Kragujevac Journal of Mathematics Volume 48(5) (2024), Pages 655–671. # LOCAL K-CONVOLUTED C-GROUPS AND ABSTRACT CAUCHY PROBLEMS #### CHUNG-CHENG KUO¹ ABSTRACT. We first present a new form of a local K-convoluted C-group on a Banach space X, and then deduce some basic properties of a nondegenerate local K-convoluted C-group on X and some generation theorems of local K-convoluted C-groups, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local K-convoluted C-group on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem ACP(A, f, x). ## 1. Introduction Let X be a Banach space over the field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} with norm $\|\cdot\|$, and let L(X) denote the family of all bounded linear operators from X into itself. For each $0 < T_0 \le \infty$, we consider the following abstract Cauchy problem: ACP $$(A, f, x)$$ $\begin{cases} u'(t) = Au(t) + f(t), & \text{for } t \in (-T_0, T_0), \\ u(0) = x, \end{cases}$ where $x \in X$, A is a closed linear operator in X, and $f \in L^1_{loc}((-T_0, T_0), X)$ (the family of all locally integrable functions from $(-T_0, T_0)$ into X). A function u is called a solution of ACP(A, f, x) if $u \in C((-T_0, T_0), X)$ satisfies ACP(A, f, x) (that is, u(0) = x and for a.e. $t \in (-T_0, T_0)$, u(t) is differentiable and $u(t) \in D(A)$, and u'(t) = Au(t) + f(t) for a.e. $t \in (-T_0, T_0)$). For each $C \in L(X)$ and $K \in L^1_{loc}([0, T_0), \mathbb{F})$, a family $S(\cdot)(=\{S(t) \mid |t| < T_0\})$ in L(X) is called a local K-convoluted C-group on DOI 10.46793/KgJMat2405.655K Received: January 11, 2021. Accepted: August 06, 2021. $[\]textit{Key words and phrases.}$ Local K-convoluted C-group, generator, subgenerator, abstract Cauchy problem. $^{2020\} Mathematics\ Subject\ Classification.\ Primary:\ 47D60,\ 47D62.$ X if $S(\cdot)$ is strongly continuous, $S(\cdot)C = CS(\cdot)$, and satisfies S(t)S(s)x $$= \left(\operatorname{sgn} t \operatorname{sgn} s \operatorname{sgn} \left(t+s\right) \int_0^{t+s} -\operatorname{sgn} s \int_0^t -\operatorname{sgn} t \int_0^s \right) K(|t+s-r|) S(r) Cx dr,$$ for all $x \in X$ and $|t|, |s|, |t+s| < T_0$. In particular, $S(\cdot)$ is called a local (0-times integrated) C-group on X if $K = j_{-1}$ (the Dirac measure at 0) or equivalently, $S(\cdot)$ is strongly continuous, $S(\cdot)C = CS(\cdot)$, and satisfies $$S(t)S(s)x = S(t+s)Cx$$, for all $x \in X$ and $|t|, |s|, |t+s| < T_0$, (see [2]). Moreover, we say that $S(\cdot)$ is nondegenerate, if x=0 whenever S(t)x=0 for all $|t| < T_0$. The nondegeneracy of a local K-convoluted C-group $S(\cdot)$ on X implies that $$S(0) = C$$ if $K = j_{-1}$ and $S(0) = 0$ (the zero operator on X) otherwise, and the (integral) generator $A: D(A) \subset X \to X$ of $S(\cdot)$ is a closed linear operator in X defined by $$D(A) = \{x \in X \mid S(\cdot)x - K_0(|\cdot|)Cx = \widetilde{S}(\cdot)y_x \text{ on } (-T_0, T_0) \text{ for some } y_x \in X\}$$ and $Ax = y_x$ for all $x \in D(A)$. Here $\tilde{S}(t)z = \int_0^t S(s)zds$. In general, a local Kconvoluted C-group on X is called a K-convoluted C-group on X if $T_0 = \infty$; a (local) K-convoluted C-group on X is called a (local) K-convoluted group on X if C = I(the identity operator on X) or a (local) α -times integrated C-group on X if K is equal to the function $j_{\alpha-1}$ for some $\alpha \geq 0$, defined by $j_{\alpha}(t) = \frac{t^{\alpha}}{\Gamma(\alpha+1)}$ (see [4,7,21]). Here $\Gamma(\cdot)$ denotes the Gamma function, a (local) α -times integrated C-group on X is called a (local) α -times integrated group on X if C = I; and a (local) C-group on X is called a c_0 -group on X if C = I (see [1, 5]). Some basic properites of a nondegenerate (local) α -times integrated C-semigroup on X have been established by many authors (in [2, 3, 26–28] for $\alpha = 0$, and in [6, 10, 17–20, 22, 23, 25, 29, 30] for $\alpha > 0$), which can be extended to the case of local K-convoluted C-semigroup just as results in [7-10, 13-16]. Some equivalence relations between the generation of a nondegenerate (local) K-convoluted C-semigroup on X with subgenerator A and the unique existence of solutions of the abstract Cauchy problem ACP(A, f, x) are also discussed in [2, 26, 27] for the case $K = j_{\alpha-1}$ with $\alpha = 0$ and in [11–13, 30, 31] with $\alpha > 0$, and in [8, 13, 16] for the general case. The purpose of this paper is to investigate the following basic properties of a nondegenerate local K-convoluted C-group $S(\cdot) = \{S(t) \mid |t| < T_0\}$ on X just as results in [13] concerning local Kconvoluted C-semigroups on X when C is injective and some additional conditions are taken into consideration (1.1) $$C^{-1}AC = A$$, - (1.2) $\widetilde{S}(t)x \in D(A)$ and $A\widetilde{S}(t)x = S(t)x K_0(|t|)Cx$, for all $x \in X$ and $|t| < T_0$, - (1.3) $S(t)x \in D(A)$ and AS(t)x = S(t)Ax, for all $x \in D(A)$ and $|t| < T_0$; and (1.4) $$S(t)S(s) = S(s)S(t)$$, on X, for all $|t|, |s| < T_0$, (see Theorems 2.5, 2.6 and 2.7 below), which have been established partially in [8] by another method, and then deduce some equivalence relations between the generation of a nondegenerate local K-convoluted C-group on X with subgenerator A and the unique existence of solutions of ACP(A, f, x), which are similar to some results in [13] concerning equivalence relations between the generation of a nondegenerate local K-convoluted C-semigroup on X with subgenerator A and the unique existence of solutions of ACP(A, f, x). To do these, we will first prove an important lemma which shows that a strongly continuous family $S(\cdot)$ in L(X) is a local K-convoluted Cgroup on X is equivalent to $\operatorname{sgn}(\cdot) \hat{S}(\cdot)$ is a local K_0 -convoluted C-group on X (see Lemma 2.1 below), and then show that a strongly continuous family $S(\cdot)$ in L(X)which commutes with C on X is a local K-convoluted C-group on X is equivalent to $\tilde{S}(t)[S(s) - K_0(|s|)C] = [S(t) - K_0(|t|)C]\tilde{S}(s)$ for all $|t|, |s|, |t+s| < T_0$ (see Theorem 2.1) below). In order to show that $sgn(\cdot)b*S(\cdot)$ is a local a*K-convoluted C-group on X if $S(\cdot)$ is a local K-convoluted C-group on X and $b(\cdot) = a(|\cdot|)$ for some $a \in L^1_{loc}([0, T_0), \mathbb{F})$. In particular, $\operatorname{sgn}(\cdot)J_{\beta}*S(\cdot)$ is a local K_{β} -convoluted C-group on X if $S(\cdot)$ is a local K-convoluted C-group on X and $\beta > -1$, which can be applied to show that its only if part is also true when β is a nonnegative integer (see Proposition 2.1 below). Here $K_{\beta}(t) = K * j_{\beta}(t)$ for $\beta > -1$, $J_{\beta}(\cdot) = j_{\beta}(|\cdot|)$, $f * S(t)x = \int_0^t f(t-s)S(s)xds$ for all $x \in X$ and $f \in L^1_{loc}((-T_0, T_0), \mathbb{F})$. We also show that a strongly continuous family $S(\cdot)$ in L(X) which commutes with C on X is a local K-convoluted C-group on X when it has a subgenerator (see Theorem 2.4 below). Moreover, $S(\cdot)$ is nondegenerate if C is injective and the generator of a nondegenerate local K-convoluted C-group $S(\cdot)$ on X is the unique subgenerator of $S(\cdot)$ which contains all its subgenerators, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$ when $S(\cdot)$ has a subgenerator (see Theorems 2.5, 2.6 and 2.7 below). This can be applied to show that $CA \subset AC$ and $S(\cdot)$ is a nondegenerate local K-convoluted C-group on X with generator $C^{-1}AC$ when C is injective, K_0 a kernel on $[0,T_0)$ (that is, f=0on $[0,T_0)$ whenever $f \in C([0,T_0),\mathbb{F})$ with $\int_0^t K_0(t-s)f(s)ds=0$ for all $0 \leq t < T_0$ and $S(\cdot)$ a strongly continuous family in L(X) with closed subgenerator A. In this case, $C^{-1}A_0C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$ (see Theorem 2.8 below). Some illustrative examples concerning these theorems are also presented in the final part of this paper. ## 2. Basic Properties of Local K-Convoluted C-Groups In the following we will note some facts concerning local K-convoluted C-groups which can be expansively applied in this paper. Remark 2.1. Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X). Then the following are equivalent. - (i) $S(\cdot)$ is a local K-convoluted C-group on X. - (ii) (see [8]) $S_+(\cdot)$ and $S_-(\cdot)$ are local K-convoluted C-semigroups on X, S(t)S(s)x = S(s)S(t)x on X for all $-T_0 < t \le 0 \le s < T_0$, $$S(t)S(s)x = \int_{t+s}^{s} K(r-t-s)S(r)Cxdr + \int_{t}^{0} K(t+s-r)S(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$, and $$S(t)S(s)x = \int_{t}^{t+s} K(t+s-r)S(r)Cxdr + \int_{0}^{s} K(r-t-s)S(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \le 0$. (iii) $$T(t)T(s)x = (\int_0^{t+s} - \int_0^t - \int_0^s)K(|t+s-r|)T(r)Cxdr,$$ for all $x \in X$ and $|t|, |s|, |t+s| < T_0$. Here $$T(\cdot) = \text{sgn}(\cdot)S(\cdot)$$ on $(-T_0, T_0)$, $S_+(\cdot) = S(\cdot)$ and $S_-(\cdot) = S(-\cdot)$ on $[0, T_0)$. Next we will deduce an important lemma which can be used to obtain a new equivalence relation between the generation of a local K-convoluted C-group $S(\cdot)$ on X and the equality of $$\tilde{S}(t)[S(s) - K_0(|s|)C] = [S(t) - K_0(|t|)C]\tilde{S}(s),$$ on X for all $|t|, |s|, |t+s| < T_0$ when $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ is a strongly continuous family in L(X) commuting with C on X just as a result in [13] for the case of local K-convoluted C-semigroup and in [19] for the case of local α -times integrated C-semigroup. - **Lemma 2.1.** Let $S(\cdot)(=\{S(t) | |t| < T_0\})$ be a strongly continuous family in L(X). Then $S(\cdot)$ is a local K-convoluted C-group on X if and only if $\operatorname{sgn}(\cdot)\widetilde{S}(\cdot)$ is a local K_0 -convoluted C-group on X. In this case, - (i) $S(\cdot)$ is nondegenerate if and only if $\tilde{S}(\cdot)$ is; - (ii) A is the generator of $S(\cdot)$ if and only if it is the generator of $\operatorname{sgn}(\cdot)\widetilde{S}(\cdot)$. *Proof.* Let $x \in X$ be given. We set $T(\cdot) = \operatorname{sgn}(\cdot)\widetilde{S}(\cdot)$. Then $$(2.1) \quad \frac{d}{dt} \left[\int_{t+s}^{s} K_0(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\tilde{S}(r)Cxdr \right]$$ $$= -\int_{t+s}^{s} K(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K(t+s-r)\tilde{S}(r)Cxdr + K_0(s)\tilde{S}(t)Cxdr K$$ and $$(2.2) \quad \frac{d}{ds} \left[\int_{t+s}^{s} K_0(r-t-s)\widetilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\widetilde{S}(r)Cxdr \right]$$ $$= -\int_{t+s}^{s} K(r-t-s)\widetilde{S}(r)Cxdr - \int_{t}^{0} K(t+s-r)\widetilde{S}(r)Cxdr + K_0(|t|)\widetilde{S}(s)Cx,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$. Using integration by parts to the right-hand sides of (2.1) and (2.2), we obtain $$(2.3) - \int_{t+s}^{s} K(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K(t+s-r)\tilde{S}(r)Cxdr + K_{0}(s)\tilde{S}(t)Cx$$ $$= \int_{t+s}^{s} K_{0}(r-t-s)S(r)Cxdr - \int_{t}^{0} K_{0}(t+s-r)S(r)Cxdr - K_{0}(|t|)\tilde{S}(s)Cx$$ and $$(2.4) - \int_{t+s}^{s} K(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K(t+s-r)\tilde{S}(r)Cxdr + K_{0}(|t|)\tilde{S}(s)Cx$$ $$= \int_{t+s}^{s} K_{0}(r-t-s)S(r)Cxdr - \int_{t}^{0} K_{0}(t+s-r)S(r)Cxdr - K_{0}(s)\tilde{S}(t)Cx,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$. Combining (2.1)–(2.4), we have (2.5) $$\frac{d}{dt} \left[\int_{t+s}^{s} K_0(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\tilde{S}(r)Cxdr \right]$$ $$= \int_{t+s}^{s} K_0(r-t-s)S(r)Cxdr - \int_{t}^{0} K_0(t+s-r)S(r)Cxdr - K_0(|t|)\tilde{S}(s)Cx$$ and $$(2.6) \quad \frac{d}{ds} \left[\int_{t+s}^{s} K_0(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\tilde{S}(r)Cxdr \right]$$ $$= \int_{t+s}^{s} K_0(r-t-s)S(r)Cxdr - \int_{t}^{0} K_0(t+s-r)S(r)Cxdr - K_0(s)\tilde{S}(t)Cx,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$. Similarly, we can show that $$(2.7) \frac{d}{dt} \left[-\int_{t}^{t+s} K_{0}(t+s-r)\tilde{S}(r)Cxdr + \int_{0}^{s} K_{0}(r-t-s)\tilde{S}(r)Cxdr \right]$$ $$= -\int_{t}^{t+s} K_{0}(t+s-r)S(r)Cxdr + \int_{0}^{s} K_{0}(r-t-s)S(r)Cxdr - K_{0}(|t|)\tilde{S}(s)Cx$$ and (2.8) $$\frac{d}{ds} \left[-\int_{t}^{t+s} K_{0}(t+s-r)\tilde{S}(r)Cxdr + \int_{0}^{s} K_{0}(r-t-s)\tilde{S}(r)Cxdr \right]$$ $$= -\int_{t}^{t+s} K_{0}(t+s-r)S(r)Cxdr + \int_{0}^{s} K_{0}(r-t-s)S(r)Cxdr - K_{0}(s)\tilde{S}(t)Cx,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \le 0$. By (2.6) and (2.8), we have (2.9) $$\frac{d}{ds}\frac{d}{dt}\left[\int_{t+s}^{s} K_0(r-t-s)\widetilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\widetilde{S}(r)Cxdr\right]$$ $$= -\int_{t+s}^{s} K(r-t-s)S(r)Cxdr + \int_{t}^{0} K(t+s-r)S(r)Cxdr,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$ and (2.10) $$\frac{d}{dt}\frac{d}{ds}\left[-\int_{t}^{t+s}K_{0}(t+s-r)\widetilde{S}(r)Cxdr+\int_{0}^{s}K_{0}(r-t-s)\widetilde{S}(r)Cxdr\right]$$ $$= -\int_{t}^{t+s} K(t+s-r)S(r)Cxdr + \int_{0}^{s} K(r-t-s)S(r)Cxdr,$$ for $-T_0 < t \le 0 \le s < T_0$ with $t + s \le 0$. Suppose that $T(\cdot)$ is a local K_0 -convoluted C-group on X. Then $T_+(\cdot)$ and $T_-(\cdot)$ both are local K_0 -convoluted C-semigroups on X, $T_+(\cdot) = \widetilde{S}_+(\cdot)$ and $T_-(\cdot) = \widetilde{S}_-(\cdot)$ on $[0, T_0)$, T(t)T(s) = T(s)T(t) on X for all $-T_0 < t \le 0 \le s < T_0$, $$T(t)T(s)x = \int_{t+s}^{s} K_0(r-t-s)T(r)Cxdr + \int_{t}^{0} K_0(t+s-r)T(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$ and $$T(t)T(s)x = \int_{t}^{t+s} K_0(t+s-r)T(r)Cxdr + \int_{0}^{s} K_0(r-t-s)T(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t+s \le 0$ or equivalently, $S_+(\cdot)$ and $S_-(\cdot)$ both are local K-convoluted C-semigroups on X, S(t)S(s) = S(s)S(t) on X for all $-T_0 < t \le 0 \le s < T_0$ $$(2.11) -\tilde{S}(t)\tilde{S}(s)x = \int_{t-s}^{s} K_0(r-t-s)\tilde{S}(r)Cxdr - \int_{t}^{0} K_0(t+s-r)\tilde{S}(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$, and $$(2.12) \quad -\widetilde{S}(t)\widetilde{S}(s)x = -\int_{t}^{t+s} K_0(t+s-r)\widetilde{S}(r)Cxdr + \int_{0}^{s} K_0(r-t-s)\widetilde{S}(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \le 0$. Combining (2.7)–(2.10), we have (2.13) $$S(t)S(s)x = \int_{t+s}^{s} K(r-t-s)S(r)Cxdr + \int_{t}^{0} K(t+s-r)S(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$ and (2.14) $$S(t)S(s)x = \int_{t}^{t+s} K(t+s-r)S(r)Cxdr + \int_{0}^{s} K(r-t-s)S(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t+s \le 0$. Consequently, $S(\cdot)$ is a local K-convoluted C-group on X. Conversely, suppose that $S(\cdot)$ is a local K-convoluted C-group on X. Then $T_+(\cdot)$ and $T_-(\cdot)$ both are local K_0 -convoluted C-semigroups on X, T(t)T(s) = T(s)T(t) on X for all $-T_0 < t \le 0 \le s < T_0$, and (2.13)–(2.14) both hold. By (2.9) and (2.10), we have (2.11) and (2.12) both hold. Consequently, $T(\cdot)$ is a local K_0 -convoluted C-group on X. **Theorem 2.1.** Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X) which commutes with C on X. Then $S(\cdot)$ is a local K-convoluted C-group on X if and only if (2.15) $$\widetilde{S}(t)[S(s) - K_0(|s|)C] = [S(t) - K_0(|t|)C]\widetilde{S}(s), \quad on \ X,$$ for all $|t|, |s|, |t+s| < T_0$. Proof. We set $T(\cdot) = \operatorname{sgn}(\cdot)\widetilde{S}(\cdot)$. Suppose that $S(\cdot)$ is a local K-convoluted C-group on X. Then $S_+(\cdot)$ and $S_-(\cdot)$ both are local K-convoluted C-semigroups on X. To show that (2.15) holds for all $|t|, |s|, |t+s| < T_0$, we observe from [13, Theorem 2.2] that we need only to show that $\widetilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\widetilde{S}(s)x$ for all $x \in X$ and $|t|, |s| < T_0$ with $ts \le 0$. Let $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ be given with $t + s \ge 0$. By Lemma 2.1, (2.1) and (2.2), we have $$-S(t)\widetilde{S}(s)x - K_0(|s|)\widetilde{S}(t)Cx = \frac{d}{dt}T(t)T(s)x - K_0(|s|)\widetilde{S}(t)Cx$$ $$= \frac{d}{ds}T(t)T(s)x - K_0(|t|)\widetilde{S}(s)Cx$$ $$= -\widetilde{S}(t)S(s)x - K_0(|t|)\widetilde{S}(s)Cx,$$ or equivalently, $\tilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\tilde{S}(s)x$. Similarly, we can show that $\tilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\tilde{S}(s)x$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t+s \le 0$. Since S(t)S(s) = S(s)S(t) on X for all $|t|, |s|, |t+s| < T_0$, we also have $\tilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\tilde{S}(s)x$ for all $x \in X$ and $-T_0 < s \le 0 \le t < T_0$. Consequently, (2.15) holds for all $|t|, |s|, |t+s| < T_0$. Conversely, suppose that (2.15) holds for all $|t|, |s|, |t+s| < T_0$. Then $T_+(\cdot)$ and $T_-(\cdot)$ both are local K_0 -convoluted C-semigroups on X and $\tilde{S}(t)S(s)x - S(t)\tilde{S}(s)x = K_0(|s|)\tilde{S}(t)Cx - K_0(|t|)\tilde{S}(s)Cx$ for all $x \in X$ and $|t|, |s|, |t+s| < T_0$ with $t+s \ge 0$. Fix $x \in X$ and $-T_0 < t < 0 \le s < T_0$ with $t+s \ge 0$, we have (2.16) $$\tilde{S}(t+s-r)S(r)x - S(t+s-r)\tilde{S}(r)x \\ = K_0(|r|)\tilde{S}(t+s-r)Cx - K_0(|t+s-r|)\tilde{S}(r)Cx,$$ for all $t \le r \le 0$. Using integration by parts to the left-hand side of (2.16) over [t, 0] and change of variables to the right-hand side of (2.16) over [t, 0], we obtain $$(2.17) T(t)T(s)x = -\tilde{S}(t)\tilde{S}(s)x$$ $$= \int_{t}^{0} [\tilde{S}(t+s-r)S(r)x - S(t+s-r)\tilde{S}(r)x]dr$$ $$= \int_{t}^{0} [K_{0}(|r|)\tilde{S}(t+s-r)Cx - K_{0}(|t+s-r|)\tilde{S}(r)Cx]dr$$ $$= \int_{s}^{t+s} K_{0}(|t+s-r|)\tilde{S}(r)Cxdr - \int_{t}^{0} K_{0}(|t+s-r|)\tilde{S}(r)Cxdr$$ $$= \int_{t+s}^{s} K_{0}(|t+s-r|)T(r)Cxdr + \int_{t}^{0} K_{0}(|t+s-r|)T(r)Cxdr.$$ Using change of variables to the left-hand side of (2.16) over [t, 0], we also have $$(2.18) \quad T(s)T(t)x = -\tilde{S}(s)\tilde{S}(t)x = \int_{t}^{0} [\tilde{S}(t+s-r)S(r)x - S(t+s-r)\tilde{S}(r)x]dr.$$ Combining (2.17) with (2.18), we have T(t)T(s) = T(s)T(t) on X for all $|t|, |s|, |t+s| < T_0$ with $ts \le 0$ and $$T(t)T(s)x = \int_{t+s}^{s} K_0(|t+s-r|)T(r)Cxdr + \int_{t}^{0} K_0(|t+s-r|)T(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \ge 0$. Similarly, we can show that $$T(t)T(s)x = \int_{t}^{t+s} K_0(|t+s-r|)T(r)Cxdr + \int_{0}^{s} K_0(|t+s-r|)T(r)Cxdr,$$ for all $x \in X$ and $-T_0 < t \le 0 \le s < T_0$ with $t + s \le 0$ when the interval [t, 0] of the integration of (2.16) is replaced by [t, t + s]. Consequently, $T(\cdot)$ is a local K_0 -convoluted C-group on X. Combining this with Lemma 2.1, we get that $S(\cdot)$ is a local K-convoluted C-group on X. **Proposition 2.1.** Let $S(\cdot)$ be a local K-convoluted C-group on X, $a \in L^1_{loc}([0, T_0), \mathbb{F})$, and $b(\cdot) = a(|\cdot|)$. Then $\operatorname{sgn}(\cdot)b * S(\cdot)$ is a local a * K-convoluted C-group on X. In particular, for each $\beta > -1$, $\operatorname{sgn}(\cdot)J_{\beta} * S(\cdot)$ is a local K_{β} -convoluted C-group on X. Here $J_{\beta}(\cdot) = j_{\beta}(|\cdot|)$. Moreover, $S(\cdot)$ is a local K-convoluted C-group on X if it is a strongly continuous family in L(X) such that $\operatorname{sgn}^k(\cdot)j_{k-1} * S(\cdot) = \operatorname{sgn}(\cdot)J_{k-1} * S(\cdot)$ is a local K_{k-1} -convoluted C-group on X for some nonnegative integer k. *Proof.* Clearly, $\operatorname{sgn}(\cdot)b*S(\cdot)$ is strongly continuous family in $\operatorname{L}(X)$ which commutes with C on X. To show that $\operatorname{sgn}(\cdot)b*S(\cdot)$ is a local a*K-convoluted C-group on X, we remain only to show that $$[(\operatorname{sgn} t)b * S(t) - \widetilde{a * K(|t|)C}]j_0 * [\operatorname{sgn}(\cdot)b * S(\cdot)](s)$$ = $j_0 * [\operatorname{sgn}(\cdot)b * S(\cdot)](t)[(\operatorname{sgn} s)b * S(s) - \widetilde{a * K(|s|)C}],$ on X for all $|t|, |s|, |t+s| < T_0$. Here $\widetilde{a * K} = j_0 * (a * K)$. Clearly, $$b * K_0(|\cdot|)(t) = (\operatorname{sgn} t)j_0 * (b * K)(|t|),$$ on X for all $0 \le t < T_0$. Next we will show that $b * K_0(|\cdot|)(t) = (\operatorname{sgn} t)j_0 * b * K(|t|)$ on X for all $-T_0 < t \le 0$. Let $-T_0 < t \le 0$ be given, then $$b * K_0(|\cdot|)(t) = \int_0^t b(s)K_0(|t-s|)ds = \int_0^t b(s)K_0(s-t)ds$$ $$= -\int_0^t a(-s)\int_s^t K(s-r)drds = -\int_t^0 \int_s^t a(-s)K(s-r)drds$$ $$= -\int_0^t \int_r^t a(-r)K(r-s)dsdr = \int_t^0 \int_r^t a(-r)K(r-s)dsdr$$ and $$\begin{split} \int_t^0 \int_r^t a(-r)K(r-s)dsdr &= -\int_t^0 \int_s^0 a(-r)K(r-s)drds \\ &= -\int_0^t \int_0^s a(|r|)K(r-s)drds \end{split}$$ $$= \int_0^t \int_0^{-s} a(|r|)K(-r-s)drds$$ = $\int_0^t b * K(-s)ds = -\int_0^{-t} b * K(s)ds$ = $(\operatorname{sgn} t)j_0 * (b * K)(|t|).$ Since b * K(|t|) = a * K(|t|) for all $|t| < T_0$, we have $b * K_0(|\cdot|)(t) = (\operatorname{sgn} t) a * K(|t|)$ for all $|t| < T_0$. Clearly, $b * \widetilde{S}(t) = j_0 * (b * S)(t)$ on X for all $|t| < T_0$. Since $j_0 * [\operatorname{sgn}(\cdot)b * S(\cdot)](t) = (\operatorname{sgn} t)j_0 * (b * S)(t) = (\operatorname{sgn} t)b * \widetilde{S}(t)$ on X for all $|t| < T_0$, we also have $$\begin{split} & [(\operatorname{sgn} t)(b*S)(t) - \widetilde{a*K}(|t|)C](\operatorname{sgn} s)\widetilde{b*S}(s)x \\ = & [(\operatorname{sgn} t)(b*S)(t) - (\operatorname{sgn} t)b*K_0(|\cdot|)(t)C](\operatorname{sgn} s)b*\widetilde{S}(s)x \\ = & (\operatorname{sgn} t)[(b*S)(t) - b*K_0(|\cdot|)(t)C](\operatorname{sgn} s)b*\widetilde{S}(s)x \\ = & (\operatorname{sgn} t)\int_0^t b(t-s)[S(r) - K_0(|r|)C](\operatorname{sgn} s)b*\widetilde{S}(s)xdr \\ = & (\operatorname{sgn} t)b*\left[\int_0^t b(t-r)(S(r) - K_0(|r|)C)\widetilde{S}\right](s)(\operatorname{sgn} s)xdr \end{split}$$ and $$(\operatorname{sgn} t)b * \left[\int_0^t b(t-r)(S(r)-K_0(|r|)C)\widetilde{S}\right](s)(\operatorname{sgn} s)xdr$$ $$=(\operatorname{sgn} t)b * \left[\int_0^t b(t-r)\widetilde{S}(r)(S(\cdot)-K_0(|\cdot|)C)\right](s)(\operatorname{sgn} s)xdr$$ $$=(\operatorname{sgn} t)b * \widetilde{S}(t)b * \left[S(\cdot)-K_0(|\cdot|)C\right](s)(\operatorname{sgn} s)x$$ $$=(\operatorname{sgn} t)b * \widetilde{S}(t)[b * S(s)-b * K_0(|\cdot|)(s)C](\operatorname{sgn} s)x$$ $$=(\operatorname{sgn} t)\widetilde{b} * \widetilde{S}(t)[(\operatorname{sgn} s)b * S(s)-(\operatorname{sgn} s)b * K_0(|\cdot|)(s)C]x$$ $$=(\operatorname{sgn} t)\widetilde{b} * \widetilde{S}(t)[(\operatorname{sgn} s)b * S(s)-\widetilde{a} * K(|s|)C]x,$$ for all $x \in X$ and $|t|, |s|, |t+s| < T_0$. **Definition 2.1.** Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X). A linear operator A in X is called a subgenerator of $S(\cdot)$ if $$S(t)x - K_0(|t|)Cx = \int_0^t S(r)Axdr,$$ for all $x \in D(A)$ and $|t| < T_0$, and (2.19) $$\int_0^t S(r)xdr \in D(A) \quad \text{and} \quad A \int_0^t S(r)xdr = S(t)x - K_0(|t|)Cx,$$ for all $x \in X$ and $|t| < T_0$. A subgenerator A of $S(\cdot)$ is called the maximal subgenerator of $S(\cdot)$ if it is an extension of each subgenerator of $S(\cdot)$ to D(A). Remark 2.2. Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X), and A a linear operator in X. Then A is a subgenerator of $S(\cdot)$ if and only if A is a subgenerator of $S_+(\cdot)$ and A a subgenerator of $S_-(\cdot)$. Remark 2.3. Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X), and A a (closed) linear operator in X. Then A is the maximal subgenerator of $S(\cdot)$ if A is the maximal subgenerator of $S_+(\cdot)$ and -A the maximal subgenerator of $S_-(\cdot)$. **Theorem 2.2.** Let $S(\cdot)$ be a local K-convoluted C-group on X and K_0 not the zero function on $[0, T_0)$, or a K-convoluted C-group on X. Assume that C is injective. Then $S(\cdot)$ is nondegenerate if and only if $S_+(\cdot)$ and $S_-(\cdot)$ both are nondegenerate if and only if $S_+(\cdot)$ or $S_-(\cdot)$ is nondegenerate. Proof. Clearly, $S(\cdot)$ is nondegenerate if either $S_+(\cdot)$ or $S_-(\cdot)$ is nondegenerate. Conversely, suppose that $S(\cdot)$ is nondegenerate and $S_+(\cdot)x = 0$ on $[0, T_0)$ for some $x \in X$. By Theorem 2.1, we have $\tilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\tilde{S}(s)x = 0$ for all $-T_0 < t \le 0 \le s < T_0$, and so $\tilde{S}(t)K_0(|s|)Cx = 0$. Hence, $\tilde{S}(t)x = 0$. Since $-T_0 < t \le 0$ is arbitrary, we have $S(\cdot)x = 0$ on $(-T_0, 0]$, which together with the nondegeneracy of $S(\cdot)$ implies that x = 0. Consequently, $S_+(\cdot)$ is nondegenerate. Similarly, we can show that $S_-(\cdot)$ is nondegenerate when $S(\cdot)$ is nondegenerate. \square **Theorem 2.3.** Let $S(\cdot)$ be a nondegenerate local K-convoluted C-group on X and K_0 not the zero function on $[0, T_0)$, or a K-convoluted C-group on X. Assume that C is injective. Then A is the generator of $S(\cdot)$ if and only if A is the generator of $S_+(\cdot)$ and -A the generator of $S_-(\cdot)$ if and only if A is the generator of $S_+(\cdot)$ or -A the generator of $S_-(\cdot)$. Proof. Suppose that A is the generator of $S_+(\cdot)$ and -A is the generator of $S_-(\cdot)$. We set B to denote the generator of $S(\cdot)$. Then $S(\cdot)x - K_0(|\cdot|)Cx = \tilde{S}(\cdot)Ax$ on $(-T_0, T_0)$ for all $x \in D(A)$ or equivalently, $A \subset B$. Since $S(\cdot)x - K_0(|\cdot|)Cx = \tilde{S}(\cdot)Bx$ on $(-T_0, T_0)$ for all $x \in D(B)$, we have $B \subset A$. Consequently, A = B is the generator of $S(\cdot)$. Suppose that A is the generator of $S(\cdot)$. We set B_+ and B_- to denote the generators of $S_+(\cdot)$ and $S_-(\cdot)$, respectively. To show that $B_+ = A$ and $B_- = -A$, we observe from the preceding argument, we need only to show that $B_+ = -B_-$. Let $x \in D(B_-)$ be given, then $$\widetilde{S}(t)[S(s) - K_0(|s|)C]x = [S(t) - K_0(|t|)C]\widetilde{S}(s)x = \widetilde{S}(s)[S(t) - K_0(|t|)C]x = \widetilde{S}(s)[-\widetilde{S}(t)B_{-}x] = \widetilde{S}(s)[\widetilde{S}(t)(-B_{-})x] = \widetilde{S}(t)[\widetilde{S}(s)(-B_{-})x],$$ for all $-T_0 < t \le 0 \le s < T_0$. By the nondegeneracy of $S_-(\cdot)$, we have $[S(s) - K_0(|s|)C] = \tilde{S}(s)[-B_-x]$ for all $0 \le s < T_0$, and so $x \in D(B_+)$ and $B_+x = -B_-x$. Hence, $-B_- \subset B_+$. By symmetry, we also have $B_+ \subset -B_-$. Consequently, $B_+ = -B_-$. **Theorem 2.4.** Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X) which commutes with C on X. Assume that $S(\cdot)$ has a subgenerator. Then $S(\cdot)$ is a local K-convoluted C-group on X. Moreover, $S(\cdot)$ is nondegenerate if the injectivity of C is added and K_0 is a nonzero function on $[0, T_0)$. Combining Remark 2.2 with [13, Lemma 2.8], the next lemma is also obtained. **Lemma 2.2.** Let A be a closed subgenerator of a strongly continuous family $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ in L(X), and K_0 a kernel on $[0, t_0)$ (or equivalently, K is a kernel on $[0, t_0)$) for some $0 < t_0 \le T_0$. Assume that C is injective, and $u \in C((-t_0, t_0), X)$ satisfies $u(\cdot) = Aj_0 * u(\cdot)$ on $(-t_0, t_0)$. Then u = 0 on $(-t_0, t_0)$. By slightly modifying the proof of [13, Theorem 2.7], we can apply Lemma 2.2 to deduce the next theorem concerning nondegenerate K-convoluted C-groups, and so its proof is omitted. **Theorem 2.5.** Let $S(\cdot)$ be a nondegenerate local K-convoluted C-group on X with generator A. Assume that $S(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, if C is injective. Then (1.1)–(1.3) hold, and (1.4) also holds when K_0 is a kernel on $[0, T_0)$ or $T_0 = \infty$. **Lemma 2.3.** Let $S(\cdot)$ be a local K-convoluted C-group on X and $0 \in \text{supp } K_0$ (the support of K_0), or a K-convoluted C-group on X and K_0 not the zero function on $[0,\infty)$. Assume that $S(\cdot)x = 0$ on $[0,t_0)$ or on $(-t_0,0]$ for some $x \in X$ and $0 < t_0 \le T_0$. Then $CS(\cdot)x = 0$ on $(-T_0,T_0)$. In particular, S(t)x = 0 for all $|t| < T_0$ if the injectivity of C is added. Proof. Let $S(\cdot)x = 0$ on $[0, t_0)$ and $|t| < T_0$ be given, then $|t| + s < T_0$ and $K_0(s) \neq 0$ for some $0 < s < t_0$, so that $\widetilde{S}(s)S(t)x = S(t)\widetilde{S}(s)x = 0$, $S(s)\widetilde{S}(t)x = \widetilde{S}(t)S(s)x = 0$, and $\widetilde{S}(s)K_0(|t|)Cx = K_0(|t|)C\widetilde{S}(s)x = 0$. By Theorem 2.3, we have $\widetilde{S}(s)[S(t) - K_0(|t|)C]x = [S(s) - K_0(s)C]\widetilde{S}(t)x$. Hence, $K_0(s)\widetilde{S}(t)Cx = K_0(s)C\widetilde{S}(t)x = 0$, which implies that $\widetilde{S}(t)Cx = 0$. Since $|t| < T_0$ is arbitrary, we have CS(t)x = S(t)Cx = 0 for all $|t| < T_0$. In particular, S(t)x = 0 for all $|t| < T_0$ if the injectivity of C is added. **Lemma 2.4.** Let $S(\cdot)$ be a nondegenerate local K-convoluted C-group on X with generator A and $0 \in \text{supp } K_0$. Assume that C is injective. Then A is a subgenerator of $S(\cdot)$. *Proof.* By Theorems 2.2 and 2.3, A is the generator of $S_+(\cdot)$ and -A is the generator of $S_-(\cdot)$. It follows from [13, Theorem 2.9] that A is a subgenerator of $S_+(\cdot)$ and -A is a subgenerator of $S_-(\cdot)$, which together with Remark 2.2 implies that A is a subgenerator of $S(\cdot)$. By slightly modifying the proof of Lemma 2.4, the next lemma concerning nondegenerate K-convoluted C-groups is also attained. **Lemma 2.5.** Let $S(\cdot)$ be a nondegenerate K-convoluted C-group on X with generator A. Then C is injective, and A is a subgenerator of $S(\cdot)$. Combining Theorem 2.5 with Lemma 2.5, the next theorem concerning nondegenerate K-convoluted C-groups is also obtained. **Theorem 2.6.** Let $S(\cdot)$ be a nondegenerate K-convoluted C-group on X with generator A. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, (1.1)–(1.4) hold. Since $0 \in \text{supp} K_0$ implies that K_0 is a kernel on $[0, T_0)$, we can apply Theorem 2.5 and Lemma 2.4 to obtain the next theorem. **Theorem 2.7.** Let $S(\cdot)$ be a nondegenerate local K-convoluted C-group on X with generator A and $0 \in \text{supp } K_0$. Assume that C is injective. Then A is the maximal subgenerator of $S(\cdot)$, and each subgenerator of $S(\cdot)$ is closable and its closure is also a subgenerator of $S(\cdot)$. Moreover, (1.1)–(1.4) hold. **Theorem 2.8.** Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X) which has a subgenerator and K_0 a kernel on $[0, T_0)$. Assume that C is injective. Then $S(\cdot)$ is a nondegenerate local K-convoluted C-group on X, $CA \subset AC$ and $C^{-1}AC$ is the generator of $S(\cdot)$ for each closed subgenerator A of $S(\cdot)$. In particular, $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$. *Proof.* Suppose that A is a closed subgenerator of $S(\cdot)$. By Remark 2.2, A is a closed subgenerator of $S_+(\cdot)$. By [13], Theorem 2.13, we have $CA \subset AC$ and $C^{-1}AC$ is the generator of $S_+(\cdot)$. By Theorem 2.3, $C^{-1}AC$ is the generator of $S(\cdot)$. Similarly, we can show that $C^{-1}\overline{A_0}C$ is the generator of $S(\cdot)$ for each subgenerator A_0 of $S(\cdot)$. \square **Corollary 2.1.** Let $S(\cdot)$ be a nondegenerate local K-convoluted C-group on X which has a subgenerator and K_0 a kernel on $[0,T_0)$. Assume that C is injective and R(C) is dense in X. Then A is a closed subgenerator of $S_+(\cdot)$ if and only if -A is a closed subgenerator of $S_-(\cdot)$. Proof. By Remark 2.2, we need only to show that A is a closed subgenerator of $S(\cdot)$ when A is a closed subgenerator of $S_+(\cdot)$. Since $\int_0^t S(r)Axdr = \int_0^t S(r)C^{-1}ACxdr = S(t)x - K_0(|t|)Cx$ for all $x \in D(A)$ and $|t| < T_0$, we remain only to show that (2.19) holds for all $x \in X$ and $|t| < T_0$. Suppose that $x \in X$ and $|t| < T_0$ are given. By [13], Theorem 2.13, $C^{-1}AC$ is the generator of $S_+(\cdot)$. By Theorem 2.3, $C^{-1}AC$ is the generator of $S(\cdot)$. By Theorems 2.5 and 2.8, $C^{-1}AC$ is the maximal subgenerator of $S(\cdot)$, and so $C^{-1}AC \int_0^t S(r)xdr = S(t)x - K_0(|t|)Cx$. Hence, $AC \int_0^t S(r)xdr = A \int_0^t S(r)Cxdr = S(t)Cx - K_0(|t|)CCx$, which together with the denseness of R(C) implies that $A \int_0^t S(r)xdr = S(t)x - K_0(|t|)Cx$ for all $x \in X$ and $|t| < T_0$. Remark 2.4. Let $S(\cdot) (= \{S(t) \mid |t| < T_0\})$ be a strongly continuous family in L(X). Then $S(\cdot)$ is a local K-convoluted C-group on X with closed subgenerator A if and only if $\operatorname{sgn}(\cdot)\widetilde{S}(\cdot)$ is a local K_0 -convoluted C-group on X with closed subgenerator A. П #### 3. Abstract Cauchy Problems In the following, we always assume that $C \in L(X)$ is injective, K_0 a kernel on $[0, T_0)$, and A a closed linear operator in X such that $CA \subset AC$. We first note some basic properties concerning the solutions of ACP(A, f, x) just as results in [13] for the case of A is the generator of a nondegenerate local K_0 -convoluted C-semigroup on X. **Proposition 3.1.** Let A be a subgenerator of a nondegenerate local K_0 -convoluted C-group $S(\cdot)$ on X. Then for each $x \in D(A)$, $\operatorname{sgn}(\cdot)S(\cdot)x$ is the unique solution of $ACP(A, K_0(|\cdot|)Cx, 0)$ in $C((-T_0, T_0), [D(A)])$. Here [D(A)] denotes the Banach space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$ for $x \in D(A)$. **Proposition 3.2.** Let A be a subgenerator of a nondegenerate local K-convoluted C-group $S(\cdot)$ on X and $C^1 = \{x \in X \mid S(\cdot)x \text{ is continuously differentiable on } (-T_0, T_0)\}$. Then - (i) for each $x \in C^1$, $S(t)x \in D(A)$ for a.e. $t \in (-T_0, T_0)$; - (ii) for each $x \in C^1$, $S(\cdot)x$ is the unique solution of $ACP(A, \operatorname{sgn}(\cdot)K(|\cdot|)Cx, 0)$; - (iii) for each $x \in D(A)$, $S(\cdot)x$ is the unique solution of $ACP(A, \operatorname{sgn}(\cdot)K(|\cdot|)Cx, 0)$ in $C((-T_0, T_0), [D(A)])$. **Proposition 3.3.** Let A be the generator of a nondegenerate local K-convoluted C-group $S(\cdot)$ on X and $x \in X$. Assume that $S(t)x \in R(C)$ for all $|t| < T_0$ and $C^{-1}S(\cdot)x \in C((-T_0,T_0),X)$ is differentiable a.e. on $(-T_0,T_0)$. Then $C^{-1}S(t)x \in D(A)$ for a.e. $t \in (-T_0,T_0)$ and $C^{-1}S(\cdot)x$ is the unique solution of $$ACP(A, sgn(\cdot)K(|\cdot|)x, 0).$$ *Proof.* Clearly, $S(\cdot)x = CC^{-1}S(\cdot)x$ is differentiable a.e. on $(-T_0, T_0)$. By (1.1)–(1.4), we have $$\begin{split} C\frac{d}{dt}C^{-1}S(t)x = & \frac{d}{dt}S(t)x \\ = & AS(t)x + (\operatorname{sgn}t)K(|t|)Cx = ACC^{-1}S(t)x + (\operatorname{sgn}t)K(|t|)Cx, \end{split}$$ for a.e. $t \in (-T_0, T_0)$. Hence, for a.e. $t \in (-T_0, T_0)$, $C^{-1}S(t)x \in D(C^{-1}AC) = D(A)$ and $$\frac{d}{dt}C^{-1}S(t)x = (C^{-1}AC)C^{-1}S(t)x + (\operatorname{sgn} t)K(|t|)x = AC^{-1}S(t)x + (\operatorname{sgn} t)K(|t|)x,$$ which implies that $C^{-1}S(\cdot)x$ is a solution of $ACP(A, sgn(\cdot)K(|\cdot|)x, 0)$. Applying Theorem 2.8, we can investigate an important result concerning the relation between the generation of a nondegenerate local K-convoluted C-group on X with subgenerator A and the unique existence of solutions of ACP(A, f, x), which extends some results in [13] for the case of local K-convoluted C-semigroup **Theorem 3.1.** The following statements are equivalent. (i) A is a subgenerator of a nondegenerate local K-convoluted C-group $S(\cdot)$ on X. - (ii) For each $x \in X$ and $g \in L^1_{loc}((-T_0, T_0), X)$, $ACP(A, K_0(|\cdot|)Cx + K_0(|\cdot|) * Cg(\cdot), 0)$ has a unique solution in $C^1((-T_0, T_0), X) \cap C((-T_0, T_0), [D(A)])$. - (iii) For each $x \in X$ the problem $ACP(A, K_0(|\cdot|)Cx, 0)$ has a unique solution in $C^1((-T_0, T_0), X) \cap C((-T_0, T_0), [D(A)])$. - (iv) For each $x \in X$ the integral equation $v(\cdot) = Aj_0 * v(\cdot) + K_0(|\cdot|)Cx$ has a unique solution $v(\cdot;x)$ in $C((-T_0,T_0),X)$. In this case, $\tilde{S}(\cdot)x + \tilde{S} * g(\cdot)$ is the unique solution of $ACP(A, K_0(|\cdot|)Cx + K_0(|\cdot|) * Cg(\cdot), 0)$ and $v(\cdot; x) = S(\cdot)x$. *Proof.* We will first prove that (i) \Rightarrow (ii) holds. Let $x \in X$ and $g \in L^1_{loc}([0,T_0),X)$ be given. We set $u(\cdot) = \tilde{S}(\cdot)x + \tilde{S}*g(\cdot)$, then $u \in C^1((-T_0,T_0),X) \cap C((-T_0,T_0),[D(A)])$, u(0) = 0, and $$Au(t) = A\tilde{S}(t)x + A \int_0^t \tilde{S}(t-s)g(s)ds$$ $$= S(t)x - K_0(|t|)Cx + \int_0^t [S(t-s) - K_0(|t-s|)C]g(s)ds$$ $$= S(t)x + \int_0^t S(t-s)g(s)ds - [K_0(|t|)Cx + K_0(|\cdot|) * Cg(t)]$$ $$= u'(t) - [K_0(|t|)Cx + K_0(|\cdot|) * Cg(t)].$$ for all $0 \le t < T_0$. Hence, u is a solution of $ACP(A, K_0(|\cdot|)Cx + K_0(|\cdot|) * Cg(\cdot), 0)$ in $C^1((-T_0, T_0), X) \cap C((-T_0, T_0), [D(A)])$. The uniqueness of solutions for $ACP(A, K_0(|\cdot|)Cx + K_0(|\cdot|) * Cg(\cdot), 0)$ follows directly from the uniqueness of solutions for ACP(A, 0, 0). Clearly, (ii) \Rightarrow (iii) holds, and (iii) and (iv) both are equivalent. We remain only to show that (iv) \Rightarrow (i) holds. The assumption of (iv) implies that for each $x \in X$, $v_+(\cdot) = v(\cdot; x)$ on $[0, T_0)$ is a unique solution of the integral equation $v(\cdot) = Aj_0*v(\cdot)+K_0(|\cdot|)Cx$ on $[0, T_0)$, which together with [13, Theorem 3.4] implies that A is a subgenerator of a nondegenerate local K-convoluted C-semigroup on X. Similarly, we can show that -A is a subgenerator of a nondegenerate local K-convoluted C-semigroup on X. It follows from Remark 2.2 and Theorem 2.2 that A is a subgenerator of a nondegenerate local K-convoluted C-group on X. Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem 3.5] to obtain the next result, and so its proof is omitted. **Theorem 3.2.** Assume that $R(C) \subset R(\lambda - A)$ for some $\lambda \in \mathbb{F}$ and $$ACP(A, sgn(\cdot)K(|\cdot|)x, 0)$$ has a unique solution in $C((-T_0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local K-convoluted C-group on X. Since $C^{-1}AC = A$ and $R((\lambda - A)^{-1}C) = C(D(A))$ if $\rho(A) \neq \emptyset$, we can apply Theorem 3.2 to obtain the next corollary. **Corollary 3.1.** Assume that the resolvent set of $A:D(A)\to X$ is nonempty. Then A is the generator of a nondegenerate local K-convoluted C-group on X if and only if for each $x\in D(A)$ $ACP(A,\operatorname{sgn}(\cdot)K(|\cdot|)Cx,0)$ has a unique solution in $C((-T_0,T_0),[D(A)])$. Just as in the proof of Theorem 3.1, we can apply Remark 2.2 with [13, Theorem 3.7] to obtain the next result, and so its proof is omitted. **Theorem 3.3.** Assume that A is densely defined. Then the following are equivalent. - (i) A is a subgenerator of a nondegenerate local K-convoluted C-group $S(\cdot)$ on X. - (ii) For each $x \in D(A)$ $ACP(A, \operatorname{sgn}(\cdot)K(|\cdot|)Cx, 0)$ has a unique solution $u(\cdot; Cx)$ in $C((-T_0, T_0), [D(A)])$ which depends continuously on x. That is, if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ converges uniformly on compact subsets of $(-T_0, T_0)$. We end this paper with several illustrative examples. Example 3.1. Let $X = C_b(\mathbb{R})$, and S(t) for $t \in \mathbb{R}$ be bounded linear operators on X defined by S(t)f(x) = f(x+t) for all $x \in \mathbb{R}$. Then for each $K \in L^1_{loc}([0,T_0),\mathbb{F})$ and $\beta > -1$, $\operatorname{sgn}(\cdot)K_{\beta}(|\cdot|)*S(\cdot) = \{\operatorname{sgn}(t)K_{\beta}(|\cdot|)*S(t) \mid |t| < T_0\}$ is local a K_{β} -convoluted group on X which is also nondegenerate with a closed subgenerator $\frac{d}{dx}$ when K_0 is not the zero function on $[0,T_0)$ (or equivalently, K is not the zero in $L^1_{loc}([0,T_0),\mathbb{F})$), but $\operatorname{sgn}(\cdot)K(|\cdot|)*S(\cdot)$ may not be a local K-convoluted group on X except for $K \in L^1_{loc}([0,T_0),\mathbb{F})$ so that $K*S(\cdot)$ is a strongly continuous family in L(X) for which $\frac{d}{dx}$ is a closed subgenerator of $\operatorname{sgn}(\cdot)K(|\cdot|)*S(\cdot)$ when K_0 is not the zero function on $[0,T_0)$. Moreover, (1.1)-(1.4) hold and $\frac{d}{dx}$ is its generator and maximal subgenerator when K_0 is a kernel on $[0,T_0)$. In this case, $\frac{d}{dx}=\overline{A_0}$ for each subgenerator A_0 of $\operatorname{sgn}(\cdot)K(|\cdot|)*S(\cdot)$. Example 3.2. Let $X = C_b(\mathbb{R})$ (or $L^{\infty}(\mathbb{R})$), and A be the maximal differential operator in X defined by $Au = \sum_{j=0}^k a_j D^j u$ on \mathbb{R} for all $u \in D(A)$, then $UC_b(\mathbb{R})$ (or $C_0(\mathbb{R})$) = $\overline{D(A)}$. Here $a_0, a_1, \ldots, a_k \in \mathbb{C}$ and $D^j u(x) = u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in [2,19] that $\{S(t) \mid |t| < T_0\}$ defined by $$(S(t)f)(x) = \frac{1}{\sqrt{2\pi}}\operatorname{sgn}(t)\int_0^t \int_{-\infty}^\infty K(|t-s|)\widetilde{\phi_s}(x-y)f(y)dyds,$$ for all $f \in X$ and $|t| < T_0$, is a norm continuous local K_0 -convoluted group on X with closed subgenerator A if the real-valued polynomial $p(x) = \sum_{j=0}^k a_j (ix)^j$ satisfies $\sup_{x \in \mathbb{R}} p(x) < \infty$, and $K \in L^1_{loc}([0, T_0), \mathbb{F})$ is not the zero function on $[0, T_0)$. Here $\widetilde{\phi}_t$ denotes the inverse Fourier transform of ϕ_t with $\phi_t(x) = \int_0^t e^{p(x)s} ds$ for all $t \geq 0$. Now if K_0 is a kernel on $[0, T_0)$, then A is its generator and maximal subgenerator. Applying Theorem 3.1, we get that for each $f \in X$ and continuous function g on $(-T_0, T_0) \times \mathbb{R}$ with $\int_{-t}^t \sup_{x \in \mathbb{R}} |g(s, x)| ds < \infty$ for all $0 \leq t < T_0$, the function u on $(-T_0,T_0)\times\mathbb{R}$ defined by $$\begin{split} u(t,x) = & \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty K_0(|t-s|) \widetilde{\phi_s}(x-y) f(y) dy ds \\ & + \frac{1}{\sqrt{2\pi}} \int_0^t \int_0^{t-r} \int_{-\infty}^\infty K_0(|t-r-s|) \widetilde{\phi_s}(x-y) g(r,y) dy ds dr, \end{split}$$ for all $|t| < T_0$ and $x \in \mathbb{R}$, is the unique solution of $$\frac{\partial u(t,x)}{\partial t} = \sum_{j=0}^{k} a_j \left(\frac{\partial}{\partial x}\right)^j u(t,x) + K_1(|t|) f(x) + \int_0^t K_1(|t-s|) g(s,x) ds,$$ $$u(0,x) = 0, \quad \text{for } t \in (-T_0, T_0) \text{ and a.e. } x \in \mathbb{R},$$ in $$C^1((-T_0, T_0), X) \cap C((-T_0, T_0), [D(A)])$$. **Acknowledgements.** Research partially supported by the Ministry of Science and Technology of Taiwan. ## REFERENCES - [1] W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhauser, Verlag, 2001. - [2] R. deLaubenfels, Existence Families, Functional Calculi and Evolution Equations, Springer-Verlag, Berlin, 1994. - [3] M. Gao, Local C-semigroups and local C-cosine functions, Acta Math. Sci. Ser. B 19 (1999), 201–213. https://doi.org/10.1016/S0252-9602(17)30630-6 - [4] J. E. Galé and P. J. Miana, One parameter groups of regular quasimultipliers, J. Funct. Anal. 237 (2006), 1–53. https://doi.org/10.1016/j.jfa.2006.03.021 - [5] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985. - [6] H. Kellerman and M. Hieber, Integrated semigroups, J Funct. Anal. 84 (1989), 160–180. https://doi.org/10.1016/0022-1236(89)90116-X - [7] M. Kostić, Distribution groups, Publ. Inst. Math. (Beograd) (N.S.) 85 (2009), 63–106. https://doi.org/10.2298/PIM0999063K - [8] M. Kostić, Generalized Semigroups and Cosine Functions, Mathematical Institute SANU, Belgrade, 2011. - [9] M. Kostić, Abstract Volterra Integro-Differential Equations, CRC Press, Boca Raton, 2015. - [10] M. Kostić, Abstract Degenerate Volterra Integro-Differential Equations, Mathematical Institute SANU, Belgrade, 2020. - [11] C.-C. Kuo, Perturbation theorems for local integrated semigroups, Studia Math. 197 (2010), 13–26. https://doi.org/10.4064/SM197-1-2 - [12] C.-C. Kuo and S.-Y. Shaw, On α-timesi ntegrated C-semigroups and the abstract Cauchy problem, Studia Math. 142 (2000), 201–217. https://doi.org/10.4064/sm-142-3-201-217 - [13] C.-C. Kuo, Local K-convoluted C-semigroups and abstract Cauchy problems, Taiwanese J. Math. 19 (2015), 1227–1245. https://doi.org/10.11650/tjm.19.2015.4737 - [14] C.-C. Kuo, Local K-convoluted C-semigroups and complete second order abstract Cauchy problems, Filomat 32 (2018), 6789–6797. https://doi.org/10.2298/FIL1819789K - [15] F. Li, T.-J. Xiao, J. Liang and J. Zhang, On perturbation of convoluted C-regularized operator families, J. Funct. Spaces 2013 (2013), Article ID 579326, 8 pages. https://doi.org/10.1155/ 2013/579326 - [16] F. Li, H. Wang and J. Zhang, Multiplicative perturbation of convoluted C-cosine functions and convoluted C-semigroups, J. Funct. Spaces 2013 (2013), Article ID 426459, 9 pages. https://doi.org/10.1155/2013/426459 - [17] M. Li and Q. Zheng, α -Times integrated semigroups: local and global, Studia Math. **154** (2003), 243–252. https://doi.org/10.4064/sm154-3-5 - [18] Y.-C. Li and S.-Y. Shaw, On generators of integrated C-semigroups and C-cosine functions, Semigroup Forum 47 (1993), 29–35. https://doi.org/10.1007/BF02573738 - [19] Y.-C. Li and S.-Y. Shaw, On local α-times integrated C-semigroups, Abstr. Appl. Anal. 2007 (2007), Article ID34890, 18 pages. https://doi.org/10.1155/2007/34890 - [20] Y.-C. Li and S.-Y. Shaw, Perturbation of nonexponentially-bounded α-times integrated C-semigroups, J. Math. Soc. Japan 55 (2003), 1115–1136. https://doi.org/10.2969/jmsj/1191418767 - [21] P. J. Miana, Integrated groups and smooth distribution groups, Acta Math. Sin. 23 (2007), 57–64. https://doi.org/10.1007/s10114-005-0784-1 - [22] M. Mijatović and S. Pilipović, α -Times integrated semigroups ($\alpha \in \mathbb{R}^+$), J. Math. Anal. Appl. **210** (1997), 790–803. https://doi.org/10.1006/jmaa.1997.5436 - [23] I. Miyadera, M. Okubo and N. Tanaka, On integrated semigroups where are not exponentially bounded, Proc. Japan Acad. Ser. 69 (1993), 199–204. https://doi.org/10.3792/PJAA.69.199 - [24] F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111–155. https://doi.org/10.2140/pjm.1988.135.111 - [25] S. Nicasie, The Hille-Yosida and Trotter-Kato theorems for integrated semigroups, J. Math. Anal. Appl. 180 (1993), 303-316. https://doi.org/10.1006/JMAA.1993.1402 - [26] S.-Y. Shaw and C.-C. Kuo, Generation of local C-semigroups and solvability of the abstract Cauchy problems, Taiwanese J. Math. 9 (2005), 291–311. https://doi.org/10.11650/twjm/ 1500407804 - [27] N. Tanaka and I. Miyadera, C-semigroups and the abstract Cauchy problem, J. Math. Anal. Appl. 170 (1992), 196–206. https://doi.org/10.1016/0022-247X(92)90013-4 - [28] N. Tanaka and N. Okazawa, Local C-semigroups and local integrated semigroups, Proc. Lond. Math. Soc. 61 (1990), 63–90. https://doi.org/10.1112/plms/s3-61.1.63 - [29] S.-W. Wang, M.-C. Gao, Automatic extensions of local regularized semigroups and local regularized cosine functions, Proc. Lond. Math. Soc. 127 (1999), 1651–1663. https://www.jstor.org/stable/119474 - [30] T.-J. Xiao and J. Liang, *The Cauchy Problem for Higher-Order Abstract Differential Equations*, Springer-Verlag, Berlin, 1998. - [31] N.-S. Yeh and C.-C. Kuo, Multiplicative perturbations of local α-times integrated C-semigroups, Acta Math. Sin. 37 (2017), 877–888. https://doi.org/10.1016/S0252-9602(17)30042-5 ¹DEPARTMENT OF MATHEMATICS, FU JEN CATHOLIC UNIVERSITY, NEW TAIPEI CITY, TAIWAN 24205 Email address: cckuomath.fju.edu.tw