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LOCAL K-CONVOLUTED C-GROUPS AND ABSTRACT CAUCHY
PROBLEMS

CHUNG-CHENG KUO1

Abstract. We first present a new form of a local K-convoluted C-group on a
Banach space X, and then deduce some basic properties of a nondegenerate local
K-convoluted C-group on X and some generation theorems of local K-convoluted
C-groups, which can be applied to obtain some equivalence relations between the
generation of a nondegenerate local K-convoluted C-group on X with subgenerator
A and the unique existence of solutions of the abstract Cauchy problem ACP(A, f, x).

1. Introduction

Let X be a Banach space over the field F = R or C with norm ∥ · ∥, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < T0 ≤ ∞, we consider the following abstract Cauchy problem:

ACP(A, f, x)
{

u′(t) = Au(t) + f(t), for t ∈ (−T0, T0),
u(0) = x,

where x ∈ X, A is a closed linear operator in X, and f ∈ L1
loc((−T0, T0), X) (the

family of all locally integrable functions from (−T0, T0) into X). A function u is
called a solution of ACP(A, f, x) if u ∈ C((−T0, T0), X) satisfies ACP(A, f, x) (that
is, u(0) = x and for a.e. t ∈ (−T0, T0), u(t) is differentiable and u(t) ∈ D(A), and
u′(t)=Au(t)+f(t) for a.e. t ∈ (−T0, T0)). For each C ∈ L(X) and K ∈ L1

loc([0, T0),F),
a family S(·)(= {S(t) | |t| < T0}) in L(X) is called a local K-convoluted C-group on
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X if S(·) is strongly continuous, S(·)C = CS(·), and satisfies
S(t)S(s)x

=
(

sgn t sgn s sgn (t + s)
∫ t+s

0
− sgn s

∫ t

0
− sgn t

∫ s

0

)
K(|t + s − r|)S(r)Cxdr,

for all x ∈ X and |t|, |s|, |t + s| < T0. In particular, S(·) is called a local (0-times
integrated) C-group on X if K = j−1 (the Dirac measure at 0) or equivalently, S(·)
is strongly continuous, S(·)C = CS(·), and satisfies

S(t)S(s)x = S(t + s)Cx, for all x ∈ X and |t|, |s|, |t + s| < T0,

(see [2]). Moreover, we say that S(·) is nondegenerate, if x = 0 whenever S(t)x = 0 for
all |t| < T0. The nondegeneracy of a local K-convoluted C-group S(·) on X implies
that

S(0) = C if K = j−1 and S(0) = 0 (the zero operator on X) otherwise,
and the (integral) generator A : D(A) ⊂ X → X of S(·) is a closed linear operator in
X defined by

D(A) = {x ∈ X | S(·)x − K0(| · |)Cx = S̃(·)yx on (−T0, T0) for some yx ∈ X}

and Ax = yx for all x ∈ D(A). Here S̃(t)z =
∫ t

0 S(s)zds. In general, a local K-
convoluted C-group on X is called a K-convoluted C-group on X if T0 = ∞; a (local)
K-convoluted C-group on X is called a (local) K-convoluted group on X if C = I
(the identity operator on X) or a (local) α-times integrated C-group on X if K is
equal to the function jα−1 for some α ≥ 0, defined by jα(t) = tα

Γ(α+1) (see [4, 7, 21]).
Here Γ(·) denotes the Gamma function, a (local) α-times integrated C-group on X
is called a (local) α-times integrated group on X if C = I; and a (local) C-group
on X is called a c0-group on X if C = I (see [1, 5]). Some basic properites of a
nondegenerate (local) α-times integrated C-semigroup on X have been established
by many authors (in [2, 3, 26–28] for α = 0, and in [6, 10, 17–20, 22, 23, 25, 29, 30]
for α > 0), which can be extended to the case of local K-convoluted C-semigroup
just as results in [7–10,13–16]. Some equivalence relations between the generation of
a nondegenerate (local) K-convoluted C-semigroup on X with subgenerator A and
the unique existence of solutions of the abstract Cauchy problem ACP(A, f, x) are
also discussed in [2, 26, 27] for the case K = jα−1 with α = 0 and in [11–13, 30, 31]
with α > 0, and in [8, 13, 16] for the general case. The purpose of this paper is
to investigate the following basic properties of a nondegenerate local K-convoluted
C-group S(·)(= {S(t) | |t| < T0}) on X just as results in [13] concerning local K-
convoluted C-semigroups on X when C is injective and some additional conditions
are taken into consideration

C−1AC = A,(1.1)
S̃(t)x ∈ D(A) and AS̃(t)x = S(t)x − K0(|t|)Cx, for all x ∈ X and |t| < T0,(1.2)
S(t)x ∈ D(A) and AS(t)x = S(t)Ax, for all x ∈ D(A) and |t| < T0;(1.3)
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and

(1.4) S(t)S(s) = S(s)S(t), on X, for all |t|, |s| < T0,

(see Theorems 2.5, 2.6 and 2.7 below), which have been established partially in [8] by
another method, and then deduce some equivalence relations between the generation
of a nondegenerate local K-convoluted C-group on X with subgenerator A and the
unique existence of solutions of ACP(A, f, x), which are similar to some results in
[13] concerning equivalence relations between the generation of a nondegenerate local
K-convoluted C-semigroup on X with subgenerator A and the unique existence of
solutions of ACP(A, f, x). To do these, we will first prove an important lemma which
shows that a strongly continuous family S(·) in L(X) is a local K-convoluted C-
group on X is equivalent to sgn(·)S̃(·) is a local K0-convoluted C-group on X (see
Lemma 2.1 below), and then show that a strongly continuous family S(·) in L(X)
which commutes with C on X is a local K-convoluted C-group on X is equivalent to
S̃(t)[S(s)−K0(|s|)C]=[S(t)−K0(|t|)C]S̃(s) for all |t|, |s|, |t+s| < T0 (see Theorem 2.1
below). In order to show that sgn(·)b∗S(·) is a local a∗K-convoluted C-group on X if
S(·) is a local K-convoluted C-group on X and b(·) = a(|·|) for some a ∈ L1

loc([0, T0),F).
In particular, sgn(·)Jβ ∗ S(·) is a local Kβ-convoluted C-group on X if S(·) is a local
K-convoluted C-group on X and β > −1, which can be applied to show that its only
if part is also true when β is a nonnegative integer (see Proposition 2.1 below). Here
Kβ(t) = K ∗ jβ(t) for β > −1, Jβ(·) = jβ(| · |), f ∗ S(t)x =

∫ t
0 f(t − s)S(s)xds for all

x ∈ X and f ∈ L1
loc((−T0, T0),F). We also show that a strongly continuous family

S(·) in L(X) which commutes with C on X is a local K-convoluted C-group on X
when it has a subgenerator (see Theorem 2.4 below). Moreover, S(·) is nondegenerate
if C is injective and the generator of a nondegenerate local K-convoluted C-group
S(·) on X is the unique subgenerator of S(·) which contains all its subgenerators, and
each subgenerator of S(·) is closable and its closure is also a subgenerator of S(·) when
S(·) has a subgenerator (see Theorems 2.5, 2.6 and 2.7 below). This can be applied
to show that CA ⊂ AC and S(·) is a nondegenerate local K-convoluted C-group on
X with generator C−1AC when C is injective, K0 a kernel on [0, T0) (that is, f = 0
on [0, T0) whenever f ∈ C([0, T0),F) with

∫ t
0 K0(t − s)f(s)ds = 0 for all 0 ≤ t < T0)

and S(·) a strongly continuous family in L(X) with closed subgenerator A. In this
case, C−1A0C is the generator of S(·) for each subgenerator A0 of S(·) (see Theorem
2.8 below). Some illustrative examples concerning these theorems are also presented
in the final part of this paper.

2. Basic Properties of Local K-Convoluted C-Groups

In the following we will note some facts concerning local K-convoluted C-groups
which can be expansively appled in this paper.

Remark 2.1. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X).
Then the following are equivalent.
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(i) S(·) is a local K-convoluted C-group on X.
(ii) (see [8]) S+(·) and S−(·) are local K-convoluted C-semigroups on X, S(t)S(s)x

= S(s)S(t)x on X for all −T0 < t ≤ 0 ≤ s < T0,

S(t)S(s)x =
∫ s

t+s
K(r − t − s)S(r)Cxdr +

∫ 0

t
K(t + s − r)S(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0, and

S(t)S(s)x =
∫ t+s

t
K(t + s − r)S(r)Cxdr +

∫ s

0
K(r − t − s)S(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0.
(iii)

T (t)T (s)x = (
∫ t+s

0
−
∫ t

0
−
∫ s

0
)K(|t + s − r|)T (r)Cxdr,

for all x ∈ X and |t|, |s|, |t + s| < T0.
Here T (·) = sgn(·)S(·) on (−T0, T0), S+(·) = S(·) and S−(·) = S(−·) on [0, T0).

Next we will deduce an important lemma which can be used to obtain a new
equivalence relation between the generation of a local K-convoluted C-group S(·) on
X and the equality of

S̃(t)[S(s) − K0(|s|)C] = [S(t) − K0(|t|)C]S̃(s),

on X for all |t|, |s|, |t + s| < T0 when S(·)(= {S(t) | |t| < T0}) is a strongly continuous
family in L(X) commuting with C on X just as a result in [13] for the case of
local K-convoluted C-semigroup and in [19] for the case of local α-times integrated
C-semigroup.

Lemma 2.1. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X).
Then S(·) is a local K-convoluted C-group on X if and only if sgn(·)S̃(·) is a local
K0-convoluted C-group on X. In this case,

(i) S(·) is nondegenerate if and only if S̃(·) is;
(ii) A is the generator of S(·) if and only if it is the generator of sgn(·)S̃(·).

Proof. Let x ∈ X be given. We set T (·) = sgn(·)S̃(·). Then
d

dt

[∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr

]
(2.1)

= −
∫ s

t+s
K(r − t − s)S̃(r)Cxdr −

∫ 0

t
K(t + s − r)S̃(r)Cxdr + K0(s)S̃(t)Cx

and
d

ds

[∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr

]
(2.2)

= −
∫ s

t+s
K(r − t − s)S̃(r)Cxdr −

∫ 0

t
K(t + s − r)S̃(r)Cxdr + K0(|t|)S̃(s)Cx,
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for −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0. Using integration by parts to the right-hand
sides of (2.1) and (2.2), we obtain

−
∫ s

t+s
K(r − t − s)S̃(r)Cxdr −

∫ 0

t
K(t + s − r)S̃(r)Cxdr + K0(s)S̃(t)Cx(2.3)

=
∫ s

t+s
K0(r − t − s)S(r)Cxdr −

∫ 0

t
K0(t + s − r)S(r)Cxdr − K0(|t|)S̃(s)Cx

and

−
∫ s

t+s
K(r − t − s)S̃(r)Cxdr −

∫ 0

t
K(t + s − r)S̃(r)Cxdr + K0(|t|)S̃(s)Cx(2.4)

=
∫ s

t+s
K0(r − t − s)S(r)Cxdr −

∫ 0

t
K0(t + s − r)S(r)Cxdr − K0(s)S̃(t)Cx,

for −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0. Combining (2.1)–(2.4), we have
d

dt

[∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr

]
(2.5)

=
∫ s

t+s
K0(r − t − s)S(r)Cxdr −

∫ 0

t
K0(t + s − r)S(r)Cxdr − K0(|t|)S̃(s)Cx

and
d

ds

[∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr

]
(2.6)

=
∫ s

t+s
K0(r − t − s)S(r)Cxdr −

∫ 0

t
K0(t + s − r)S(r)Cxdr − K0(s)S̃(t)Cx,

for −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0. Similarly, we can show that
d

dt

[
−
∫ t+s

t
K0(t + s − r)S̃(r)Cxdr +

∫ s

0
K0(r − t − s)S̃(r)Cxdr

]
(2.7)

= −
∫ t+s

t
K0(t + s − r)S(r)Cxdr +

∫ s

0
K0(r − t − s)S(r)Cxdr − K0(|t|)S̃(s)Cx

and
d

ds

[
−
∫ t+s

t
K0(t + s − r)S̃(r)Cxdr +

∫ s

0
K0(r − t − s)S̃(r)Cxdr

]
(2.8)

= −
∫ t+s

t
K0(t + s − r)S(r)Cxdr +

∫ s

0
K0(r − t − s)S(r)Cxdr − K0(s)S̃(t)Cx,

for −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0. By (2.6) and (2.8), we have
d

ds

d

dt

[∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr

]
(2.9)

= −
∫ s

t+s
K(r − t − s)S(r)Cxdr +

∫ 0

t
K(t + s − r)S(r)Cxdr,

for −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0 and
d

dt

d

ds

[
−
∫ t+s

t
K0(t + s − r)S̃(r)Cxdr +

∫ s

0
K0(r − t − s)S̃(r)Cxdr

]
(2.10)
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= −
∫ t+s

t
K(t + s − r)S(r)Cxdr +

∫ s

0
K(r − t − s)S(r)Cxdr,

for −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0. Suppose that T (·) is a local K0-convoluted
C-group on X. Then T+(·) and T−(·) both are local K0-convoluted C-semigroups
on X, T+(·) = S̃+(·) and T−(·) = S̃−(·) on [0, T0), T (t)T (s) = T (s)T (t) on X for all
−T0 < t ≤ 0 ≤ s < T0,

T (t)T (s)x =
∫ s

t+s
K0(r − t − s)T (r)Cxdr +

∫ 0

t
K0(t + s − r)T (r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0 and

T (t)T (s)x =
∫ t+s

t
K0(t + s − r)T (r)Cxdr +

∫ s

0
K0(r − t − s)T (r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0 or equivalently, S+(·) and
S−(·) both are local K-convoluted C-semigroups on X, S(t)S(s) = S(s)S(t) on X for
all −T0 < t ≤ 0 ≤ s < T0

(2.11) −S̃(t)S̃(s)x =
∫ s

t+s
K0(r − t − s)S̃(r)Cxdr −

∫ 0

t
K0(t + s − r)S̃(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0, and

(2.12) −S̃(t)S̃(s)x = −
∫ t+s

t
K0(t + s − r)S̃(r)Cxdr +

∫ s

0
K0(r − t − s)S̃(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0. Combining (2.7)–(2.10), we
have

(2.13) S(t)S(s)x =
∫ s

t+s
K(r − t − s)S(r)Cxdr +

∫ 0

t
K(t + s − r)S(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0 and

(2.14) S(t)S(s)x =
∫ t+s

t
K(t + s − r)S(r)Cxdr +

∫ s

0
K(r − t − s)S(r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0. Consequently, S(·) is a local
K-convoluted C-group on X. Conversely, suppose that S(·) is a local K-convoluted
C-group on X. Then T+(·) and T−(·) both are local K0-convoluted C-semigroups on
X, T (t)T (s) = T (s)T (t) on X for all −T0 < t ≤ 0 ≤ s < T0, and (2.13)–(2.14) both
hold. By (2.9) and (2.10), we have (2.11) and (2.12) both hold. Consequently, T (·) is
a local K0-convoluted C-group on X. □

Theorem 2.1. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X)
which commutes with C on X. Then S(·) is a local K-convoluted C-group on X if
and only if

(2.15) S̃(t)[S(s) − K0(|s|)C] = [S(t) − K0(|t|)C]S̃(s), on X,

for all |t|, |s|, |t + s| < T0.
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Proof. We set T (·) = sgn(·)S̃(·). Suppose that S(·) is a local K-convoluted C-group
on X. Then S+(·) and S−(·) both are local K-convoluted C-semigroups on X. To
show that (2.15) holds for all |t|, |s|, |t + s| < T0, we observe from [13, Theorem 2.2]
that we need only to show that S̃(t)[S(s) − K0(|s|)C]x=[S(t) − K0(|t|)C]S̃(s)x for all
x ∈ X and |t|, |s| < T0 with ts ≤ 0. Let x ∈ X and −T0 < t ≤ 0 ≤ s < T0 be given
with t + s ≥ 0. By Lemma 2.1, (2.1) and (2.2), we have

−S(t)S̃(s)x − K0(|s|)S̃(t)Cx = d

dt
T (t)T (s)x − K0(|s|)S̃(t)Cx

= d

ds
T (t)T (s)x − K0(|t|)S̃(s)Cx

= − S̃(t)S(s)x − K0(|t|)S̃(s)Cx,

or equivalently, S̃(t)[S(s) − K0(|s|)C]x=[S(t) − K0(|t|)C]S̃(s)x. Similarly, we can
show that S̃(t)[S(s) − K0(|s|)C]x=[S(t) − K0(|t|)C]S̃(s)x for all x ∈ X and −T0 <
t ≤ 0 ≤ s < T0 with t + s ≤ 0. Since S(t)S(s) = S(s)S(t) on X for all |t|, |s|, |t + s| <

T0, we also have S̃(t)[S(s) − K0(|s|)C]x=[S(t) − K0(|t|)C]S̃(s)x for all x ∈ X and
−T0 < s ≤ 0 ≤ t < T0. Consequently, (2.15) holds for all |t|, |s|, |t + s| < T0.
Conversely, suppose that (2.15) holds for all |t|, |s|, |t + s| < T0. Then T+(·) and
T−(·) both are local K0-convoluted C-semigroups on X and S̃(t)S(s)x − S(t)S̃(s)x =
K0(|s|)S̃(t)Cx − K0(|t|)S̃(s)Cx for all x ∈ X and |t|, |s|, |t + s| < T0 with t + s ≥ 0.
Fix x ∈ X and −T0 < t < 0 ≤ s < T0 with t + s ≥ 0, we have

(2.16)
S̃(t + s − r)S(r)x − S(t + s − r)S̃(r)x

=K0(|r|)S̃(t + s − r)Cx − K0(|t + s − r|)S̃(r)Cx,

for all t ≤ r ≤ 0. Using integration by parts to the left-hand side of (2.16) over [t, 0]
and change of variables to the right-hand side of (2.16) over [t, 0], we obtain

T (t)T (s)x = − S̃(t)S̃(s)x(2.17)

=
∫ 0

t
[S̃(t + s − r)S(r)x − S(t + s − r)S̃(r)x]dr

=
∫ 0

t
[K0(|r|)S̃(t + s − r)Cx − K0(|t + s − r|)S̃(r)Cx]dr

=
∫ t+s

s
K0(|t + s − r|)S̃(r)Cxdr −

∫ 0

t
K0(|t + s − r|)S̃(r)Cxdr

=
∫ s

t+s
K0(|t + s − r|)T (r)Cxdr +

∫ 0

t
K0(|t + s − r|)T (r)Cxdr.

Using change of variables to the left-hand side of (2.16) over [t, 0], we also have

T (s)T (t)x = − S̃(s)S̃(t)x =
∫ 0

t
[S̃(t + s − r)S(r)x − S(t + s − r)S̃(r)x]dr.(2.18)
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Combining (2.17) with (2.18), we have T (t)T (s) = T (s)T (t) on X for all |t|, |s|, |t+s| <
T0 with ts ≤ 0 and

T (t)T (s)x =
∫ s

t+s
K0(|t + s − r|)T (r)Cxdr +

∫ 0

t
K0(|t + s − r|)T (r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≥ 0. Similarly, we can show that

T (t)T (s)x =
∫ t+s

t
K0(|t + s − r|)T (r)Cxdr +

∫ s

0
K0(|t + s − r|)T (r)Cxdr,

for all x ∈ X and −T0 < t ≤ 0 ≤ s < T0 with t + s ≤ 0 when the interval [t, 0]
of the integration of (2.16) is replaced by [t, t + s]. Consequently, T (·) is a local
K0-convoluted C-group on X. Combining this with Lemma 2.1, we get that S(·) is a
local K-convoluted C-group on X. □

Proposition 2.1. Let S(·) be a local K-convoluted C-group on X, a ∈ L1
loc([0, T0),F),

and b(·) = a(| · |). Then sgn(·)b ∗ S(·) is a local a ∗ K-convoluted C-group on X. In
particular, for each β > −1, sgn(·)Jβ ∗ S(·) is a local Kβ-convoluted C-group on X.
Here Jβ(·) = jβ(| · |). Moreover, S(·) is a local K-convoluted C-group on X if it is a
strongly continuous family in L(X) such that sgnk(·)jk−1 ∗ S(·) = sgn(·)Jk−1 ∗ S(·) is
a local Kk−1-convoluted C-group on X for some nonnegative integer k.

Proof. Clearly, sgn(·)b ∗ S(·) is strongly continuous family in L(X) which commutes
with C on X. To show that sgn(·)b ∗ S(·) is a local a ∗ K-convoluted C-group on X,
we remain only to show that

[(sgn t)b ∗ S(t) − ã ∗ K(|t|)C]j0 ∗ [sgn(·)b ∗ S(·)](s)

=j0 ∗ [sgn(·)b ∗ S(·)](t)[(sgn s)b ∗ S(s) − ã ∗ K(|s|)C],

on X for all |t|, |s|, |t + s| < T0. Here ã ∗ K = j0 ∗ (a ∗ K). Clearly,
b ∗ K0(| · |)(t) = (sgn t)j0 ∗ (b ∗ K)(|t|),

on X for all 0 ≤ t < T0. Next we will show that b ∗ K0(| · |)(t) = (sgn t)j0 ∗ b ∗ K(|t|)
on X for all −T0 < t ≤ 0. Let −T0 < t ≤ 0 be given, then

b ∗ K0(| · |)(t) =
∫ t

0
b(s)K0(|t − s|)ds =

∫ t

0
b(s)K0(s − t)ds

= −
∫ t

0
a(−s)

∫ t

s
K(s − r)drds = −

∫ 0

t

∫ t

s
a(−s)K(s − r)drds

= −
∫ t

0

∫ t

r
a(−r)K(r − s)dsdr =

∫ 0

t

∫ t

r
a(−r)K(r − s)dsdr

and ∫ 0

t

∫ t

r
a(−r)K(r − s)dsdr = −

∫ 0

t

∫ 0

s
a(−r)K(r − s)drds

= −
∫ t

0

∫ s

0
a(|r|)K(r − s)drds
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=
∫ t

0

∫ −s

0
a(|r|)K(−r − s)drds

=
∫ t

0
b ∗ K(−s)ds = −

∫ −t

0
b ∗ K(s)ds

=(sgn t)j0 ∗ (b ∗ K)(|t|).

Since b ∗ K(|t|) = a ∗ K(|t|) for all |t| < T0, we have b ∗ K0(| · |)(t) = (sgn t)ã ∗ K(|t|)
for all |t| < T0. Clearly, b ∗ S̃(t) = j0 ∗ (b ∗ S)(t) on X for all |t| < T0. Since
j0 ∗ [sgn(·)b ∗ S(·)](t) = (sgn t)j0 ∗ (b ∗ S)(t) = (sgn t)b ∗ S̃(t) on X for all |t| < T0, we
also have

[(sgn t)(b ∗ S)(t) − ã ∗ K(|t|)C](sgn s)b̃ ∗ S(s)x
=[(sgn t)(b ∗ S)(t) − (sgn t)b ∗ K0(| · |)(t)C](sgn s)b ∗ S̃(s)x
=(sgn t)[(b ∗ S)(t) − b ∗ K0(| · |)(t)C](sgn s)b ∗ S̃(s)x

=(sgn t)
∫ t

0
b(t − s)[S(r) − K0(|r|)C](sgn s)b ∗ S̃(s)xdr

=(sgn t)b ∗
[∫ t

0
b(t − r)(S(r) − K0(|r|)C)S̃

]
(s)(sgn s)xdr

and

(sgn t)b ∗
[∫ t

0
b(t − r)(S(r) − K0(|r|)C)S̃

]
(s)(sgn s)xdr

=(sgn t)b ∗
[∫ t

0
b(t − r)S̃(r)(S(·) − K0(| · |)C)

]
(s)(sgn s)xdr

=(sgn t)b ∗ S̃(t)b ∗ [S(·) − K0(| · |)C](s)(sgn s)x
=(sgn t)b ∗ S̃(t)[b ∗ S(s) − b ∗ K0(| · |)(s)C](sgn s)x

=(sgn t)b̃ ∗ S(t)[(sgn s)b ∗ S(s) − (sgn s)b ∗ K0(| · |)(s)C]x

=(sgn t)b̃ ∗ S(t)[(sgn s)b ∗ S(s) − ã ∗ K(|s|)C]x,

for all x ∈ X and |t|, |s|, |t + s| < T0. □

Definition 2.1. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X).
A linear operator A in X is called a subgenerator of S(·) if

S(t)x − K0(|t|)Cx =
∫ t

0
S(r)Axdr,

for all x ∈ D(A) and |t| < T0, and

(2.19)
∫ t

0
S(r)xdr ∈ D(A) and A

∫ t

0
S(r)xdr = S(t)x − K0(|t|)Cx,

for all x ∈ X and |t| < T0. A subgenerator A of S(·) is called the maximal subgenerator
of S(·) if it is an extension of each subgenerator of S(·) to D(A).
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Remark 2.2. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X),
and A a linear operator in X. Then A is a subgenerator of S(·) if and only if A is a
subgenerator of S+(·) and −A a subgenerator of S−(·).

Remark 2.3. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X),
and A a (closed) linear operator in X. Then A is the maximal subgenerator of S(·) if
A is the maximal subgenerator of S+(·) and −A the maximal subgenerator of S−(·).

Theorem 2.2. Let S(·) be a local K-convoluted C-group on X and K0 not the zero
function on [0, T0), or a K-convoluted C-group on X. Assume that C is injective.
Then S(·) is nondegenerate if and only if S+(·) and S−(·) both are nondegenerate if
and only if S+(·) or S−(·) is nondegenerate.

Proof. Clearly, S(·) is nondegenerate if either S+(·) or S−(·) is nondegenerate. Con-
versely, suppose that S(·) is nondegenerate and S+(·)x = 0 on [0, T0) for some x ∈ X.
By Theorem 2.1, we have S̃(t)[S(s) − K0(|s|)C]x = [S(t) − K0(|t|)C]S̃(s)x = 0 for
all −T0 < t ≤ 0 ≤ s < T0, and so S̃(t)K0(|s|)Cx = 0. Hence, S̃(t)x = 0. Since
−T0 < t ≤ 0 is arbitrary, we have S(·)x = 0 on (−T0, 0], which together with the
nondegeneracy of S(·) implies that x = 0. Consequently, S+(·) is nondegenerate.
Similarly, we can show that S−(·) is nondegenerate when S(·) is nondegenerate. □

Theorem 2.3. Let S(·) be a nondegenerate local K-convoluted C-group on X and
K0 not the zero function on [0, T0), or a K-convoluted C-group on X. Assume that
C is injective. Then A is the generator of S(·) if and only if A is the generator of
S+(·) and −A the generator of S−(·) if and only if A is the generator of S+(·) or −A
the generator of S−(·).

Proof. Suppose that A is the generator of S+(·) and −A is the generator of S−(·).
We set B to denote the generator of S(·). Then S(·)x − K0(| · |)Cx = S̃(·)Ax on
(−T0, T0) for all x ∈ D(A) or equivalently, A ⊂ B. Since S(·)x − K0(| · |)Cx = S̃(·)Bx
on (−T0, T0) for all x ∈ D(B), we have B ⊂ A. Consequently, A = B is the generator
of S(·). Suppose that A is the generator of S(·). We set B+ and B− to denote the
generators of S+(·) and S−(·), respectively. To show that B+ = A and B− = −A, we
observe from the preceding argument, we need only to show that B+ = −B−. Let
x ∈ D(B−) be given, then

S̃(t)[S(s) − K0(|s|)C]x = [S(t) − K0(|t|)C]S̃(s)x = S̃(s)[S(t) − K0(|t|)C]x
= S̃(s)[−S̃(t)B−x] = S̃(s)[S̃(t)(−B−)x]
= S̃(t)[S̃(s)(−B−)x],

for all −T0 < t ≤ 0 ≤ s < T0. By the nondegeneracy of S−(·), we have [S(s) −
K0(|s|)C] = S̃(s)[−B−x] for all 0 ≤ s < T0, and so x ∈ D(B+) and B+x = −B−x.
Hence, −B− ⊂ B+. By symmetry, we also have B+ ⊂ −B−. Consequently, B+ =
−B−. □
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Theorem 2.4. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X)
which commutes with C on X. Assume that S(·) has a subgenerator. Then S(·) is a
local K-convoluted C-group on X. Moreover, S(·) is nondegenerate if the injectivity
of C is added and K0 is a nonzero function on [0, T0).

Combining Remark 2.2 with [13, Lemma 2.8], the next lemma is also obtained.

Lemma 2.2. Let A be a closed subgenerator of a strongly continuous family S(·)(=
{S(t) | |t| < T0}) in L(X), and K0 a kernel on [0, t0) (or equivalently, K is a kernel
on [0, t0)) for some 0 < t0 ≤ T0. Assume that C is injective, and u ∈ C((−t0, t0), X)
satisfies u(·) = Aj0 ∗ u(·) on (−t0, t0). Then u = 0 on (−t0, t0).

By slightly modifying the proof of [13, Theorem 2.7], we can apply Lemma 2.2 to
deduce the next theorem concerning nondegenerate K-convoluted C-groups, and so
its proof is omitted.

Theorem 2.5. Let S(·) be a nondegenerate local K-convoluted C-group on X with
generator A. Assume that S(·) has a subgenerator. Then A is the maximal sub-
generator of S(·), and each subgenerator of S(·) is closable and its closure is also a
subgenerator of S(·). Moreover, if C is injective. Then (1.1)–(1.3) hold, and (1.4)
also holds when K0 is a kernel on [0, T0) or T0 = ∞.

Lemma 2.3. Let S(·) be a local K-convoluted C-group on X and 0 ∈ supp K0
(the support of K0), or a K-convoluted C-group on X and K0 not the zero function
on [0, ∞). Assume that S(·)x = 0 on [0, t0) or on (−t0, 0] for some x ∈ X and
0 < t0 ≤ T0. Then CS(·)x = 0 on (−T0, T0). In particular, S(t)x = 0 for all |t| < T0
if the injectivity of C is added.

Proof. Let S(·)x = 0 on [0, t0) and |t| < T0 be given, then |t|+s < T0 and K0(s) ̸= 0 for
some 0 < s < t0, so that S̃(s)S(t)x=S(t)S̃(s)x = 0, S(s)S̃(t)x=S̃(t)S(s)x = 0, and
S̃(s)K0(|t|)Cx = K0(|t|)CS̃(s)x = 0. By Theorem 2.3, we have S̃(s)[S(t)−K0(|t|)C]x
=[S(s) − K0(s)C]S̃(t)x. Hence, K0(s)S̃(t)Cx = K0(s)CS̃(t)x = 0, which implies that
S̃(t)Cx = 0. Since |t| < T0 is arbitrary, we have CS(t)x = S(t)Cx = 0 for all |t| < T0.
In particular, S(t)x = 0 for all |t| < T0 if the injectivity of C is added. □

Lemma 2.4. Let S(·) be a nondegenerate local K-convoluted C-group on X with
generator A and 0 ∈ supp K0. Assume that C is injective. Then A is a subgenerator
of S(·).

Proof. By Theorems 2.2 and 2.3, A is the generator of S+(·) and −A is the generator
of S−(·). It follows from [13, Theorem 2.9] that A is a subgenerator of S+(·) and
−A is a subgenerator of S−(·), which together with Remark 2.2 implies that A is a
subgenerator of S(·). □

By slightly modifying the proof of Lemma 2.4, the next lemma concerning nonde-
generate K-convoluted C-groups is also attained.
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Lemma 2.5. Let S(·) be a nondegenerate K-convoluted C-group on X with generator
A. Then C is injective, and A is a subgenerator of S(·).

Combining Theorem 2.5 with Lemma 2.5, the next theorem concerning nondegen-
erate K-convoluted C-groups is also obtained.
Theorem 2.6. Let S(·) be a nondegenerate K-convoluted C-group on X with gener-
ator A. Then A is the maximal subgenerator of S(·), and each subgenerator of S(·) is
closable and its closure is also a subgenerator of S(·). Moreover, (1.1)–(1.4) hold.

Since 0 ∈ suppK0 implies that K0 is a kernel on [0, T0), we can apply Theorem 2.5
and Lemma 2.4 to obtain the next theorem.
Theorem 2.7. Let S(·) be a nondegenerate local K-convoluted C-group on X with
generator A and 0 ∈ supp K0. Assume that C is injective. Then A is the maximal
subgenerator of S(·), and each subgenerator of S(·) is closable and its closure is also
a subgenerator of S(·). Moreover, (1.1)–(1.4) hold.
Theorem 2.8. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X)
which has a subgenerator and K0 a kernel on [0, T0). Assume that C is injective. Then
S(·) is a nondegenerate local K-convoluted C-group on X, CA ⊂ AC and C−1AC is
the generator of S(·) for each closed subgenerator A of S(·). In particular, C−1A0C
is the generator of S(·) for each subgenerator A0 of S(·).
Proof. Suppose that A is a closed subgenerator of S(·). By Remark 2.2, A is a closed
subgenerator of S+(·). By [13], Theorem 2.13, we have CA ⊂ AC and C−1AC is the
generator of S+(·). By Theorem 2.3, C−1AC is the generator of S(·). Similarly, we
can show that C−1A0C is the generator of S(·) for each subgenerator A0 of S(·). □

Corollary 2.1. Let S(·) be a nondegenerate local K-convoluted C-group on X which
has a subgenerator and K0 a kernel on [0, T0). Assume that C is injective and R(C)
is dense in X. Then A is a closed subgenerator of S+(·) if and only if −A is a closed
subgenerator of S−(·).
Proof. By Remark 2.2, we need only to show that A is a closed subgenerator of S(·)
when A is a closed subgenerator of S+(·). Since

∫ t
0 S(r)Axdr =

∫ t
0 S(r)C−1ACxdr =

S(t)x − K0(|t|)Cx for all x ∈ D(A) and |t| < T0, we remain only to show that (2.19)
holds for all x ∈ X and |t| < T0. Suppose that x ∈ X and |t| < T0 are given. By
[13], Theorem 2.13, C−1AC is the generator of S+(·). By Theorem 2.3, C−1AC is
the generator of S(·). By Theorems 2.5 and 2.8, C−1AC is the maximal subgenerator
of S(·), and so C−1AC

∫ t
0 S(r)xdr = S(t)x − K0(|t|)Cx. Hence, AC

∫ t
0 S(r)xdr =

A
∫ t

0 S(r)Cxdr = S(t)Cx − K0(|t|)CCx, which together with the denseness of R(C)
implies that A

∫ t
0 S(r)xdr = S(t)x − K0(|t|)Cx for all x ∈ X and |t| < T0.

□

Remark 2.4. Let S(·)(= {S(t) | |t| < T0}) be a strongly continuous family in L(X).
Then S(·) is a local K-convoluted C-group on X with closed subgenerator A if and
only if sgn(·)S̃(·) is a local K0-convoluted C-group on X with closed subgenerator A.
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3. Abstract Cauchy Problems

In the following, we always assume that C ∈ L(X) is injective, K0 a kernel on
[0, T0), and A a closed linear operator in X such that CA ⊂ AC. We first note some
basic properties concerning the solutions of ACP(A, f, x) just as results in [13] for the
case of A is the generator of a nondegenerate local K0-convoluted C-semigroup on X.

Proposition 3.1. Let A be a subgenerator of a nondegenerate local K0-convoluted
C-group S(·) on X. Then for each x ∈ D(A), sgn(·)S(·)x is the unique solution of
ACP(A, K0(| · |)Cx, 0) in C((−T0, T0), [D(A)]). Here [D(A)] denotes the Banach space
D(A) equipped with the graph norm |x|A = ∥x∥ + ∥Ax∥ for x ∈ D(A).

Proposition 3.2. Let A be a subgenerator of a nondegenerate local K-convoluted C-
group S(·) on X and C1 = {x ∈ X | S(·)x is continuously differentiable on (−T0, T0)}.
Then

(i) for each x ∈ C1, S(t)x ∈ D(A) for a.e. t ∈ (−T0, T0);
(ii) for each x ∈C1, S(·)x is the unique solution of ACP(A, sgn(·)K(| · |)Cx, 0);
(iii) for each x ∈ D(A), S(·)x is the unique solution of ACP(A, sgn(·)K(| · |)Cx, 0)

in C((−T0, T0), [D(A)]).

Proposition 3.3. Let A be the generator of a nondegenerate local K-convoluted
C-group S(·) on X and x ∈ X. Assume that S(t)x ∈ R(C) for all |t| < T0 and
C−1S(·)x ∈ C((−T0, T0), X) is differentiable a.e. on (−T0, T0). Then C−1S(t)x ∈
D(A) for a.e. t ∈ (−T0, T0) and C−1S(·)x is the unique solution of

ACP(A, sgn(·)K(| · |)x, 0).

Proof. Clearly, S(·)x = CC−1S(·)x is differentiable a.e. on (−T0, T0). By (1.1)–(1.4),
we have

C
d

dt
C−1S(t)x = d

dt
S(t)x

=AS(t)x + (sgn t)K(|t|)Cx = ACC−1S(t)x + (sgn t)K(|t|)Cx,

for a.e. t ∈ (−T0, T0). Hence, for a.e. t ∈ (−T0, T0), C−1S(t)x ∈ D(C−1AC) = D(A)
and

d

dt
C−1S(t)x =(C−1AC)C−1S(t)x + (sgn t)K(|t|)x = AC−1S(t)x + (sgn t)K(|t|)x,

which implies that C−1S(·)x is a solution of ACP(A, sgn(·)K(| · |)x, 0). □

Applying Theorem 2.8, we can investigate an important result concerning the
relation between the generation of a nondegenerate local K-convoluted C-group on
X with subgenerator A and the unique existence of solutions of ACP(A, f, x), which
extends some results in [13] for the case of local K-convoluted C-semigroup

Theorem 3.1. The following statements are equivalent.
(i) A is a subgenerator of a nondegenerate local K-convoluted C-group S(·) on X.
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(ii) For each x ∈ X and g ∈ L1
loc((−T0, T0), X), ACP(A, K0(| · |)Cx + K0(| · |) ∗

Cg(·), 0) has a unique solution in C1((−T0, T0), X) ∩ C((−T0, T0), [D(A)]).
(iii) For each x ∈ X the problem ACP(A, K0(| · |)Cx, 0) has a unique solution in

C1((−T0, T0), X) ∩ C((−T0, T0), [D(A)]).
(iv) For each x ∈ X the integral equation v(·)=Aj0 ∗ v(·) + K0(| · |)Cx has a unique

solution v(·; x) in C((−T0, T0), X).
In this case, S̃(·)x + S̃ ∗ g(·) is the unique solution of ACP(A, K0(| · |)Cx + K0(| · |) ∗
Cg(·), 0) and v(·; x) = S(·)x.

Proof. We will first prove that (i)⇒(ii) holds. Let x ∈ X and g ∈ L1
loc([0, T0), X) be

given. We set u(·) = S̃(·)x+ S̃ ∗g(·), then u ∈ C1((−T0, T0), X)∩C((−T0, T0), [D(A)]),
u(0) = 0, and

Au(t) =AS̃(t)x + A
∫ t

0
S̃(t − s)g(s)ds

=S(t)x − K0(|t|)Cx +
∫ t

0
[S(t − s) − K0(|t − s|)C]g(s)ds

=S(t)x +
∫ t

0
S(t − s)g(s)ds − [K0(|t|)Cx + K0(| · |) ∗ Cg(t)]

=u′(t) − [K0(|t|)Cx + K0(| · |) ∗ Cg(t)],

for all 0 ≤ t < T0. Hence, u is a solution of ACP(A, K0(| · |)Cx + K0(| · |) ∗
Cg(·), 0) in C1((−T0, T0), X) ∩ C((−T0, T0), [D(A)]). The uniqueness of solutions
for ACP(A, K0(| · |)Cx + K0(| · |) ∗ Cg(·), 0) follows directly from the uniqueness of
solutions for ACP(A, 0, 0).

Clearly, (ii)⇒(iii) holds, and (iii) and (iv) both are equivalent. We remain only to
show that (iv)⇒(i) holds. The assumption of (iv) implies that for each x ∈ X, v+(·) =
v(·; x) on [0, T0) is a unique solution of the integral equation v(·) = Aj0∗v(·)+K0(|·|)Cx
on [0, T0), which together with [13, Theorem 3.4] implies that A is a subgenerator of
a nondegenerate local K-convoluted C-semigroup on X. Similarly, we can show that
−A is a subgenerator of a nondegenerate local K-convoluted C-semigroup on X. It
follows from Remark 2.2 and Theorem 2.2 that A is a subgenerator of a nondegenerate
local K-convoluted C-group on X. □

Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem 3.5]
to obtain the next result, and so its proof is omitted.

Theorem 3.2. Assume that R(C) ⊂ R(λ − A) for some λ ∈ F and

ACP(A, sgn(·)K(| · |)x, 0)
has a unique solution in C((−T0, T0), [D(A)]) for each x ∈ D(A) with (λ−A)x ∈ R(C).
Then A is a subgenerator of a nondegenerate local K-convoluted C-group on X.

Since C−1AC = A and R((λ − A)−1C) = C(D(A)) if ρ(A) ̸= ∅, we can apply
Theorem 3.2 to obtain the next corollary.
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Corollary 3.1. Assume that the resolvent set of A : D(A) → X is nonempty.
Then A is the generator of a nondegenerate local K-convoluted C-group on X if
and only if for each x ∈ D(A) ACP(A, sgn(·)K(| · |)Cx, 0) has a unique solution in
C((−T0, T0), [D(A)]).

Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem
3.7] to obtain the next result, and so its proof is omitted.

Theorem 3.3. Assume that A is densely defined. Then the following are equivalent.
(i) A is a subgenerator of a nondegenerate local K-convoluted C-group S(·) on X.
(ii) For each x ∈ D(A) ACP(A, sgn(·)K(| · |)Cx, 0) has a unique solution u(·; Cx)

in C((−T0, T0), [D(A)]) which depends continuously on x. That is, if {xn}∞
n=1

is a Cauchy sequence in (D(A), ∥ · ∥), then {u(·; Cxn)}∞
n=1 converges uniformly

on compact subsets of (−T0, T0).

We end this paper with several illustrative examples.

Example 3.1. Let X = Cb(R), and S(t) for t ∈ R be bounded linear operators on X
defined by S(t)f(x) = f(x + t) for all x ∈ R. Then for each K ∈ L1

loc([0, T0),F) and
β > −1, sgn(·)Kβ(| · |) ∗ S(·) = {sgn(t)Kβ(||) ∗ S(t) | |t| < T0} is local a Kβ-convoluted
group on X which is also nondegenerate with a closed subgenerator d

dx
when K0 is

not the zero function on [0, T0) (or equivalently, K is not the zero in L1
loc([0, T0),F)),

but sgn(·)K(| · |) ∗ S(·) may not be a local K-convoluted group on X except for
K ∈ L1

loc([0, T0),F) so that K ∗ S(·) is a strongly continuous family in L(X) for which
d

dx
is a closed subgenerator of sgn(·)K(| · |) ∗ S(·) when K0 is not the zero function on

[0, T0). Moreover, (1.1)–(1.4) hold and d
dx

is its generator and maximal subgenerator
when K0 is a kernel on [0, T0). In this case, d

dx
= A0 for each subgenerator A0 of

sgn(·)K(| · |) ∗ S(·).

Example 3.2. Let X = Cb(R)(or L∞(R)), and A be the maximal differential operator in
X defined by Au =

k∑
j=0

ajD
ju on R for all u ∈ D(A), then UCb(R) (or C0(R)) = D(A).

Here a0, a1, . . . , ak ∈ C and Dju(x) = u(j)(x) for all x ∈ R. It is shown in [2, 19] that
{S(t) | |t| < T0} defined by

(S(t)f)(x) = 1√
2π

sgn(t)
∫ t

0

∫ ∞

−∞
K(|t − s|)ϕ̃s(x − y)f(y)dyds,

for all f ∈ X and |t| < T0, is a norm continuous local K0-convoluted group on X
with closed subgenerator A if the real-valued polynomial p(x) = ∑k

j=0 aj(ix)j satisfies
supx∈R p(x) < ∞, and K ∈ L1

loc([0, T0),F) is not the zero function on [0, T0). Here
ϕ̃t denotes the inverse Fourier transform of ϕt with ϕt(x) =

∫ t
0 ep(x)sds for all t ≥ 0.

Now if K0 is a kernel on [0, T0), then A is its generator and maximal subgenerator.
Applying Theorem 3.1, we get that for each f ∈ X and continuous function g on
(−T0, T0) × R with

∫ t
−t supx∈R |g(s, x)|ds < ∞ for all 0 ≤ t < T0, the function u on
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(−T0, T0) × R defined by

u(t, x) = 1√
2π

∫ t

0

∫ ∞

−∞
K0(|t − s|)ϕ̃s(x − y)f(y)dyds

+ 1√
2π

∫ t

0

∫ t−r

0

∫ ∞

−∞
K0(|t − r − s|)ϕ̃s(x − y)g(r, y)dydsdr,

for all |t| < T0 and x ∈ R, is the unique solution of

∂u(t, x)
∂t

=
k∑

j=0
aj

(
∂

∂x

)j

u(t, x) + K1(|t|)f(x) +
∫ t

0
K1(|t − s|)g(s, x)ds,

u(0, x) =0, for t ∈ (−T0, T0) and a.e. x ∈ R,

in C1((−T0, T0), X) ∩ C((−T0, T0), [D(A)]).
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