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APPROXIMATION BY A COMPOSITION OF
APOSTOL-GENOCCHI AND PALTANEA-DURRMEYER
OPERATORS

NAV SHAKTI MISHRA! AND NAOKANT DEO!

ABSTRACT. The present paper deals with the Durrmeyer construction of operators
based on a class of orthogonal polynomials called Apostol-Genocchi polynomials.
For the proposed operators, we first establish a global approximation result followed
by its convergence estimate in terms of usual, r-th and weighted modulus of con-
tinuity. We further study the asymptotic type results such as the Voronovskaya
theorem and quantitative Voronovskaya theorem. Moreover, we estimate the rate of
pointwise convergence of the proposed operators for functions of bounded variation
defined on the interval (0, 00). Finally, the results are validated through graphical
representations and an absolute error table.

1. INTRODUCTION

Recently, Prakash et al. [20] proposed the following positive linear sequence of
operators:

(1) G (i) = Xk ) (’“)  we(0,0),

n

where 532‘ (x) =e™ HTM)%’(: (ZT;A) and gy (x; A) is the generalized Apostol-Genocchi

polynomials of order «, which belong to the class of orthogonal polynomials. These
polynomials were defined for a complex variable z, |z| < 7 in [16]. However, in
this study we limit ourselves to a real variable ¢ € [0,00). The generalized Apostol
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Genocchi polynomial of order «, i.e., g¥ (z;\) can be estimated with the help of
following generating function:

tk

2 axt_oooc . z
(1.2) (14—Aa) ‘ "Z;gkC“A)m‘

The more explicit form of g (z;A\) was proposed by Luo and Srivastava in [17].
They presented some elementary properties of these polynomials and derived explicit
series representation of g (z; A) in terms of hypergeometric function defined by Gauss.
The series is given as follows:

oy e (B (ko) [a+tn—1 A"
S ol G [ e

n=0
X Z (_1)j (TL)Jn(fE +j)k_n_aﬂpl (04 +n—knin+1; ]> ’
= j T+
where {k,a} € NU{0}, A € R\ {—1}, x € R and 2 F (a, b; ¢; t) denotes the Gaussian
hypergeometric function defined by

oF1 (a,b;c;t) = oFy (byasc;t) = (@), (0)y. -
= (o) k!

In particular, for « = 1 and A = 1, these operators reduce to classical Genocchi

polynomials which are obtained by the following generating function:

Qtext 00 tk
- . |t| <2m 7 R,

where gi (z) = gi (7;1). It can be clearly seen that gi(r) are the k''-degree polyno-
mials, few terms of which are given as follows:
gl(:c>:17 92(.1'):2%—1, g3($):33§'(3§'—1),
g1 () = 42° — 62> +1, g5 (x) =5z* — 102° + 5z, . ..
For the case x = 0, one can obtain the so-called Genocchi numbers g, using the
relation:
i=0
Genocchi numbers can be defined in many ways depending on the field where they are
intended to be applied. They find a wide range of application in numerical analysis,
combinatorics, number theory, graph theory etc. Luo [15,16] defined Apostol-Genocchi
polynomials of higher order and also introduced g-Apostol-Genocchi polynomials. He
studied the relationship of these polynomials with Zeta function. In the last two
decades, a surprising number of papers appeared studying Genocchi numbers, their
combinatorial relations, Genocchi polynomials and their generalisations along with
their various expansions and integral representations. To the readers, we suggest
following articles [4,18,21] and references therein.
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In the recent past, much work has been dedicated towards the Durrmeyer type mod-
ification of linear positive operators. For instance, Dhamija and Deo [8] introduced
the Durrmeyer form of Jain operators based on inverse Pélya-Eggenberger distribu-
tion. They studied its moments with the aid of Vandermonde convolution formula
and analysed other approximation properties. Heilmann and Rasa [12] studied a
link between Baskakov-Durrmeyer type operators and their corresponding classical
Kantorovich variants. Acu and Radu [3] introduced and studied a class of operators
which link a-Bernstein operators and genuine a-Bernstein Durrmeyer operators. To
see more work relevant to this area, one may refer [2,5,7,10,11,13].

Inspired by above stated researches, we now consider a Durrmeyer type modification
of Apostol-Genocchi operators based on Paltanea basis on positive real line. For
f € C0,00) and p > 0, the operators are defined as follows:

(1.3 MG (fi) = 3 sk @) [ (0 (@), € [0,00),

where I} ;. (t) = npe” """ ("l’it&::;l and 822 (x) is defined in (1.1).

The outline of the study is as follows. We consider a Durrmeyer type construction
of Apostol-Genocchi operators based on the basis function due to Péltanea [19] with
real parameters o, A and p. We establish approximation estimates such as a global
approximation theorem and rate of approximation in terms of usual, r-th and weighted
modulus of continuity. We further study asymptotic formulae such as Voronovskaya
theorem and quantitative Voronovskaya theorem. The last theorem is an application
of the proposed operators for the functions whose derivatives are of bounded variation.
Moreover, the approximation and the absolute error therein has been shown graphically

by varying the values of various parameters using Mathematica software.

2. PRELIMINARIES

Before proceeding to our main results, we state some general lemmas which are
useful throughout this paper. In addition, we have used Mathematica software wher-
ever necessary for complex and tedious calculations such as for moments and central
moiments etc.

Lemma 2.1. Fore,(t) =t*, s € NU{0} and p > 0, we have

[0 (e (kpts=1U  (kp),
[0 = o= 1 ™ Tl

where the symbol (B), = B(B+1)(B+2)---(B+n—1), (B), =1 denotes the rising
factorial.

Lemma 2.2. For operators (1.3), the moments are obtained as follows:

Mﬁ’)‘ (eo; ) =1,
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«
Mo (ey;z) =+ n 1+ )

N r[l4+2a+de 1 1 [a? — 2a)e — ae?\? a
M2 (e;2) = 2° + - l(l-l-)\@ P] 2 l (1+ e)? + P )\e)] )
M (33 2)

5 2 [3(a+Xe+1) 3
T [ 1+ 2e) +p]
a l3a2 —3ar?e? —3ade+3a+ A%’ + 2 e+ 1 3(2a+ de+1) 2]
n? (14 Xe)? p(1+ Ae) p?
N 1 [a?’ — 3a?Ne? — 6a*de — aXPe® — dar?e? — bade N 2a
n3 (1+ Xe)? p*(1+ Xe)
3(a? — a)?e? 2&)\6)]
+ 5 ;
p(1+ Xe)
M (ea; )
, T3 [2a+3Xe+3 6
= A )
z? [25 4 12a + 602 + 50e) + 25e? A — 6ae?N? 18(1+a +e)) 11
n? l (1+ Ae)? 1+ Xe)p pzl
x [7420a + 6302 + 202 — 6a%e2\? — 9a?Xe
n3 l (1+Xe)®
—bae3\? + 4ae?\? + 24ade + Te3\3 + 21 )e
(14 Xe)®
6 (3a? — 3ae*N? —3ade +3a+ 2N +2X e+ 1)  11(1+2a+Xe) 6
1+ 2e)%p T+r0P p3]
1 [at—6e*a®A— 12ea3 X — 16etar + 8e2a X3 — 82e¢3a)\? — 118e%aN? — 66a+ e
nt [ (1+Xe)?
6 (a® — 3e2a?\? — 6ea’\ — e2a)® — 4e?al? — bea))
(14 Xe)’p
N 11 (a? — ae*)\? — 2a)e) N 6o ]
(14 Xe)?p? (14 Xe)p? |

Proof. In the proposed operators (1.3), for s = 0, 1, 2 respectively we have 1.
2. For s =1, again using Lemma 2.1 we have

N e (14 e\ " & g (nz; A
(2.1) Mo ey x) = ( ) Zk(k')k

n 2 =0
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Differentiating both sides of (1.2) with respect to ¢ and taking limits ¢ — 1 and
r — nx, we have

= g (nw; A) o ne < )”“
E=2 14+ Xe)).
kz::o X e e (o +nx (1+ Ae))

Making use of this value in equation (2.1), we obtain the first moment.
3. Similarly for s = 2, we have

oA (g gy = C T (AN TSGR (0 )
(2.2) M (ezi) = — ( > ) > AR

On differentiating both sides of (1.2) with respect to t and taking limits ¢ — 1 and
r — nx, we have

= gh (na; A) o m( 1 )H“
Lo k(k—1)=2 2 1+ )
3:0 X ( ) e e {2nsa (1 + Xe)

+n22%(1 4+ Xe)> — (Me (3+ Xe) —a + 1)} .

Combining this with the first order moment and equation (2.2) we obtain the third
moment.
We can obtain the higher order moments in a similar way. U

Lemma 2.3. Let us define 63 (x) = M2 (®,; x), where ®,(t) = (e; —z)° and s = 1,2.
Then, from Lemma 2.2 we have

SO (1) = o

w (7) n(1+ Xe)’
1 1 [a? —2ale — ae?)\? a

§P(zx) =2 |14+ =] + — + .

w (7) n pl  n? (1+ Xe)® p (14 Xe)
Furthermore,
: A\ . _ o
(5 = ey

n—oo

1
lim nMON Py 2) = (1 + ) x,
p

1 - > 4 Ae (1 +6p — 3p%)) a2
lim n2MEA (0 0) —2 L (O F80)p = B+80) " + de (L4 6p = 3%)) @

and

1 2 3 e (2 5
lim HBM%)\((I)(S;JZ,): ( +p)< +p+ Oép:— 6( +p))$ .
n—+00 (1 + )\6) p4
Remark 2.1. Since fourth and sixth central moments are too lengthy and unnecessarily

space consuming, we are omitting their values here. Instead we choose to write their
limiting values, which is useful in the proofs of our main theorems.
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3. MAIN THEOREMS

Theorem 3.1. For any f € Cg[0,00), where Cg[0,00) is the class of all continuous
and bounded functions, we have

MM (f(t);2) = f (z)

uniformly on any compact subset of [0, 00).

Proof. Taking into account Lemma 2.2, we can easily see that M2 (e,;z) — 2" for
each r = 0,1,2 and hence using the well known Korovkin’s theorem due to [14],
operators M converge uniformly on each compact subset of [0, 00). O

3.1. Global approximation. Let us denote By [0, 00) the space of all functions f
on positive real axis that satisfy the condition |f(z)| < H; (1 + 2?) where H; is a
constant depending only on f but independent of x.

Let Cf[0,00) be the subspace of By [0,00) containing all continuous f on [0, 00).
The norm in C¢[0, 00) is defined by

U@ﬂ
= su
1 f1]2 me[ogo) T
Also, let C}[O, 00) 1= {f € Cf[0,00) : lim,_,o |1fJ£ is ﬁnlte}

Theorem 3.2. For each f € C}[0,00), we have
lim ‘Mz’\(f,x) — fH2 = 0.

n—0o0

Proof. The proof of this theorem can be given by application of Korovkin theorem [9]
on the interval [0, 0c0). Therefore, it would suffice if we prove that

(3.1) 1mqpmkg,)—@H_o 1=0,1,2.

For | = 0, condition (3.1) holds as operators M®* preserve constant functions. Next,
we can write

sup — 0,

«
zef0,00) N1 4 Ae)(1 + 2?)

for adequately large n. Therefore, the condition (3.1) is satisfied for [ = 1.
Finally, we write

1 x 1 1 [a? 4+ 2ade — ae?\?
MOW\ ; 22 < — -1+ -+ —=
s )~ 2], < suw (1”2){”( R et
L *
p(l+Xe)) )’

lim HM 62, ) - 62H2 =0.

n—oo
Hence, the theorem follows. O

HM%”\(el;x) — tz <

which suggests
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Let Cg[0,00) be the class of all continuous and bounded real valued functions. We
define the r-th order modulus of continuity by w, (f,d) and define it as

wy (f,6) = sup sup |Apf(2)],
x€[0,00) 0<h<S

where A denotes the forward difference. In particular, the usual modulus of continuity
is defined for r = 1 and is denoted by w(f,d). Moreover, we define the norm as

I/l =" sup [f ()]

x€[0,00)

Also, the Peetre’s K-functional for the function g € C%[0, 00) is defined as:

. _ : 1 . 2
Ka(f;0) = gegﬁgm){uf —gll+ 319" : g € C3[0,00)},

where
C%[0,00) = {g € Op[0,) : ¢, ¢" € Cp[0,00)}.
The next theorem establishes the degree of approximation of the operators M®* in
terms of the usual and second order modulus of continuity for the functions in the
space Cg|0, 00).

Theorem 3.3. For h € C%[0,00), define the auziliary operators @f{”\ as
3.2 Qo (hyz) = MOy x) — h |2+ ———— | + h(z).
32) A 050) =052 < (14 ) )

Then there exists a constant C' > 0 such that
M2 (B, 2) — A(z)] < Cus (R, V3) + w(h, 00 (z)),

§ =0 (a) + (M)Q

Proof. Using Lemma 2.2, one can easily observe that Q% ((t — z);z) = 0.
Let f € C%]0,00), then by Taylor’s expansion we have

where

Fl6) = f(2) + (t—2)f +/

Moreover, we can write

Qe (fr) — f(a)| = |5 ( = wan, ) ‘

VAN
=
>
8
e
~
=
—
X
<
S
N————
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(3.3) < (M ((t—2)%2) + (71(1‘)‘“)) ) 1F1l-

Since we know that
M (b )| < [1n]
therefore

30 @] < e o+ (o + )|+ o <.

a
n(1+ Ae)
Finally, combining equations (3.2), (3.3) and (3.4), we get

MG (B 2) = B(a)| <|Q0 (= f)i2) = (b= ()] + |20 (fi2) = f(2)]

() —h(:chn(li)@)‘
<4||h— fl|+ (M%A ((t—2)%2) + (M)Q) 1l

+’h(m)—h<x+n(l+)\e)>‘

{1+ (e () o)

+w<h’n(1+)\e)>'

Taking infimum over all f € C3[0,00) and using the result Ky (f,0) < wy ( 1, \/5) due
to [6], we get the desired outcome. O

+

Theorem 3.4. Let h € Cp(0,00), then for any r > 0, x € [0,7] and adequately large
n, we have

MG (s ) — B ()| < 4H) (1+27) f + 2w (h, \/E) ,

where D is a positive constant.

Proof. If x € [0,r] and t > r + 1, then t — x > 1. Therefore, we have the following
inequality:

B (t) = h(2)| < 4Hy (14 2%) (t — )",
Again for z € [0,7] and ¢ € [0, + 1] and using the well known inequality w (f, 0) <
(B4+ 1D w(f,0),5 € (0,00), one can obtain

I (t) — I (2)] < <1+ "’”f') w1 (7, 6).
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From (3.5) and (3.5), we can write

\h(t) — h(x)| < 4H, (1+:1:2) (t—x)” + <1+ ’t_éx|>wr+1 (h,4).

Applying operator M2 in the above relation and making use of Cauchy-Schwarz
inequality, we get

MG (i) = B ()| <Ay (14 2%) Mt (= 2)% )
1
)
<4Hj; (1 + mQ) MeA ((t — )% ZL‘)

+ 2w, <h, \/M%’A ((t— )% :1:)) .

Since M2A ((t — I)Q;SE) < %, where D is a positive constant, it follows that for
adequately large n, we have

M (B ) — hi(2)| < 4H; (14 27) g + 2w (h, \/E) ,

which is the required result. O

(14 M0 (= o)) i (,0)

3.2. Quantitative Voronovskaya theorem and Voronovoskaya theorem. Let
Cp [0, 00) be the subspace of By [0,00) containing all continuous and bounded func-

tions f for which lim |f ()] (14 22)"" is finite.
The weighted modulus of continuity €2 (f,d) due to [1] for each f € Cpl0,00) is

defined as
|f(x+h)—f(2)
Q(f,0) = .
(£,9) xe[Oig)I,)\hK& (1 4+ h2 + 22 4 h2x?)

In the next theorem, we discuss the quantitative Voronovskaya theorem for the pro-
posed operators (1.3) and derive a Voronovoskaya asymptotic result as a resulting
corollary, making use of the following properties of weighted modulus of continuity.
For every f € C}[0,00),

(a) Q(f,0) = 0 for § — 0;
(0) 1f () = f @) < (14t —2)*) (L +22) Q(f, [t — 2]).

Theorem 3.5. Let i’ € CL[0,00) and x € [0,00). Then we have
a

(14 )\e)h/ (=)

1z 1+1 +i 042+204)\e—ae2)\2+ a W (2)
2 \n p) n? (14 Xe)? p (14 Ae)

|M%A<h; 2) — h(z)
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8(L+a%) [ L
=" Q<hﬁ>

Proof. By Taylor’s expansion, we may write
MG (s x) — h(x) = M ((A(t) — Ti(z)) s 2)
(t—)°

o ((t i @+ T @) e A () (¢ ) x) ,

where X (t,z) = (h” (¢) — " (x))/2 is a continuous function which tends to zero at 0
and ¢ lies between x and ¢t. Using Lemma 2.3, we get

«

Cn(l+ )\e)h/ (z)

1z <1+1 +i a? + 2ake — ae?\? N a W (2)
2\n p n? (14 Xe)? p (14 Xe)

MG (X (1 0)] (£ = ) a)

) — 1)

With simple manipulations in property (b) of weighted modulus of continuity and
using |¢ — x| < |t — x|, we can write

Xt ) < 8(1+a?) (1 LU _5433)4) Q(K',0)),

which implies that

M) (1 -2 <8 (1+2?) (@ gy U ;496)6) Q).

Therefore, in view of Lemma 2.3, we can write

1
M (A (1 )]t — 2)%2) <8 (1+22) Q1 6) {5,@ () + 500 (:1:)} ,
as n — 0o. Choosing § = ﬁ, we get the desired outcome. OJ

Corollary 3.1. Let f be a bounded and integrable function on the interval [0, 00) such
that the second derivative of f exists at a fized point x € [0,00). Then

f(x)+z (1 + ;) 1 (x).

lim n(M(fra) = (o) = (1 f)\e)

3.3. Functions of derivatives of bounded variation. Next we estimate the rate of
convergence of the operators (1.3) for functions with derivatives of bounded variation
defined on [0, c0).

Let f € DBV,[0,00) be the class of functions whose derivatives are of bounded
variation on any finite subinterval of [0, 00) and satisfy the growth condition |f(t)| <
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Kt7, 7> 0 for all t > 0 and constant K > 0. For such functions, let us represent our
proposed operators (1.3) in the following form

(3.5) M (i) = [di (@) (@,
0

where g (i) = 3 sy} @) ().

Lemma 3.1. For x € [0,00) and adequately large n, we have
(i) if 0 <y <z, then
K§?
n (T,7) / qapxtdt<7"(x)2;
n(z —y)
(ii) if z < z < o0, then
00 K§?
1 =9, (z,2) = / qr? (x;t)dt < %
z n(z — x)

Proof. (i) Taking into account Lemma 2.2 and proposed operators (1.3), we have

2
N x—t Y 240
< an’”(w;t)<x_y> 2y G- @0
1 N K(52 T
= 2 M5 ((t — )% ) ( )2
(z —y) n(z —y)
Proof of (ii) is similar to (i). O

Theorem 3.6. Consider a function f of bounded variation on every sub-interval of
[0,00) that satisfies the growth condition |f (t)| < Kt™ for some absolute constant K
and T > 0. If there exists an integer vy, (2v > 1) such that f(t) < O (t7) for every
t >0, then for v >0, z € [0,00) and sufficiently large n, we have

M () — F(@)| <5 () + ()3 (o)

B oy = p o+ 2V (1)

[\/ﬁ] 4+

+ E o) S V() + K00 0) — £ (@) — 2 ()
o)+ Dy JERE )
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where %(f) denotes the total variation of f on any finite subinterval |a,b] of [0, 00)

y

. e
and p(y,7,7) = mc(f (t — 2)77qe (a:1) dt) .
0

Proof. For x € [0,00), we can write for our proposed operators (3.5) that

M (fia) = flw) = [ (est) (F () = f ()t

(3.6) = 7q3:;‘ (x;t) (/ I (x) du) dt.

Also for any f € DBV,][0,00), equality (3.7) holds true, i.e.,

(W) =g (F () + ) £ ()45 () = 7 (2)) sem (u = 2)

B e (M@= )+ ),

where
1, u=u=,

O (1) :{ 0, u#x.

It can be easily verified that:

7 (/ (f () - ; (f () + f <w—>>) @(u)du) 4o (w5 1) dt = 0.

0 x

Now in view of our proposed operators (3.5), we may write

7(/ (; (f (z+)+ [ (x—))) du) qg:;} (z:t) dt

T

= o

= (F/(e0) + f (=) M (= 2)i)

[\

Moreover

S Gt -1 @)sentu— ) du) 2 (1) di
1
2
1

) = @) [ 1t = 2l ai (i) b
0

1/2

/ / A 2.
(3.8) <5 1" () = f (=) (M2 (2 = 0)% )
Making use of equations (3.7)—(3.8) and Lemma 2.2 in equation (3.6), we get

M (f2) = f () <5 ( (04) +  (2=) MG (¢ — 2)50)
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1/2

31 ) = @) 062 (£ - )% )

+f ( [ 7. @ du) s (vit) dt
(f (a+) +  (@=) M (¢ = @) 5 2)
K(52 ( )

<

N | —

_|_

|/ (z+) = " (z—)]

+ 7 ( / () du) qed (s t) dt.

Taking absolute values on both sides and rewriting equation we have:

NG () — £ )] <5 (F ) 4 £ (=) MG (¢ = ) 1)

(3.9) \/ |f —=)| + P, (z) + P, (2),
- ( [ @ du) 0z (xit) de
@=|/ ( [1.@ du) a2 (a:t) .

Integrating by parts after applying Lemma 3.1, and taking y = = — ﬁ, we obtain

and

r—

Po (@) < [ dulat) 11, \dt+/ W23t |f ()] dt.

0 a2

Since [, (x) =0 and 9, (x;t) < 1, it implies

Sk

T x

[ ool Oldi= [ oa(st)lf, @) = 7, @) dt
z—% x—%
< [ Yunds 2 v
=

Again using Lemma 3.1 and substituting y = z — 7 we obtain

Z __x_
=Um = Um Vn
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_ K& 7] G i
&V
Thus, we can write P, (x) as
V7]
3.10 Py (2) < == V (flo)+—" v, ()
(3.10) S AL D)

Next, to estimate P,, (z), we have

0=/ ( R du) i (s ) dt| +
<

n(z) + By (),

where

Ap () =

7 (/t [ (u) dU) q2 (w5 t) dt
- L]O (j I (u) dU) o (xt) dt| .

Since 1 — 19, (:L' t) <1, by putting t = o + £ successively, we have

and

(z,2x)) du—/f — Uz, t) dt

z+—=
_K& (@) vr

nx?

xT

+ / £ 0111 = 0 (a8t

F@0) = f@—af @I+ [ 1 @1 @Dl

2 (0 20 VHf H%t
SKi’;g)\f(zx)—f(:v)—xf’(x)HKéZ()+A A [ isa
K(52< ) ) K62 (CII) [\/”Ta:Jr% . r Ttm .

7 20) — f () - af (@) + AR

Further we estimate the value of B, (z) as follows:

(311) B, (x) :L/ (/f’x(u)du> g (s ) dt
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(3.12) <Q/t7qnpxtdt—|—|f |/qa’\xtdt+\/ f

It is obvious that ¢ < 2(t — z) and © < ¢ — z, when t > 2z. Now applying Holder’s
inequality in the first term of equation (3.11), we get

B, (x) =2"C (/ (t — x)quﬁ;)\ (x;1) dt) T + Kfj \/ f

0

K (52
(3.13)  =p(y,7z)+ f
Flnally, combining equatlons (3 10)—(3.13) and putting values of P,, () and P,, (z)
n (3.9), we get the required result and the theorem is proved. 0

Example 3.1. Let f(x) = 2% — 32% + 222 + 1. We choose parameters a = A\ = 2 and
p = 3. For n =10, 50, 100, 200, we have the following representations.

(a) Figure 1 shows the rate of approximation of the operators M®* towards the
function f. Clearly the proposed operators (1.3) converge to the function f
for sufficiently large n.

(b) In Figure 2, the associated absolute error ©,, = |[M2*(f;x) — f(z)| is rep-
resented graphically for arbitrary values of x in interval [0,00). It can be
observed that error is monotonically decreasing for increasing n.

(¢) An error estimation table is provided in Table 1 which depicts that for higher
value of n, the error approaches to zero.

Therefore, it can be concluded that proposed operators (1.3) provide good approxi-
mation for n adequately large.

T ————— ————— ————— 3
12+ B

08l ]

06l ]

00k ]
N S S A RS RO
0.0 0.5 1.0 1.5 20

— f(x) n=10 —— n=50 —— n=100 —— n=200

FIGURE 1. Convergence of M2*(f;x) for the polynomial function
f(z) = 2* — 32% + 22? + 1 with parameters « = A =2, p = 3.
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FIGURE 2. Absolute error ©,, = M2*(f;x) — f(x)| of the proposed
operators for f(z) = 2* — 323 + 222 + 1 with parameters a = A =2, p = 3.

TABLE 1. Table for Absolute error ©, = |M3*(f;x) — f(z)| of the
proposed operators M,

X O10 Os0 O100 O200
0.4 | 0.0100759 | 0.00856603 | 0.0045899 | 0.00236582
0.8 | 0.166213 | 0.0652568 | 0.0345534 | 0.0177532
1.2 0.232451 0.120425 | 0.0647845 | 0.0335316
1.6 [ 0.0454756 | 0.123219 | 0.0698567 | 0.0369876
2.0] 0.921829 0.022785 | 0.0243437 | 0.0154083
2.4 | 2.65087 0.231729 | 0.0971809 | 0.0439198
2.8 | 5.48687 0.691177 | 0.320143 0.15371
3.2 9.68409 1.40641 0.66997 0.326674
3.6 | 15.4968 2.42828 1.17209 0.575527
4.0 23.1792 3.80765 1.85192 0.912982

Example 3.2. Figure 3 illustrates the effect of increase in values of parameter p on
the rate of convergence of proposed operators M®* for the function f(z) = 4x(x —
1.1)(z — 1.9) while keeping the value of a, A and n fixed. Here we chose n = 10 and
a = A = 2 to show the impact of the parameter p clearly. One can easily deduce from
the figure that as we increase the value of p the rate of convergence gets relatively
faster.
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—_— f(x) =—— p=2 p=5 p=25

F1cURE 3. Effect of increase in parametric value of p for given n = 10,
a = X\ = 2 on the convergence rate of proposed operators.

Acknowledgements. The authors are grateful to the referee for several valuable
comments and suggestions leading to an overall improvement of this paper.

[1]
[2]

3]

[9]

REFERENCES

T. Acar, A. Aral and I. Rasa, The new forms of Voronovskayas theorem in weighted spaces,
Positivity 20(1) (2016), 25-40. https://doi.org/10.1007/s11117-015-0338-4

A. M. Acu, T. Acar and V. A. Radu, Approzimation by modified Uf operators, Rev. R. Acad.
Cienc. Exactas Fis. Nat. (Esp.). Serie A. Matematicas 113(3) (2019), 2715-2729. https://doi.
org/10.1007/s13398-019-00655-y

A. M. Acu and V. A. Radu, Approxzimation by certain operators linking the a-Bernstein and
the Genuine a-Bernstein-Durrmeyer operators, in: N.Deo et al. (Eds.), Mathematical Analysis I:
Approzimation Theory, Springer, Proceedings in Mathematics & Statistics 306, 2020, 77-88.

I. N. Cangul, H. Ozden and Y. Simsek, A mew approach to q-Genocchi numbers and their
interpolation functions, Nonlinear Analysis: Theory, Methods & Applications 71(12) (2009),
€793-e799. https://doi.org/10.1016/j.na.2008.11.040

N. Deo and S. Kumar, Durrmeyer variant of Apostol-Genocchi-Baskakov operators, Quaest. Math.
44(4) (2020), 1-18. https://doi.org/10.2989/16073606.2020.1834000

R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

M. Dhamija, Durrmeyer modification of Lupas type Baskakov operators based on IPED, in: N.
Deo et al. (Eds.), Mathematical Analysis I: Approzimation Theory, Springer, Proceedings in
Mathematics & Statistics 306, 2020, 111-120.

M. Dhamija and N. Deo, Jain-Durrmeyer operators associated with the inverse Pélya—Eggenberger
distribution, Appl. Math. Comput. 286 (2016), 15-22. https://doi.org/10.1016/j.amc.2016.
03.015

A. D. Gadjiev, Theorems of the type of PP Korovkins theorems, Mat. Zametki. 20(5) (1976),
781-786.

[10] T. Garg, A. M. Acu and P. N. Agrawal, Further results concerning some general Durrmeyer

type operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(3) (2019),
2373-2390. https://doi.org/10.1007/s13398-019-00628-1


https://doi.org/10.1007/s11117-015-0338-4
https://doi.org/10.1007/s13398-019-00655-y
https://doi.org/10.1007/s13398-019-00655-y
https://doi.org/10.1016/j.na.2008.11.040
https://doi.org/10.2989/16073606.2020.1834000
https://doi.org/10.1016/j.amc.2016.03.015
https://doi.org/10.1016/j.amc.2016.03.015
https://doi.org/10.1007/s13398-019-00628-1

646 N. S. MISHRA AND N. DEO

[11] V. Gupta, A note on the general family of operators preserving linear functions, Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(4) (2019), 3717-3725. https://doi.org/
10.1007/s13398-019-00727-z

[12] M. Heilmann and I. Rasga, A nice representation for a link between Baskakov and Szdsz-Mirakjan-
Durrmeyer operators and their Kantorovich variants, Results Math. 74(1) (2019), 1-12. https:
//doi.org/10.1007/s00025-018-0932-4

[13] A. Kajla, N. Ispir, P. N. Agrawal and M. Goyal, ¢-Bernstein-Schurer-Durrmeyer type operators
for functions of one and two wvariables, Appl. Math. Comput. 275 (2016), 372-385. https:
//doi.org/10.1016/j.amc.2015.11.048

[14] P. P. Korovkin, Linear Operators and Approzimation Theory, Hindustan Publication Co., Delhi
1960.

[15] Q. M. Luo, g-Eztensions for the Apostol-Genocchi polynomials, General Mathematics 17(2)
(2009), 113-125.

[16] Q. M. Luo, Extensions of the Genocchi polynomials and their Fourier expansions and integral
representations, Osaka J. Math. 48 (2011), 291-309.

[17] Q. M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Genocchi polynomials
and the Stirling numbers of the second kind, Appl. Math. Comput. 217(12) (2011), 5702-5728.
https://doi.org/10.1016/j.amc.2010.12.048

[18] M. A. Ozarslan, Unified Apostol-Bernoulli, Euler and Genocchi polynomials, Comput. Math.
Appl. 62(6) (2011), 2452-2462. https://doi.org/10.1016/j.camwa.2011.07.031

[19] R. Paltanea, Modified Szdsz-Mirakjan operators of integral form, Carpathian J. Math. 24(3)
(2008), 378-385.

[20] C. Prakash, D. K. Verma and N. Deo, Approzimation by a new sequence of operators involving
Apostol-Genocchi polynomials, Math. Slovaca (to appear).

[21] H. M. Srivastava, B. Kurt and V. Kurt, Identities and relations involving the modified degenerate
hermite-based Apostol-Bernoulli and Apostol-Euler polynomials, Rev. R. Acad. Cienc. Exactas
Fis. Nat. (Esp.). Serie A. Matemédticas 113(2) (2019), 1299-1313. https://doi.org/10.1007/
s13398-018-0549-1

'DELHI TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF APPLIED MATHEMATICS

BAwANA RoAD, DELHI-110042, INDIA

Email address: navshaktimishra_phd2k18@dtu.ac.in, navshakti20@gmail.com
Email address: naokantdeo@dce.ac.in

ORCID iD: https://orcid.org/0000-0001-7079-4211


https://doi.org/10.1007/s13398-019-00727-z
https://doi.org/10.1007/s13398-019-00727-z
https://doi.org/10.1007/s00025-018-0932-4
https://doi.org/10.1007/s00025-018-0932-4
https://doi.org/10.1016/j.amc.2015.11.048
https://doi.org/10.1016/j.amc.2015.11.048
https://doi.org/10.1016/j.amc.2010.12.048
https://doi.org/10.1016/j.camwa.2011.07.031
https://doi.org/10.1007/s13398-018-0549-1
https://doi.org/10.1007/s13398-018-0549-1
https://orcid.org/0000-0001-7079-4211

	1. Introduction
	2. Preliminaries
	3. Main Theorems
	3.1. Global approximation
	3.2. Quantitative Voronovskaya theorem and Voronovoskaya theorem
	3.3. Functions of derivatives of bounded variation
	Acknowledgements.

	References

