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ON COMMUTATIVITY DEGREE OF CROSSED MODULES

SOMAYEH AMINI1, SHAHRAM HEIDARIAN1∗, AND FARHAD KHAKSAR HAGHANI1

Abstract. In this paper, we define and study the notion of commutativity degree of
finite crossed modules. We shall state some results concerning commutativity degree
of crossed modules and obtain some upper and lower bounds for commutativity
degree of finite crossed modules. Finally we show that, if two crossed modules are
isoclinic, then they have the same commutativity degree.

1. Introduction

In 1968, Erdös and Turán [3], introduced the concept of commutativity degree
of groups, when they worked on symmetric groups. Let G be a finite group, the
commutativity degree of G, denoted by d(G) is defined as

d(G) = |{(x, y) ∈ G × G : xy = yx}|
|G|2

.

Note that d(G) > 0 and d(G) = 1 if and only if G is abelian. In 1973, Gustafson
[5] obtained an upper bound for d(G), when G is a non-abelian finite group. Few
years later, Rusin [14] computed the value of d(G), when G′ ⊆ Z(G) and G′ ∩ Z(G)
is trivial and classified all finite groups G for which d(G) is greater than 11

32 . In 1995,
all finite groups G, where d(G) ≥ 1

2 are classified, up to isoclinism, by Lescot [7].
Furthermore, Lescot [8] has also classified, up to isomorphism, all finite groups whose
commutativity degrees lie in the interval [1

2 , 1]. In 2006, Barry et al. [1] have shown
that if G is a finite group with odd order and d(G) ≥ 11

75 , then G is supersolvable.
In addition, it had been proved that if d(G) > 1

3 , then G is supersolvable. In 2007,
Erfanian et al. [4] studied relative commutativity degree d(H, G), the probability that
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elements of a given subgroup H of a finite group G commute with elements of G. In
2008, Pournaki and Sobhani [11] studied dg(G), the probability that the commutator
of an arbitrarily chosen pair of elements in a finite group G equals a given element g.
In 2018, Sepehrizadeh and Rismanchian [16] introduced and studied the concept of
characteristic degree of a subgroup in a finite group and determined the upper and
lower bounds for this probability.

A crossed module (T, G, δ) is a group homomorphism δ : T → G together with an
action of G on T satisfying certain conditions. This notion is an algebraic model for
homotopy 3-types was already introduced by Whitehead [17] in 1948. In [10], [13]
and [15] the concepts of isoclinism and n-isoclinism have been generalized for crossed
modules (see also [6]). In 2019, Yavari and Salemkar [18] presented a generalized
crossed module and investigated the category of generalized crossed modules. Also,
in [2] and [12] the notions of stem cover and universal central extension have been
extended for lie crossed modules.

In this paper, we generalize the concept of commutativity degree for the finite
crossed modules and show that two isoclinic crossed modules have the same commu-
tativity degree.

2. Definitions and Preliminaries on Crossed Modules

In this section, we state some basic definitions, notions and elementary results.
A crossed module (T, G, δ) is a pair of groups T and G together with an action of

G on T and a homomorphism δ : T → G called the boundary map, satisfying the
following axioms:

i) δ(gt) = gδ(t)g−1 for all g ∈ G, t ∈ T ;
ii) δ(t)s = tst−1 for all t, s ∈ T.

We will denote such a crossed module by T
δ→ G. A crossed module (T, G, δ) is

said to be finite, if the groups T and G are both finite. A crossed module (S, H, δ′) is
a subcrossed module of (T, G, δ), when

i) S is a subgroup of T and H is a subgroup of G;
ii) δ′ = δ|S, the restriction of δ to S;
iii) the action of H on S is induced by the action of G on T .
In this case, we write (S, H, δ′) ⩽ (T, G, δ). A subcrossed module (S, H, δ) of (T, G, δ)

is a normal subcrossed module, if
i) H is a normal subgroup of G;
ii) gs ∈ S for all g ∈ G, s ∈ S;
iii) htt−1 ∈ S for all h ∈ H, t ∈ T.
This is denoted by (S, H, δ) ⊴ (T, G, δ).
Let (S, H, δ) be a normal subcrossed module of (T, G, δ). Consider the triple

(T
S

, G
H

, δ̄), where δ̄ : T
S

→ G
H

is induced by δ. There is the action of G
H

on T
S

given by
gH(tS) = (gt)S. It is called the quotient crossed module of (T, G, δ) by (S, H, δ) and
denoted by (T,G,δ)

(S,H,δ) .
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Let (T, G, δ) be a crossed module. The center of (T, G, δ) is the crossed module
Z(T, G, δ) : T G → StG(T ) ∩ Z(G), where T G = {t ∈ T : gt = t for all g ∈ G}
and StG(T ) = {g ∈ G : gt = t for all t ∈ T}. A crossed module (T, G, δ) is
abelian, if (T, G, δ) = Z(T, G, δ). In addition, the commutator subcrossed module
[(T, G, δ), (T, G, δ)] of (T, G, δ) is [(T, G, δ), (T, G, δ)] : DG(T ) → [G, G], where DG(T )
is the subgroup generated by {gtt−1 : t ∈ T, g ∈ G} and [G, G] is the commutator
subgroup of G. A crossed module (T, G, δ) is faithful, if the action of G on T is
faithful, that is StG(T ) = 1.

If (S, H, δ′) and (R, K, δ′′) are two crossed modules, then consider the triple (S ×
R, H × K, δ′ × δ′′), where S × R and H × K are direct products of groups and
δ′×δ′′ : S×R → H×K is defined by (δ′×δ′′)(s, r) = (δ′(s), δ′′(r)) for all (s, r) ∈ S×R.
There is a componentwise action of H × K on S × R, induced by the actions of two
crossed modules. The crossed module (S × R, H × K, δ′ × δ′′) is called the direct
product of (S, H, δ′) and (R, K, δ′′) and denoted by (S, H, δ′) × (R, K, δ′′).

Let (T, G, δ) and (T ′, G′, δ′) be crossed modules. A crossed module morphism
⟨α, ϕ⟩ : (T, G, δ) → (T ′, G′, δ′) is a pair of homomorphism α : T → T ′, ϕ : G → G′

such that
i) δ′(α(t)) = ϕ(δ(t)) for all t ∈ T ;
ii) α(gt) = ϕ(g)α(t) for all t ∈ T , g ∈ G.
If ⟨α, ϕ⟩ : (S, H, δ′) → (T, G, δ) is a crossed module morphism such that α and ϕ

are both group isomorphisms, then ⟨α, ϕ⟩ is called an isomorphism.

Lemma 2.1 ([9]). The (T, G, δ) is abelian if and only if G is abelian and the action
of the crossed module is trivial.

Remark 2.1. Let (T, G, δ) be a crossed module. We denote (T,G,δ)
Z(T,G,δ) by T̄

δ̄→ Ḡ, where
T̄ = T

T G and Ḡ = G
StG(T )∩Z(G) , for shortness.

Lemma 2.2 ([10]). Let (T, G, δ) be a crossed module. Define the maps c1 : T̄ × Ḡ →
DG(T ), where (tT G, g(StG(T ) ∩ Z(G))) 7→ gtt−1 and c0 : Ḡ × Ḡ → [G, G], where
(g(StG(T ) ∩ Z(G)), g′(StG(T ) ∩ Z(G))) 7→ [g, g′] for all t ∈ T , g, g′ ∈ G. Then the
maps c1 and c0 are well-defined.

Definition 2.1 ([15]). The crossed modules (T1, G1, δ1) and (T2, G2, δ2) are isoclinic,
if there exist isomorphisms

(η1, η0) : (T̄1, Ḡ1, δ̄1) → (T̄2, Ḡ2, δ̄2)

and

(ϵ1, ϵ0) : (DG1(T1) → [G1, G1]) → (DG2(T2) → [G2, G2])

such that the diagrams
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T̄1 × Ḡ1
c1−−−→ DG1(T1)yη1×η0

yϵ1

T̄2 × Ḡ2
c′

1−−−→ DG1(T1)
and

Ḡ1 × Ḡ1
c0−−−→ [G1, G1]yη0×η0

yϵ0

Ḡ2 × Ḡ2
c′

0−−−→ [G2, G2]
are commutative, where (c1, c0) and (c′

1, c′
0) are commutator maps of crossed modules

(T1, G1, δ1) and (T2, G2, δ2), that introduced in Lemma 2.2. The pair ((η1, η0), (ϵ1, ϵ0))
will be called an isoclinism from (T1, G1, δ1) to (T2, G2, δ2) and this situation will be
denoted by ((η1, η0), (ϵ1, ϵ0)) : (T1, G1, δ1) ∼ (T2, G2, δ2).

3. Commutativity Degree of Crossed Modules

In the section, we generalize the notion of commutativity degree for crossed modules
and state the main results of this paper.

Definition 3.1. Let (T, G, δ) be a finite crossed module. The commutativity degree
d(T, G, δ) of (T, G, δ) is defined by

d(T, G, δ) = |{(x, y) ∈ G × G : xy = yx, x, y ∈ StG(T )}|
|G|2

.

Let (T, G, δ) be a finite crossed module, then we set cs(G) = {(x, y) ∈ G×G : xy =
yx and x, y ∈ StG(T )}. Now, the commutativity degree (T, G, δ) is d(T, G, δ) = |cs(G)|

|G×G| .

If d(T, G, δ) is abelian and the action of G on T is trivial, then |cs(G)| = |G × G|
and d(T, G, δ) = 1 and vice-versa. Therefore, (T, G, δ) is abelian if and only if
d(T, G, δ) = 1. In addition, if the action of G on T is faithful, then d(T, G, δ) = 1

|G|2 .

Proposition 3.1. Let (S, H, δ′) and (R, K, δ′′) be two crossed modules and (T, G, δ)
= (S, H, δ′) × (R, K, δ′′). Then d(T, G, δ) = d(S, H, δ′) × d(R, K, δ′′).

Proof. By the definition of commutativity degree, we have

d(T, G, δ) = 1
|G|2

|{((h1, k1), (h2, k2)) ∈ G2 : (h1, k1)(h2, k2) = (h2, k2)(h1, k1)

and (h1, k1), (h2, k2) ∈ StG(T )}|

= 1
|G|2

|{((h1, k1), (h2, k2)) ∈ G2 : (h1h2, k1k2) = (h2h1, k2k1)

and (h1, k1), (h2, k2) ∈ StG(T )}|

=
(

1
|H|2

|{(h1, h2) ∈ H2 : h1h2 = h2h1 and h1, h2 ∈ StH(S)}|
)
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×
(

1
|K|2

|{(k1, k2) ∈ K2 : k1k2 = k2k1 and k1, k2 ∈ StK(R)}|
)

=d(S, H, δ′) × d(R, K, δ′′). □

Theorem 3.1. Let (T, G, δ) be a crossed module. Then d(T, G, δ) ≤ K(G)
|G| , where

K(G) is the number of conjugacy classes of G.

Proof. Let r be the number of conjugacy classes of G and C1, C2, C3, . . . , Cr be the
conjugacy classes of G. For i ∈ {1, 2, 3, . . . , r}, let xi ∈ Ci. If y ∈ Ci, then y = xg

i for
some g ∈ G. Thus, CG(y) = CG(xg

i ) = CG(xi)g and |CG(y)| = |CG(xi)|. Now

|G|2d(T, G, δ) =|{(x, y) ∈ G × G : xy = yx and x, y ∈ StG(T )}|

=|cs(G)| ≤
∑
x∈G

|CG(x)| =
r∑

i=1

∑
x∈Ci

|CG(x)|

=
r∑

i=1
[G : CG(xi)]|CG(xi)| = |G|r = |G|K(G).

Therefore, d(T, G, δ) ≤ K(G)
|G| . □

Corollary 3.1. If (T, G, δ) is a crossed module and the action of G on T is trivial,
then d(T, G, δ) = K(G)

|G| .

Corollary 3.2. Let (T, G, δ) be a crossed module. If the action of G on T is trivial,
then 1

|G′| ≤ d(T, G, δ).

Proof. Since [G : G′] count irreducible characters of degree one, [G : G′] < K(G).
Then |G|

|G||G′| ≤ K(G)
|G| = d(T, G, δ) so 1

|G′| ≤ d(T, G, δ). □

Theorem 3.2. Let (T, G, δ) be a crossed module. Then d(T, G, δ) ≤ 1
4(1 + 3

|G′|).

Proof. Let l be the number of non-equivalent irreducible representation of degree
1, n2, . . . , nl. Consider the degree equation

|G| = [G : G′] +
K(G)∑

i=[G:G′]+1
(ni)2,

for each ni ≥ 2. Hence, |G| ≥ [G : G′] + 4(K(G) − [G : G′]). Solving for K(G) yield
K(G) ≤ 1

4(|G| + 3[G : G′]). Therefore, d(T, G, δ) ≤ K(G)
|G| ≤ 1

4(1 + 3
|G′|). □

Theorem 3.3. Let (T, G, δ) be a crossed module. If G is a non-abelian finite group,
then d(T, G, δ) ≤ 5

8 .

Proof. Consider the class equation |G| = |Z(G)| +∑K(G)
i=|Z(G)|+1 |[xi]|, where for each i,

|[xi]| ≥ 2. So |G| ≥ |Z(G)|+2(K(G)−|Z(G)|) ≥ |Z(G)∩StG(T )|+2(K(G)−|Z(G)|).
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Since G is not abelian, G
Z(G) is not cyclic. Then | G

Z(G) | ≥ 4, hence∣∣∣∣∣ G

Z(G) ∩ StG(T )

∣∣∣∣∣ ≥
∣∣∣∣∣ G

Z(G)

∣∣∣∣∣ ≥ 4

and |Z(G)∩StG(T )| ≤ |G|
4 . Therefore, K(G) ≤ 1

2

(
|G| + |G|

4

)
= 5|G|

8 . Then d(T, G, δ) ≤
K(G)

|G| ≤ 5
8 . □

Theorem 3.4. Let (T, G, δ) be a crossed module. If G be a nonablian p-group, then
d(T, G, δ) ≤ p2+p−1

p3 .

Proof. Let p be the prime number, |G| = pn and |Z(G)| = P m. If |G/Z(G)| = 1 or
|G/Z(G)| = p, then G/Z(G) is cyclic and G will be abelian. Thus, m ≤ n − 2 and we
have

|G|2d(T, G, δ) ≤|G|K(G)
=
∑
x∈G

|CG(x)|

=
∑

x∈Z(G)
|CG(x)| +

∑
x∈G\Z(G)

|CG(x)|

≤pm+n + pn−1(pn − pm)
=pm+n + pn−1(|G| − |Z(G)|)
≤p2n−3(p2 + p − 1).

Hence, d(T, G, δ) ≤ p2 + p − 1
p3 . □

The following corollary obtains from previous theorem.

Corollary 3.3. Let (T, G, δ) be a crossed module and the action of G on T is trivial.
If p is a prime number and G is non-abelian with |G| = p3, then d(T, G, δ) = p2+p−1

p3 .

Proof. Let |G| = p3. By Corollary 3.1 and Theorem 3.4,
p6d(T, G, δ) =|G|2d(T, G, δ)

=|G|K(G)
=
∑
x∈G

|CG(x)|

=
∑

x∈Z(G)
|CG(x)| +

∑
x∈G\Z(G)

|CG(x)|

=p4 + p2(|G| − |Z(G)|)
=p3(p2 + p − 1).

Hence, d(T, G, δ) = p2+p−1
p3 . □
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Proposition 3.2. Let (T, G, δ) be a crossed module and the action of G on T be
trivial. If | G

Z(G) | = pk, then d(T, G, δ) ≥ pk−1+pk−1
p2k−1 .

Proof. Let | G
Z(G) | = pk and x ∈ G such that x ̸∈ Z(G). Then, since x ∈ CG(x) and

x ̸∈ Z(G), we have CG(x) ⊊ G. Also Z(G) ⊊ CG(x). Thus |Z(G)| < |CG(x)| < |G|
and then p|Z(G)| ≤ |CG(x)| ≤ pk−1|Z(G)|, where |CG(x)| dividing |G|. So |[x]| =
[G : CG(x)] and pk−1 ≥ |[x]| ≥ p. From the class equation we have |G| = |Z(G)| +∑

x∈G |[x]| ≤ |Z(G)|+pk−1(K(G)−|Z(G)|) ≤ |Z(G)|+pk−1(K(G)−|Z(G)∩StG(T )|),
therefore

K(G) ≥ |G| + (pk−1)|Z(G) ∩ StG(T )| − |Z(G)|
pk−1 .

Now solving for d(T, G, δ) and Corollary 3.1 yield d(T, G, δ) ≥ pk+pk−1−1
p2k−1 . □

Example 3.1. Let Dpq =< a, b : ap = bq = e, bab−1 = ar > such that p is prime, q|p − 1
and r has order q mod p. This type of group is called a generalized dihedral group.
Conjugacy classes type are [e], [au] and [bw] so that no classes are 1, p−1

q
and q − 1,

respectively and Z(Dpq) = {e}. Consider the map i : Dpq → Dpq. If the action of Dpq

on Dpq is conjugacy, then StDpq(Dpq) = Z(Dpq) and d(Dpq, Dpq, i) = |Z(Dpq)|2
|Dpq |2 = 1

(pq)2 .

If the action of Dpq on Dpq is trivial, then

d(Dpq, Dpq, i) = K(Dpq)
|Dpq|

=
1 + p−1

q
+ q − 1

pq
= q2 + p − 1

pq2 .

If the action of Dpq on Dpq is faithful, then d(Dpq, Dpq, i) = 1
|Dpq |2 = 1

(pq)2 .

Lemma 3.1. Let (T1, G1, δ1) and (T2, G2, δ2) be two crossed modules and φ = ⟨α, β⟩ :
(T1, G1, δ1) → (T2, G2, δ2) be an isomorphism. Then φ induced isomorphisms

φ1 : G1

StG1(T1) ∩ Z(G1)
→ G2

StG2(T2) ∩ Z(G2)
,

where
φ1(g1(StG1(T1) ∩ Z(G1))) = β(g1)(StG2(T2) ∩ Z(G2)),

φ2 : T1
T

G1
1

→ T2
T

G2
2

, where φ2(t1T
G1
1 ) = α(t1)T G2

2 , φ3 : [G1, G1] → [G2, G2], where
φ3[g1, g1] = [g2, g2] or φ3(g1) = β(g1), φ4 : DG1(T1) → DG2(T2), where φ4(g1t1t

−1
1 ) =

β(g1)α(t1)α(t1
−1). In addition the following diagrams commute:

Ḡ1 × Ḡ1
φ1×φ1−−−−→ Ḡ2 × Ḡ2yc0

yc′
0

G′
1

φ3−−−→ G′
2

and
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T̄1 × Ḡ1
φ2×φ1−−−−→ T̄2 × Ḡ2yc1

yc′
1

DG1(T1)
φ4−−−→ DG1(T1).

Proof. Let (g1, g′
1) ∈ G1 × G1. Then c′

0(φ1 × φ1)(ḡ1, ḡ′
1) = c′

0(φ1(ḡ1), φ1(ḡ′
1)) =

c′
0(β(g1), β(g′

1)) = [β(g1), β(g′
1)] = β[g1, g′

1] = φ3[g1, g′
1] = φ3c0(ḡ1, ḡ′

1). Now, let
(t̄1, ḡ1) ∈ T̄1 × Ḡ1. Then

c′
1(φ2 × φ1)(t̄1, ḡ1) =c′

1(φ2(t̄1), φ1(ḡ1))
=c′

1(α(t1)T G2
2 , β(g1)(StG2(T2) ∩ Z(G2)))

=β(g1)α(t1)α(t1)−1 = φ4(g1t1t
−1
1 )

=φ4c1(t̄1, ḡ1). □

Theorem 3.5. Let (T1, G1, δ1),(T2, G2, δ2) be two isoclinic finite crossed modules.
Then d(T1, G1, δ1) = d(T2, G2, δ2).

Proof. Consider the following relation:
|G1|2d(T1, G1, δ1)

|StG1(T1) ∩ Z(G1)|2
= |G1|2

|StG1(T1) ∩ Z(G1)|2

× |{(x, y) ∈ G1 × G1 : xy = yx and x, y ∈ StG1(T1)}|
|G1|2

=
∣∣∣∣∣ 1
StG1(T1) ∩ Z(G1)

∣∣∣∣∣
2

× |{(x, y) ∈ G1 × G1 : xy = yx and x, y ∈ StG1(T1)}|

=
∣∣∣∣∣ 1
StG1(T1) ∩ Z(G1)

∣∣∣∣∣
2

× |{(x, y) ∈ G1 × G1 : [x, y] = 1 and x, y ∈ StG1(T1)}|

=
∣∣∣∣∣ 1
StG1(T1) ∩ Z(G1)

∣∣∣∣∣
2

|{(x, y) ∈ G1 × G1 : x, y ∈ StG1(T1)

and c0(x(StG1(T1) ∩ Z(G1)), y(StG1(T1) ∩ Z(G1))) = 1}|

=

∣∣∣∣∣∣
(α, β) ∈

(
G1

StG1(T1) ∩ Z(G1)

)2

: c0(α, β) = 1


∣∣∣∣∣∣

=

∣∣∣∣∣∣
(α, β) ∈

(
G1

StG1(T1) ∩ Z(G1)

)2

: φ3c0(α, β) = 1


∣∣∣∣∣∣

=

∣∣∣∣∣∣
(α, β) ∈

(
G1

StG1(T1) ∩ Z(G1)

)2

: c′
0(φ1, φ1)(α, β) = 1


∣∣∣∣∣∣
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=

∣∣∣∣∣∣
(α, β) ∈

(
G1

StG1(T1) ∩ Z(G1)

)2

: c′
0(φ1(α), φ1(β)) = 1


∣∣∣∣∣∣

=

∣∣∣∣∣∣
(γ, σ) ∈

(
G2

StG2(T2) ∩ Z(G2)

)2

: c′
0(γ, σ) = 1


∣∣∣∣∣∣ .

By the above reasoning applied to (T2, G2, δ2) in place of (T1, G1, δ1), this expres-

sion equals to
∣∣∣∣ G2

StG2 (T2)∩Z(G2)

∣∣∣∣2 d(T2, G2, δ2). That is
∣∣∣∣ G1

StG1 (T1)∩Z(G1)

∣∣∣∣2 d(T1, G1, δ1) =∣∣∣∣ G2
StG2 (T2)∩Z(G2)

∣∣∣∣2 d(T2, G2, δ2). But G1
StG1 (T1)∩Z(G1) and G2

StG2 (T2)∩Z(G2) are isomorphic,

hence
∣∣∣∣ G1

StG1 (T1)∩Z(G1)

∣∣∣∣ =
∣∣∣∣ G2

StG2 (T2)∩Z(G2)

∣∣∣∣. Now the equality d(T1, G1, δ1) = d(T2, G2, δ2)
follows. □

Corollary 3.4. Let (T2, G2, δ2) be a subcrossed module of crossed module (T1, G1, δ1)
and (T1, G1, δ1) = (T2, G2, δ2)Z(T1, G1, δ1), where T1 = G2T

G1
1 and G1 = G2(StG1(T1)

∩ Z(G1)). Then d(T1, G1, δ1) = d(T2, G2, δ2).

Proof. By Proposition 4 of [10], (T1, G1, δ1) and (T2, G2, δ2) are isoclinic, therefore
d(T1, G1, δ1) = d(T2, G2, δ2). □

4. conclusion

In this paper, we extended the concept of commutativity degree in group theory
to finite crossed modules and derived some properties of this new concept. All our
previous results show that the notion of commutativity degree, which was introduced
in this paper, can be used to classify finite crossed modules. It is clear that this study
which started here, can be successfully extended to calculating commutativity degree
of some specific crossed modules. This will surely be the subject of further research.

Acknowledgements. The authors thank to the referee for his/her careful reading
and their excellent suggestions.
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