},

(t + (x? +vx)>2

where M is positive constant and 0 < o < 1. In particular, at ( = 0 and v = 1, the
space Lipy; (a) reduced to the space L}, (a) defined in [18].

Theorem 3.5. Let f € L5/ (a) and p € N. Then, for all > 0, we have

Dalf 1) — f(2)] < M(“))

(2 + v

where £°(x) is defined in Lemma 2.3.
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Proof. Let z € (0,00) and f € L5/ (o). We have
Dn(fsx) = f(@)] < Du(lf () = f(2)],2)

t _ (0%
<up, (=,
((z?2+vxr+1t)2
M
(3.9) <Dy ([t — 2, 7).
(Ca? + va)?

First, we consider the case a = 1. Applying Cauchy-Schwarz inequality in (3.9) at
a = 1, we obtain

M : 2@\
Thus, the result holds for o = 1.

Now, we prove the result is true for 0 < o < 1. Then for z € (0 oo) fe LCV( )
and applying Holder’s inequality in (3.9) by taking p = 2 and ¢ =

M o
®n 9 - < t 5 .
Dulf2) = @] < g Dallt — o)
Finally, applying the Cauchy-Schwartz inequality, we obtain

Dalfi) = F@) € g Dt — 2)50)}F = M<5?’5<ff)>

(Cx? +vx)>2 (x? + vz
This completes the proof of theorem. O

4. VORONOVSKAJA-TYPE RESULT

The following assumptions are required to discuss a quantitative Voronovskaja-type
result for the operators (1.7).
Assumptions:
(i) lim, oo n(by — 1) = a(x);
(ii) lim, oo n(by — 2by + 1) = B(x);
(iii) lim, oo n(bg — 2bg + b1) = A(x);
(iv) limy, 0o n(b3 — 3by + 3by — 1) = 6(x);
(v) limy, o0 n?(by — 4b3 + 6by — 4b; + 1) = y(x);
where a(z), B(z), M(z), §(x) and y(z) are continuous and bounded functions on R .
Taking into account (2.1), Lemma 2.3 and the above assumptions, we have the
following.

Lemma 4.1. The operators (1.7) verify:
(1) limy oo D, ((t — 2); 2) = za(2) +pa1,
(i) lim, oo nD,((t — )% 2) = 226(x) +
(iii) limy, oo n2D, ((t — 2)%; 2) = 2ty (x) — $3{4npa15($) +6A(x)} — (3n*p* + 10np —
12)&1 + 7.
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Theorem 4.1. Let f € C3(R{). Then we have

lim n{D,(f;2) - f(x)} = {wa(z) + par } f'(x) + {+*B(x) + z}

n—oo

()
5

Proof. Let x € R{ be an arbitrary but fixed number. Applying the Taylor series
theorem to the function f € C%(R7), we have

(1) F0) ~ F@) = (6= ) (@) + 5t 02 FD )+ wlt )¢~ )

where k(t,z) € Cp(R{) and satisfies lim;_,, x(¢, z) = 0. Now, applying the operators
D,, both sides on the equation (4.1), we get

T n{D(f:2) — f()} = i nf (@)Dt — w:2) + T g Do(t — )% 0) fO(x)
(4.2) + lim nDy, (k(t, z)(t - z)% 7).

In the last term of (4.2), we apply the Cauchy-Schwartz inequality

(4.3) nD, (k(t,)(t — 2)% ) < \/n2®n((t — )4 2)D, (K2 (t, z); x).

Since k(t,z) — 0 as t — x, it follows from Theorem 2.1 that

(4.4) lim D, (k*(t,7); 1) = K*(x,2) =0,

uniformly for z € [0,0],b > 0.
Combining the equations from (4.2)—(4.4) and taking into account the Lemma 4.1,
we conclude that

. / 2 f(Z)(x)
lim n{D(f:2) = f(2)} = {wala) + par £/ (2) + {2*B(2) + o} =5
This completes the proof of the theorem. 0
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