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ON SIMULTANEOUS APPROXIMATION AND COMBINATIONS
OF LUPAS TYPE OPERATORS

T. A. K. SINHA!, K. K. SINGH?, AND AVINASH K. SHARMA?

ABSTRACT. The purpose of the present paper is to study a sequence of linear and
positive operators which was introduced by A. Lupas. First, we obtain estimate of
moments of the operators and then prove a basic convergence theorem for simulta-
neous approximation. Further, we find error in approximation in terms of modulus
of continuity of function. Finally, we establish a Voronovskaja asymptotic formula
for linear combination of the above operators.

1. INTRODUCTION

At the International Dortmund Meeting held in Written (Germany, March, 1995),
A. Lupas [11] introduced the following Linear positive operators for f : [0,00) — R as

(L) L) = —apr 3 By (2) 220
(12) (1-aye =3 Wy,

|
0 U

where
la| <1, (a)o=1, (a)y=a(a+1)---(a+v—-1), v>1.
If we impose that L, (t,z) = z, we find that a = 1/2. Therefore, operator (1.1)
becomes

Lo(f,z)=2""" io (;f[;)!”f (Z) x>0
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It was seen that these opeartors are positive and linear and preseve linear functions.
Bernstein polynomials [10] exhibit the property of simultaneous approximation. Simul-
taneous approximation for Baskakov operators, modified by Durrmeyer, was studied
by Heilmann and Miller [8]. Another modification of Baskakov operators for simulta-
neous approximation was investigated by Sinha et al. [18]. Yet another modification
of Baskakov operators viz., integral modification of Baskakov operators shows simulta-
neous approximation property in Thamer et al. [20]. This was studied for Durrmeyer
modification of Bernstein polynomials by Gonska and Zhou [4]. In the summation-
integral type operators Gupta et al. [7] explored the simultanoeus approximation.
So far research work was done for linear positive operators ([3],[6],[9],[12]-[15], [19]).
Singh and Agrawal [17] proved simultaneous approximation by a linear combination of
Bernstein-Durrmeyer type polynomials. Gupta [5] studied the differences of operators
of Lupas type. So, the Lupas operators play very important role to approximate
functions for f € C[0, 00).

It turns out that the order of approximation by these operators is at best O(n™1),
however smooth the function may be. Therefore, in order to improve the order of
approximation by the operators (1.1), we apply the technique of linear combination
introduced by Butzer [2] and Rathore [16].

The approximation process for linear combination is defined as follows.

Let do,dy, ..., dy be (k+ 1) arbitrary but fixed distinct positive integers. Then, the
linear combination L,(f,k,z) of Ly (f,2),5 =0,1,2,...,k, is given by

Laga(f,2) dg* dg® -+ dg”

1| Lgn(f,z) d7t d7%2 - d7*
L(fohea) = | o) AT A

Ldkn<f7'r) dlzl dIZQ dlzk

where A is the Vandermonde determinant defined as

1 dyt dy? e dp”
Ao Al
1 dpt dp? - a;*
On simplification, we have
k
(1.3) n(f, kyx) :]Z_%) k)La;n(f, ),

where

k # 0 and C(0,0) = 1.
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2. MOMENT ESTIMATES
Lemma 2.1 ([5]). The following relations hold:

2a — 1
Lo(La)=1, Lot —x,2)= f , Lo((t — 2)%,2) =
—a

n?z%(2a — 1)% + nax
n?(l —a)?

Now, we define mth order moment

() = Ln((t = 2)™,2) = (1 — @)™ {i (n2)y v <” _ x)m} .

!
= V! n

Lemma 2.2. p,,(x) is a polynomial in x of degree [m/2]. Moreover

1

nl™s

Proof. By definition of moments of mth order, we have

() =(1 - a)"xg—l)’"a” (nf!)y { ] @(‘WH <n)}

(2.1) =(=D)"(1—a)" 3

X (I/(T) +p21/(,r71) +p41/(,r72) + PPN )}’

where v = v(v — 1)(v — 2)--- (v — r + 1), py is a polynomial in r of second degree,
p4 is a polynomial in r of fourth degree and so on.

It follows from (1.2) upon s times differentiation in a that
>, (nx),

(2.2) >

v=0

Making an use of (2.2) in (2.1)

V! V(y - 1) T (V - s+ 1)@”78 = (ng;-)S(l _ a)*nazfs'

() =(=1)™ g% (T) <_1>” mm—r{ i iTa)r (nx), + pg(litl)r_l(nx)r_l

ar72

SR
Again,

ne),
(o) gy & @y G
nrx’ nx  (nx) (nx)3

where ¢; as before is a polynomial in 7 of degree j.
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Therefore, taking a = 1/2 and using fact that >, (T)(—l)”‘s =0, s <m, we
find that

fo () = (=1)"2™ {(nx)[ﬂl + - - - higher order terms} :

Therefore, p,,(x) is a polynomial in x of degree [m/2]. This completes the proof of
lemma. U

3. SIMULTANEOUS APPROXIMATION

(e 9]

Theorem 3.1. Let f' € Cg[0,00). Then, sequence {%(Ln(f, a:))} converges to

n=1
f'(x) pointwise on [0,00). Moreover, if S is a compact subset of [0, 00) then sequence

{d%(Ln(f, m))}zo:l converges to f'(x) uniformly on S.

Proof. We expand
flw) = f(@) + (w =) @)+ [ (Ft) = (@)

Operating L,(-,y) on both sides of above equation and in view of Lemma 2.1, we
obtain

Lt = f0)+ (12, ~ o) @+ 0= apr{ 3= aen, ),
where R, = V{/n(f’(t) — f'(x))dt. Thus,
d a n
B L) = ) a1 - a)
X {ln(l —a) ZO (nj)ya”Ry + Zl Cil(gzxx))y la/' R,,}

We put nx = « and differentiate (1.2) w.r.t. . Further, we equate coefficient of a” on
both sides, we get

1 1 1 a,s 1
3.2 —. — —. - Ry
(32) vl do (1/—1)!+2 (1/—2)!+3 (v —3)! +1/ 0!
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Using (3.2) in (3.1), we get

L)~ 1 @)
—n(1 - a)*|a(Ry — Ro) + a {ﬁ‘!)l(Rz R+ %(R2 . Ro)}
o {(O‘!)?(Rg ~Ra) g (Ol‘fl(Rg “ R+ S(a)ol(Rs — Ro)} +

3! T
a*(a); 1 a’(a)s
+ .5(34—R2)+ 3 (35_33)+...}
+ a3{(a)0:1))(33 — Ry) + a(f;h . ;(R4 —Ry)+ a (2?6)2 ) :1))(35 —Ry) +-- }
+ -
(3.3) =n(l—a)*[E; + g+ +---], say.

The continuity of f/(-) at point x implies that for a given € > 0 there exists a § = §(z),
(depending on z) such that |f'(t) — f'(x)| < e if |t — x| < §. We break R, — R, in two
parts depending upon |t — z| < § and |t — x| > §. In the second part, there may be
two terms, where |f'(t) — f'(z)| < 2||f'lcpo,00)-52 (t — 7)2

Using Lemma 2.1, we get

0k . / o~k 2
5] < al (Z Z;!(O‘)k> N 2 QHf(JLC’B[O,oo) z{z %(Q)k (i _x> }

" \k=0 k=0
. {nxQ(Za —1)2 + ax} (- a)e

n(l—a)?
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Now,

oo k / 2 ook 2
2 € a WNf'lepoo a a k
ol < o {5 ) + R S5 e (e

k=0 k=0

2 € o M esos) @ [nz*(2a—1)* + ax .
. =a°—(1— Y BVBINe0) 1 .
(3:5) ¢ n< )+ 02 n n(l —a)? (1-a)

The similar estimates for 3,3y, ... are combined in (3.3) and we take a = § due
to Agratini [1]. Finally,

d , € 1
La(f) = f@)| < Cn S+ ).

This completes the proof of the first part.

Proof of second part of Theorem 3.1. Let S be a compact subset of [0, c0). The
pointwise continuity of function f’(-) at points of S, imply, by virtue of compactness
of S, that f'(-) is now uniformly continuous on S. Thus, ¢ is now independent of
x. Moreover S, being compact, is a bounded subset of [0,00). Thus z € S implies
|z| < C4, a constant. This implies by (3.4) and (3.5) that convergence is uniform. [

Theorem 3.2. Let f' € Cg[0,00). Then for § >0 and |a,b] C (a1, b1) we have

sup |4(f,) = £/(@)] < ('8, lon, i) + = 1 eufoonr

z€la,b]

Proof. We proceed in similar way as in the proof of Theorem 3.1. In the steps following
(3.3) if |t — x| < 4, then |f'(t) — f'(x)| < w(f',d,|a1,b1]). When [t — x| > 6, using
boundedness of f’ the total contribution is of order || f'||c0,00)O (%) as n — 0o, by
Lemma 2.1. Hence, the proof follows.

4. LINEAR COMBINATIONS

Theorem 4.1. Let f*+2) € C[0,00). Then there holds for each x € [0,00), point-
wise:

(41) L L(fka) - () = nl{ > qj(x)f(j’(x)} vo(), noeo

j=k+2

Moreover, if S is a compact subset of [0,00), then convergence (4.1) is uniform on S.
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Proof. Using Taylor’s series expansion, we write

(w — )

o f(2) (Q;) + ..

flw) =f(x) + (w = 2) f'(x) +
(w o x)2k+2
(2k + 2)!

w t1 to tok+1

+/// / (f(2k+2)(u)_f(2k+2)<x))dt2k+1 dtoy, - - - dtydu.

+ f(2k+2) ([E)

Operating L,(-,y) on both sides of above equation and in view of Lemma 2.1, we
obtain

(2)
Lalf) =1@) + (72— ) £ + T a1,y
(3) (2k+2)
+ / 3!(96)]93(1/”79) +oet WP%H(U”,?J)
+(1—a)™ (i <ny'>”a”Ry> :
v=0 4
where
v/n t) to tok+1

B, = / // N / (f(2k+2) (u) — f(2k+2) (x))dtogs1dtsy, - - - dtrdu
and p; (%, y) is a polynomial in y of degree j and in % of degree (j — 1).
This implies that

d (2
12 L (fa) = )+ L)

fO(z)
31

n(1— a)m”{ log(1 — a) 2 (nj) a’R, :1 Cii(gfm))” . CIZRZ,}.

py(1/n, x)

f(2k:+2) (z)

+ ps(1/n, ) + -+ mplzku(l/na )

v=1 d(nz) v!

Let ¢(n, ) :n(l—a)m’{log(l a)>o° nj)“ a’ R4y, dnnvat g } Now, taking

linear combinations on (4.2) and using their properties (1.3), we have

(k) - (1) () = { > ga) <x>} DOl R Oy, ).

j=k+2 J=0

We analyze last term as in (3.1) and obtain the required result.

The proof of the second part of theorem follows from the proof of the second part
of Theorem 3.1. O
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