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WELL-POSEDNESS AND ASYMPTOTIC STABILITY OF A
NON-LINEAR POROUS SYSTEM WITH A DELAY TERM

HOCINE MAKHELOUFI1, NADIA MEZOUAR2, AND MOUNIR BAHLIL1

Abstract. Our interest in this work is to treat a one-dimensional Porous system
with a non-linear damping and a delay in the non-linear internal feedback. We prove
the global existence and uniqueness of its solution in suitable function spaces by
means of the Faedo-Galerkin procedure combined with the energy method under
a suitable relation between the weight of the delayed feedback and the weight of
the non-delayed feedback. Also, we give an explicit and general decay rate estimate
by applying the well-known multiplier method integrated with some properties of
convex functions and for two opposites cases with respect to the speeds of wave
propagation.

1. Introduction

In the present paper, we study the well-posedness and asymptotic behavior of
solutions of the following Porous system
(1.1)

ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,
ρ2ϕtt − δϕxx + bux + ξϕ + µ1g1(ϕt) + µ2g2(ϕt(x, t − τ(t))) = 0, in ]0, 1[×]0, ∞[,
u(0, t) = u(1, t) = ϕ(0, t) = ϕ(1, t) = 0 in ]0, ∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in ]0, 1[,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in ]0, 1[,
ϕt(x, t − τ(0)) = f0(x, t − τ(0)), in ]0, 1[×]0, τ [,
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where x denotes the space variable, t is the time variable, τ(·) > 0 is a time varying
delay, µ1 is a positive constant and µ2 is a real number. The functions u = u(x, t)
and ϕ = ϕ(x, t) represent, respectively, the displacement of the solid elastic material
and the volume fraction and the initial data (u0, u1, ϕ0, ϕ1, f0) belongs to a suitable
Sobolev space. The original Porous system is governed by the following evolution
equations

ρ1utt =Tx,

ρ2ϕtt =Hx + G,

where T , H and G denote, respectively, the stress, the equilibrated stress and the
equilibrated body force. The constitutive equations are as follows

T = κux + bϕ, H = δϕx, G = −bux − ξϕ,

where ρ1, ρ2, κ, b, δ and ξ are positive constants satisfying in the one-dimensional
case, the following inequality

κξ > b2.

If we consider κ = b = ξ, we find the well-known Timoshenko system which is
introduced by S.Timoshenko [17] and it has been widely considered in the literature.
For the better comprehension of our motivation, we appeal to keep in mind that the
system

(1.2)
{

ρ1utt − κ(uxx − ϕx) = 0, in ]0, L[×]0, ∞[,
ρ2ϕtt − δϕxx + k(ux + ϕ) = 0, in ]0, L[×]0, ∞[,

is conservative. Namely, by taking any suitable boundary conditions into consideration,
the energy of (1.2) given by

E(t) = 1
2

∫ L

0

[
ρ1u

2
t + ρ2ϕ

2
t + κ(ux + ϕ)2 + δϕ2

x

]
dx,

satisfies the energy’s conservation property, that is, for all t > 0, E(t) = E(0).
In this vein, various damping such as viscoelastic damping, frictional damping and
thermal dissipation are employed to stabilize the vibrations. It has been shown that
the stability depends on the position and nature of the controls and some relations
between the constants ρ1, ρ2, κ and δ. Let us recall some known results on the
stability of the Timoshenko system with frictional dampings. Soufyane and Wehbe
[16] used the unique damping a(x)ϕt in the shear angle displacement and showed
that the solution is uniformly stable. This one has been obtained in the case of the
equal-speeds, i.e.,

(1.3) ρ1

κ
= ρ2

δ
.

Raposo et al. [15] examined (1.2) by setting two linear frictional dampings ut and ϕt

where they realized an exponential decay result without imposing any condition on the
coefficients. In [1], Alabau Boussouira extended [16] to a problem with a non-linear
damping acting in the second equation. Under the condition (1.3), she established a
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general and semi-explicit formula for the decay rate of the solutions. This result was
later improved by Mustafa and Messaoudi [11] where they obtained a general and
explicit decay estimate. In the other hand, for the Porous system, Quintanilla [13]
proved that the damping aϕt is not strong enough to obtain the exponential stability
result. However, Apalara [3] got the exponential decay of the solutions for the same
problem provided (1.3) holds true. Furthermore, in the nonequal-speeds case, he
[3] established a general decay result when he employed a weak non-linear damping
µ(t)g(ϕt).

In the recent years, the Timoshenko system with time delay has been discussed by
several researchers. In particular, we consider the following model with a delay term
(1.4){

ρ1utt − κ(uxx − ϕx) + a1f1(ut) + a2f2(ut(x, t − τ(t))) = 0, in ]0, L[×]0, ∞[,
ρ2ϕtt − δϕxx + κ(ux + ϕ) + µ1g1(ϕt) + µ2g2(ϕt(x, t − τ(t))) = 0, in ]0, L[×]0, ∞[.

Here, fi and gi are real functions, ai and µi are positive numbers for i = 1, 2. If
ai = 0, gi(x) = x and µ2 < µ1, then the exponential stability has been proved by
Kiran et al. [6] in the case of equal-speeds. In the case of a constant delay, Apalara [2]
considered (1.4) when µi = 0, fi(x) = x and a2 < a1 and established an exponential
stability result provided ρ1

κ
= ρ2

δ
. In the opposite case, only a polynomial decay is

obtained. As far as we know, the first work investigated the Timoshenko beam with
a nonlinear delay term is the one of Benaissa and Bahlil [5]. The problem treated is
(1.4) with ai = 0. They considered only the equal-speeds case where they obtained
an explicit decay estimate under a suitable relation between µ1 and µ2 and some
additional assumptions. For the Porous system with delay term, the subject of this
article, we cite the works [10, 14] and [7]. The authors of [7] examined a non-linear
Porous system of the form
{

ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,
ρ2ϕtt − δϕxx + bux + ξϕ + µ1ϕt + µ2ϕt(x, t − τ) + α(t)g(ϕt) = 0, in ]0, 1[×]0, ∞[,

and established, under the assumption |µ2| < µ1, a general decay of solution when
ρ1
κ

= ρ2
δ

.
As a consequence of the works cited above, if only one equation of a Timoshenko

system is damped then the uniform stability may be achieved for weak solutions if and
only if ρ1

κ
= ρ2

δ
. However, in the situation when ρ1

κ
̸= ρ2

δ
, a weaker decay rate result

is achieved for strong solutions. According to this results, three questions naturally
arise.

1. Is it possible to consider the Porous system with a non-linear damping term
and a time varying delay in the internal feedback acting only in the second equation
and get the same result as in the Timoshenko system?

2. In the equal-speeds case, is it possible to get the stability result with same
hypotheses on µ1, µ2, g1 and g2 as in the Timoshenko system?
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3. As we have mentioned above, the nonequal-speeds case is not considered for
the non-linear Timoshenko system with delay (see [5]). So, is it possible to obtain the
stability result under the same conditions imposed for the equal-speeds case?

The main aim of this manuscript is to give positive answers to theses three questions
by investigating (1.1).

The rest of our paper is as follows. In the next section, we provide some assumptions
and materials needed in our work. In Section 3, we state and prove the existence and
the uniqueness results. The last section is devoted to the study of the asymptotic
behavior of the solutions. We use c throughout this paper to denote a generic fixed
positive constant, which may be different in different estimates.

2. Preliminaries

In this section, we present some assumptions, materials and notations that will be
used later. Firstly, following the same arguments of Nicaise and Pignotti [12], we
introduce the new variable

z(x, ρ, t) = ϕt(x, t − ρτ(t)), x ∈ [0, 1], ρ ∈ [0, 1], t > 0.

It is clear that

τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0, in ([0, 1])2 × [0, ∞].

Hence, our problem (1.1) becomes
(2.1) 

ρ1utt − κuxx − bϕx = 0, in ]0, 1[×]0, ∞[,
ρ2ϕtt − δϕxx + bux + ξϕ + µ1g1(ϕt) + µ2g2(z(x, 1)) = 0, in ]0, 1[×]0, ∞[,
τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0, in (]0, 1[)2×]0, ∞[,
u(0, t) = u(1, t) = ϕ(0, t) = ϕ(1, t) = 0, in ]0, ∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in ]0, 1[,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in ]0, 1[,
z(x, ρ, 0) = f0(x, −ρτ(0)), in (]0, 1[)2.

In order to deal with the new variable z, we define the Hilbert space

L2
z(0, 1) = L2

(
0, 1; L2(0, 1)

)
=
{

z :]0, 1[→ L2(0, 1),
∫ 1

0

∫ 1

0
z2(x, ρ)dρdx < ∞

}
,

which endowed with the inner product

(z, z̃) =
∫ 1

0

∫ 1

0
z(x, ρ, t)z̃(x, ρ, t)dρdx.

We consider now the following assumptions.
(A1) g1 : R → R is a strictly increasing function of class C1 and g2 : R → R is

an increasing function of class C1 such that it exist ϵ < 1, c1, c2 and a convex and
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non-decreasing function H : R+ → R+ satisfying
(2.2)

H(0) = 0 and H is linear on [0, ϵ] or H ′(0) = 0 and H ′′ > 0 on ]0, ϵ] such that

c1|s1| ≤ |g1(s1)| + |g2(s2)| ≤ c2
(
|s1| + |s2|

)
, if |s1| + |s2| ≥ ϵ,

s2
1 + g2

1(s1) + g2
2(s2) ≤ H−1

(
s1g1(s1) + s2g2(s2)

)
, if |s1| + |s2| ≤ ϵ.

Also, for any s ∈ R, we assume that it exist some positive constants c̃2, α1 and α2
satisfying
(2.3) |g′

2(s)| ≤ c̃2

and
(2.4) α1sg2(s) ≤ G(s) ≤ α2sg1(s),
where G is a primitive of g2.

(A2) τ is a function in W 2,∞([0, T ]), T > 0, such that{
0 < τ0 ≤ τ(t) ≤ τ1, for all t > 0,
τ ′(t) ≤ θ < 1, for all t > 0,

where τ0 and τ1 are a positive numbers.
(A3) With respect to the weights of feedbacks µi, i = 1, 2, we assume that

|µ2| <
α1(1 − θ)

α2(1 − α1θ)µ1.

We define the energy associated with the solution of (2.1) as
(2.5)
E(t) = 1

2

∫ 1

0

[
ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ + 2τ(t)γ

∫ 1

0
G(z(x, ρ))dρ

]
dx,

where γ is a positive number such that
(1 − α1)|µ2|
α1(1 − θ) < γ <

µ1 − α2|µ2|
α2

.

Remark 2.1. The energy functional E(t) defined in (2.5) is positive. In fact, we can
easily show that

κu2
x + 2buxϕ + ξϕ2 = 1

2

[(
ux + b

κ
ϕ
)2

+ ξ
(

ϕ + b

ξ
ux

)2
+ 2κ1u

2
x + 2ξ1ϕ

2
]
,

where 2κ1 = κ − b2

ξ
and 2ξ1 = ξ − b2

κ
are positives from κξ > b2. Thus,

κu2
x + 2buxϕ + ξϕ2 >

1
2

[
κ
(

ux + b

κ
ϕ
)2

+ ξ
(

ϕ + b

ξ
ux

)2
]

> 0,

which implies the positivity of E(t) and

(2.6) E(t) >
1
2

∫ 1

0

[
ρ1u

2
t + ρ2ϕ

2
t + κ1u

2
x + ξ1ϕ

2 + 2γτ(t)
∫ 1

0
G(z(x, ρ))dρ

]
dx.
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Remark 2.2. • The strict non-decreasing property of g1 implies the existence of a
positive constant c̃1 satisfying
(2.7) c̃1 < g′

1(s).
• Assumption (2.2) implies that s1g1(s1) + s2g2(s2) > 0 for all s1, s2 ∈ R.
• By the mean value theorem for integrals and the monotonicity of g2, we deduce

that
G(s) =

∫ s

0
g2(σ)dσ ≤ sg2(s),

then α1 < α2 ≤ 1.

Remark 2.3. Let Ψ∗ be the conjugate function of the differential convex function Ψ,
i.e.,

Ψ∗(s) = sup(st − Ψ(t)),
then Ψ∗ is the Legendre transform of Ψ, which is given by (see Arnold [4])

Ψ∗(s) = s(Ψ′)−1(s) − Ψ[(Ψ′)−1(s)], if s ∈ [0, Ψ′(r)],
satisfies the generalized Young inequality
(2.8) AB ≤ Ψ∗(A) + Ψ(B), if A ∈ [0, Ψ′(r)], B ∈ [0, r].

A starting point will be to give a derivative’s upper bounded of the functional E1
defined as

(2.9) E1(t) = E(t) + ε
∫ 1

0

∫ 1

0
z2(x, ρ)dρdx, for ε ≥ 0.

Lemma 2.1. For any ε ≥ 0, the functional E1 satisfies along the solution of (2.1)
the following estimate
(2.10)
E ′

1(t) ≤ −β1

∫ 1

0
ϕtg1(ϕt)dx − β2

∫ 1

0
z(x, 1)g2(z(x, 1))dx + ε

∫ 1

0
ϕ2

t dx − ε
∫ 1

0
z2(x, 1)dx,

where β1 = µ1 − γα2 − α2|µ2| and β2 = γ(1 − θ)α1 − (1 − α1)|µ2|.

Proof. Multiplying (2.1)1 and (2.1)2 by ut and ϕt, respectively, and using integration
by parts over [0, 1], we obtain

1
2

d

dt

∫ 1

0

[
ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ

]
dx(2.11)

+ µ1

∫ 1

0
ϕtg1(ϕt)dx + µ2

∫ 1

0
ϕtg2(z(x, 1))dx = 0.

Multiplying (2.1)3 by γg2(z(x, ρ)) and integrating the product over ([0, 1])2, we get

γτ(t)
∫ 1

0

∫ 1

0
zt(x, ρ)g2(z(x, ρ))dρdx + γ(1 − ρτ ′(t))

∫ 1

0

∫ 1

0
zρ(x, ρ)g2(z(x, ρ))dρdx = 0.

This means that

γ
d

dt

∫ 1

0

∫ 1

0
τ(t)G(z(x, ρ))dρdx + γ

∫ 1

0

∫ 1

0

∂

∂ρ

(
(1 − ρτ ′(t))G(z(x, ρ))

)
dρdx = 0.
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Consequently, using the fact that zt(x, 0, t) = ϕt, we get

(2.12) γ
d

dt

∫ 1

0

∫ 1

0
τ(t)G(z(x, ρ)dρdx = −γ

∫ 1

0

[
(1 − τ ′(t))G(z(x, 1)) − G(ϕt)

]
dx.

Also, we have

(2.13) ε
d

dt

∫ 1

0

∫ 1

0
z2(x, ρ)dρdx = −ε

∫ 1

0

[
z2(x, 1) − ϕ2

t

]
dx.

The last equality has been obtained by applying the same previous arguments and
after multiplying (2.1)3 by 2εz(x, ρ). Combining the estimates (2.11)–(2.13) and using
(2.4), we get

E ′
1(t) ≤ − (µ1 − γα2)

∫ 1

0
ϕtg1(ϕt)dx − γ(1 − θ)α1

∫ 1

0
z(x, 1)g2(z(x, 1))dx(2.14)

− ε
∫ 1

0
z2(x, 1)dx + ε

∫ 1

0
ϕ2

t dx − µ2

∫ 1

0
ϕtg2(z(x, 1))dx.

From Remark 2.3, we have
G∗(s) = sg−1

2 (s) − G(g−1
2 (s)), for all s ≥ 0.

Hence,
G∗(g2(z(x, 1))) = z(x, 1)g2(z(x, 1) − G(z(x, 1)).

Taking (2.8) with A = g2(z(x, 1)) and B = ϕt, and using (2.4) again, we obtain
(2.15) µ2ϕtg2(z(x, 1)) ≤ α2|µ2|ϕtg1(ϕt) + (1 − α1)|µ2|z(x, 1)g2(z(x, 1)).
By inserting (2.15) into (2.14), we arrive at the desired inequality. This finishes the
proof. □

3. The Well-posedness of the Probem

In the current section, we prove the existence and the uniqueness results to system
(2.1). Firstly, we prove the existence of a unique strong solution, next, using a
density argument, we extend the obtained result for weak solutions. For this, let
U = U(t) =

(
u, ut, ϕ, ϕt, z)T and U0 = U(0) = (u0, u1, ϕ0, ϕ1, f0(·, − · τ(0))

)T
. We

then consider the following spaces
H = H1

0 (0, 1) × L2(0, 1) × H1
0 (0, 1) × L2(0, 1) × L2

z(0, 1)
and
H0 =

(
H2 ∩ H1

0 (0, 1)
)

× H1
0 (0, 1) ×

(
H2 ∩ H1

0 (0, 1)
)

× H1
0 (0, 1) × L2

(
0, 1; H1(0, 1)

)
.

Our first main result is given by the following theorem.

Theorem 3.1. Assuming that the assumptions (A1)-(A3) hold and that κξ > b2. Then
for any U ∈ H satisfying the compatibility condition

f0(·, 0) = ϕ1,
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problem (2.1) admits only one global weak solution

U ∈ C
(
[0, +∞);H

)
.

Moreover, if U0 ∈ H0, the solution of (2.1) is strong solution, and satisfies

U ∈ C
(
[0, +∞);H0

)
∩ C1([0, +∞);H

)
.

Proof. The proof will be established by implementing the Faedo-Galerkin method.
For, let U ∈ H0, T > 0 be fixed and for m = 1, 2, . . . , let {Φm}m∈N be a Hilbertian
basis of H1

0 (0, 1) and F m the vector space generated by Φ1, Φ2, . . . , Φm. Defining, for
1 ≤ i ≤ m, the sequence Ψi(x, ρ) as

Ψi(x, 0) = Φi(x).

Then, we may extend Ψi(x, 0) by Ψi(x, ρ) over L2
z(0, 1) and denote Zm the space

generated by Ψ1, Ψ2, . . . , Ψm. We will construct an approximate solution (um, ϕm, zm),
i = 1, 2, . . . , in the form

(um(x, t), ϕm(x, t)) =
(

m∑
i=1

cim(t),
m∑

i=1
dim(t)

)
Φi(x),

zm(x, ρ) =
m∑

i=1
eim(t)Ψi(x, ρ),

where cim, dim and eim, i = 1, 2, . . . , m, are determined by the following finite dimen-
sional problem

(3.1)



(
κum

x + bϕm, Φi
x

)
+
(
ρ1u

m
tt , Φi

)
= 0,(

δϕm
x , Φi

x

)
+
(
ρ2ϕ

m
tt + bum

x + ξϕm + µ1g1(ϕm
t ) + µ2g2(zm(·, 1)), Φi

)
= 0,(

τ(t)zm
t (·, ρ) + (1 − ρτ ′(t))zm

ρ (·, ρ), Ψi(·, ρ)
)

= 0,

with

um(·, 0) =um
0 =

m∑
i=1

(u0, Φi)Φi → u0, in H2 ∩ H1
0 (0, 1),(3.2)

um
t (·, 0) =um

1 =
m∑

i=1
(u1, Φi)Φi → u1, in H1

0 (0, 1),

ϕm(0) =ϕm
0 =

m∑
i=1

(ϕ0, Φi)Φi → ϕ0, in H2 ∩ H1
0 (0, 1),

ϕm
t (·, 0) =ϕm

1 =
m∑

i=1
(ϕ1, Φi)Φi → ϕ1, in H1

0 (0, 1),

zm(·, ·, ·, 0) =zm
0 =

m∑
i=1

(f0, Ψi)Ψi → f0, in L2
(
0, 1; H1(0, 1)

)
,

as m → +∞.
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The standard methods of ODEs give the existence of a unique solution of (3.1)
on the inertval [0, Tm], 0 < Tm < T . In the next step, we will prove that Tm is
independent of m. In other words, the approximate solution becomes global and
defined for all t > 0.

1.The first priori estimate. As for Lemma 2.1, the functional

Em
1 (t) =1

2

∫ 1

0

[
ρ1|um

t |2 + ρ2|ϕm
t |2 + κ|um

x |2 + δ|ϕm
x |2 + ξ|ϕm|2 + 2bum

x ϕm

+ 2γτ(t)
∫ 1

0
G(zm(x, ρ))dρ + 2ε

∫ 1

0
|zm(x, ρ)|2dρ

]
dx

satisfies, for any ε ≥ 0,

(Em
1 (t))′ + β1

∫ 1

0
ϕm

t g1(ϕm
t )dx + β2

∫ 1

0
zm(x, 1)g2(zm(x, 1))dx

+ ε
∫ 1

0
|zm(x, 1)|2dx ≤ ε

∫ 1

0
|ϕm

t |2dx.

Choosing ε > 0, then integrating over [0, t] and taking the convergences (3.2) into
account, we get

Em
1 (t) + β1

∫ t

0

∫ 1

0
ϕm

t g1(ϕm
t )dxdt

+ β2

∫ t

0

∫ 1

0
zm(x, 1)g2(zm(x, 1))dxdt + ε

∫ t

0

∫ 1

0
|zm(x, 1)|2dxdt

≤c + ε
∫ t

0

∫ 1

0
|ϕm

t |2dxdt.

The Gronwall’s Lemma yields the following first priori estimate

Em
1 (t) +

∫ t

0

∫ 1

0
ϕm

t g1(ϕm
t )dxdt +

∫ t

0

∫ 1

0
zm(x, 1)g2(zm(x, 1))dxdt(3.3)

+
∫ t

0

∫ 1

0
|zm(x, 1)|2dxdt ≤ c.

This estimate gives us the global existence of (um, ϕm, zm) in [0, +∞) and

zm is uniformly bounded in L∞
loc

(
0, ∞; L2

z(0, 1)
)
,

um, ϕm are uniformly bounded in L∞
loc

(
0, ∞; H1

0 (0, 1)
)
,

um
t , ϕm

t are uniformly bounded in L∞
loc

(
0, ∞, L2(0, 1)

)
,

ϕm
t g1(ϕm

t ) is uniformly bounded in L1
(
(0, T ) × (0, 1)

)
,

zm(x, 1)g2(zm(x, 1)) is uniformly bounded in L1
(
(0, T ) × (0, 1)

)
.

2. The second priori estimate. Firstly, we are going to estimate um
tt (0) and

ϕm
tt (0) in the L2-norm. Also, we need to estimate zm

t (x, ρ, 0) in the L2
z-norm. For that,
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we replace Φi in (3.1)1 by um
tt , Φi in (3.1)2 by ϕm

tt and using Young’s inequality to get∫ 1

0

[
|um

tt (0)|2 + |ϕm
tt (0)|2

]
dx ≤c

∫ 1

0

[
|um

xx(0)|2 + |um
x (0)|2 + |ϕm

xx(0)|2 + |ϕm
x (0)|2(3.4)

+ |ϕm(0)|2 + g2
1(ϕm

t (0)) + g2
2(zm(x, 1, 0))

]
dx.

Replacing Ψi in (2.1)3 by zm
t (x, ρ, t) and using Cauchy-Schwarz and Young’s inequali-

ties, we get

(3.5)
∫ 1

0

∫ 1

0
|zm

t (x, ρ, 0)|2dρdx ≤ c
∫ 1

0

∫ 1

0
|zm

ρ (x, ρ, 0)|2dρdx.

The sum of (3.4)–(3.5) with (3.2) yields

(3.6)
∫ 1

0

[
|um

tt (0)|2 + |ϕm
tt (0)|2 +

∫ 1

0
|zm

t (x, ρ, 0)|2dρ
]
dx ≤ c.

Now, we derivate (3.1)1 and (3.1)2 with respect to t. Then, we set Φi = 2um
tt and

Φi = 2ϕm
tt , respectively, in the first and the second resulting equations and using the

non-decreasing property of g1, we find
d

dt

∫ 1

0

[
ρ1|um

tt |2 + ρ2|ϕm
tt |2 + κ|um

xt|2 + δ|ϕm
xt|2 + ξ|ϕm

t |2 + 2bum
xtϕ

m
t

]
dx

≤ − µ2

∫ 1

0
zm

t (x, 1)g′
2(zm(x, 1))ϕm

tt dx.

The boundedness of g′
2 and the Young’s inequality imply that

d

dt

∫ 1

0

[
ρ1|um

tt |2 + ρ2|ϕm
tt |2 + κ|um

xt|2 + δ|ϕm
xt|2 + ξ|ϕm

t |2 + 2bum
xtϕ

m
t

]
dx(3.7)

≤ϵ1

∫ 1

0
|zm

t (x, 1)|2dx + c
∫ 1

0
|ϕm

tt |2dx.

In the other hand, taking the derivative of (3.1)3 with respect to t and then setting
Ψi = 2zm

t (x, ρ, t) in the resulting equation, it follows that

d

dt

∫ 1

0

∫ 1

0

τ(t)
(1 − ρτ ′(t)) |zm

t (x, ρ, t)|2dρdx +
∫ 1

0

∫ 1

0

(
τ(t)

(1 − ρτ ′(t))

)′
|zm

t (x, ρ, t)|2dρdx

+
∫ 1

0

∫ 1

0

d

dρ
|zm

t (x, ρ, t)|2dρdx = 0.

As zm
t (x, 0, t) = ϕm

tt (x, t), it comes

d

dt

∫ 1

0

∫ 1

0

τ(t)
(1 − ρτ ′(t)) |zm

t (x, ρ, t)|2dρdx +
∫ 1

0

∫ 1

0

(
τ(t)

(1 − ρτ ′(t))

)′
|zm

t (x, ρ, t)|2dρdx

(3.8)

+
∫ 1

0
|zm

t (x, 1, t)|2dρdx =
∫ 1

0
|ϕm

tt |2dx.
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Let Im be defined by

Im(t) =
∫ 1

0

[
ρ1|um

tt |2 + ρ2|ϕm
tt |2 + κ|um

xt|2 + δ|ϕm
xt|2

+ ξ|ϕm
t |2 + 2bum

xtϕ
m
t + τ(t)

(1 − ρτ ′(t))

∫ 1

0
|zm

t (x, ρ)|2dρ
]
dx,

hence from the estimates (3.7)–(3.8), we find

(Im(t))′ + (1 − ϵ1)
∫ 1

0
|zm

t (x, 1))|2dx ≤ c
∫ 1

0
|ϕm

tt |2dx.

Choosing ϵ1 < 1, then integrating over [0, t], we get

Im(t) +
∫ t

0

∫ 1

0
|zm

t (x, 1)|2dxdt ≤ cIm(0) + c
∫ t

0

∫ 1

0
|ϕm

tt |2dxdt.

Employing Gronwall’s lemma with (3.2) and (3.6), we obtain the second estimate
below

(3.9) Im(t) +
∫ t

0

∫ 1

0
|zm

t (x, 1))|2dxdt ≤ c.

We, therefore, deduce that
zm

t is uniformly bounded in L2
(
0, T ; L2

z(0, 1)
)
,

um
t , ϕm

t are uniformly bounded in L∞
loc

(
0, ∞; H1

0 (0, 1)
)

,

um
tt , ϕm

tt are uniformly bounded in L∞
loc

(
0, ∞; L2(0, 1)

)
,

Hence it follows from the estimates (3.3) and (3.9) that it exist subsequences
{un}∞

n=1 ⊂ {um}∞
m=1, {ϕn}∞

n=1 ⊂ {ϕm}∞
m=1 and {zn}∞

n=1 ⊂ {zm}∞
m=1 verify for all

T ≥ 0 the following convergences

(3.10)



g1(ϕn
t ) → f and g2(zn) → h weakly-star in L2

(
0, T ; L2

)
,

un → u and ϕn → ϕ weakly-star in L2
(
0, T ; H1

0

)
,

un
t → ut and ϕn

t → ϕt weakly-star in L∞
(
0, T ; H1

0

)
,

un
tt → utt and ϕn

tt → ϕtt weakly-star in L∞
(
0, T ; L2

)
,

zn → z and zn
t → zt weakly-star in L∞

(
0, T ; L2

z

)
,

We will show that (u, ϕ, z) is a strong solution of system (2.1). Firstly, we prove
that f = g1(ϕt) and h = g2(z(x, 1)) which will be given in the following lemma.

Lemma 3.1. For each T > 0, g1(ϕn
t ) → g1(ϕt) weakly-star in L2

(
(0, 1) × (0, T )

)
and

g2(zn(x, 1)) → g2(z(x, 1)) weakly-star in L2
(
(0, 1) × (0, T )

)
.

Proof. From (3.9), we have ϕn
t is bounded in L∞(0, T ; H1

0 ) and ϕn
tt is bounded in

L∞(0, T ; L2). Then, the injection by continuity in Lp gives us the boundedness of
ϕn

t in L2(0, T ; H1
0 ) and ϕn

tt in L2(0, T ; L2). Hence, ϕn
t is bounded in H1(Q), where
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Q = (0, 1) × (0, T ). It is known that the embedding H1(Q) ↪→ L2(Q) is compact.
This permit us to extract a subsequence ϕn, still represented by the same notation,
such that

ϕn
t → ϕt strongly in L2

(
0, T ; L2(0, 1)

)
,

which gives
ϕn

t → ϕt, a.e. on Q.

Then, by the continuity of g1,

(3.11) g1(ϕn
t ) → g1(ϕt), a.e. on Q.

Similarly,

(3.12) g2(zn(x, 1)) → g2(z(x, 1)), a.e. on Q.

On the other hand, with Rm(x, t) defined as

Rm(x, t) = ϕm
t g1(ϕm

t ) + zm(x, 1)g2(zm(x, 1)),

we assert by using Jensen’s inequality and the concavity of H−1 that∫ 1

0
H−1

(
Rm(x, t)

)
dx ≤cH−1

(∫ 1

0
Rm(x, t)dx

)
(3.13)

≤cH∗(1) + c
∫ 1

0
Rm(x, t)dx.

For rm = |ϕm
t | + |zm(x, 1)|, we write∫ 1

0

[
g2

1(ϕm
t ) + g2

2(zm(x, 1))
]
dx ≤

∫
rm≤ϵ

[
g2

1(ϕm
t ) + g2

2(zm(x, 1))
]
dx

+
∫

rm≥ϵ

[
g2

1(ϕm
t ) + g2

2(zm(x, 1))
]
dx.

Then, by using (2.2) and (3.13), we get∫ 1

0

[
g2

1(ϕm
t ) + g2

2(zm(x, 1))
]
dx ≤ cH∗(1) + c

∫ 1

0
Rm(x, t)dx.

Thus, by (3.3), it results∫ t

0

∫ 1

0

[
g2

1(ϕm
t ) + g2

2(zm(x, 1))
]
dxdt ≤ c,

which implies that g1(ϕn
t ), g2(zn(x, 1)) ∈ L2(Q). Combining these with (3.11)–(3.12)

and using Lemma 1.3 in [9] page 12, we derive to

g1(ϕn
t ) → g1(ϕt) weakly-star in L2((0, 1) × (0, T )),

g2(zn(x, 1)) → g2(z(x, 1)) weakly-star in L2((0, 1) × (0, T )).
This shows that f = g1(ϕt) and h = g2(z(x, 1)). □



NON-LINEAR POROUS SYSTEM WITH A DELAY TERM 603

Passage to the limit. To prove that (u, ϕ, z) is a strong solution of problem (2.1)
we discuss as in [9]. For this, we consider functions v, ω ∈ C

(
0, T ; H1

0 (0, 1)
)

and
y ∈ C

(
0, T ; L2

z(0, 1)
)

having the forms

(v(x, t), ω(x, t)) =
( N∑

i=1
c̃in(t),

N∑
i=1

d̃in(t)
)

Φi(x),(3.14)

y(x, ρ, t) =
N∑

i=1
ẽin(t)Ψi(x, ρ),(3.15)

where N ≥ n is a fixed integer.
Then we multiply (3.1)1, (3.1)2 and (3.1)3 by c̃in(t), d̃in and c̃in, respectively, and

summing the resultants over i from 1 to N , we find that
(3.16)

∫ T

0

∫ 1

0

[(
κun

x + bϕn
)
vx + ρ1u

n
ttv
]
dxdt = 0,∫ T

0

∫ 1

0

[
δϕn

xωx +
(

ρ2ϕ
n
tt + bun

x + ξϕn
x + µ1g1(ϕn

t ) + µ2g2(zn(x, 1))
)

ω
]
dxdt = 0,∫ T

0

∫ 1

0

∫ 1

0

[
τ(t)zn

t (x, ρ) + (1 − ρτ ′(t))zn
ρ (x, ρ)

]
y(x, ρ)dρdxdt = 0.

After passing to the limit in (3.16) as n → +∞ and using (3.10), we arrive at
(3.17)

∫ T

0

∫ 1

0

[(
κux + bϕ

)
vx + ρ1uttv

]
dxdt = 0,∫ T

0

∫ 1

0

[
δϕxωx +

(
ρ2ϕtt + bux + ξϕ + µ1g1(ϕt) + µ2g2(z(x, 1))

)
ω
]
dxdt = 0,∫ T

0

∫ 1

0

∫ 1

0

[
τ(t)zt(x, ρ) + (1 − ρτ ′(t))zρ(x, ρ)

]
y(x, ρ)dρdxdt = 0.

The above equations hold for all (v, ω, y) ∈
(
L2
(
0, T ; H1

0

))2
× L2

(
0, T ; L2

z

)
since the

functions of the forms (3.14) and (3.15) are dense, respectively, in L2
(
0, T ; H1

0

)
and

L2
(
0, T ; L2

z

)
. Next, we must verify that the limit functions u, ϕ, z satisfy the initial

conditions, i.e.,

(3.18) u(·, 0) = u0, ut(·, 0) = u1, ϕ(·, 0) = ϕ0, ϕt(·, 0) = ϕ1, z(·, 0) = f0.

For, we let v, ω ∈ C2
(
0, T ; H1

0

)
and y ∈ C1(0, T, L2

z) with

u(x, T ) = ut(x, T ) = ϕ(x, T ) = ϕt(x, T ) = y(x, ρ, T ) = 0.
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Then we integrate with respect to t in (3.17), we get
(3.19)

∫ T

0

∫ 1

0

[
ρ1uvtt −

(
κux + bϕ

)
vx

]
dxdt + ρ1

∫ 1

0

[
u(0)vt(0) − ut(0)v(0)

]
dx = 0,∫ T

0

∫ 1

0

[
ρ2ϕωtt + δϕxωx +

(
bux + ξϕx + µ1g1(ϕt) + µ2g2(z(x, 1))

)
ω
]
dxdt

+ρ2

∫ 1

0

[
ϕ(0)ωt(0) − ϕt(0)ω(0)

]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
− z(x, ρ, t)yt(x, ρ, t) + 1 − ρτ ′(t)

τ(t) zρ(x, ρ, t)y(x, ρ, t)
]
dρdxdt

−
∫ 1

0

∫ 1

0
z(x, ρ, 0)y(x, ρ, 0)dρdx = 0.

Similarly from (3.16), we have


∫ T

0

∫ 1

0

[
ρ1u

nvtt +
(
κun

x + bϕn
)
vx

]
dxdt + ρ1

∫ 1

0

[
un(0)vt(0) − un

t (0)v(0)
]
dx = 0,∫ T

0

∫ 1

0

[
ρ2ϕ

nωtt + δϕn
xωx +

(
bun

x + ξϕn
x + µ1g1(ϕn

t ) + µ2g2(zn(x, 1))
)
ω
]
dxdt

+ρ2

∫ 1

0

[
ϕn(0)ωt(0) − ϕn

t (0)ω(0)
]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
zn(x, ρ, t)yt(x, ρ, t) + 1 − ρτ ′(t)

τ(t) zn
ρ (x, ρ, t)y(x, ρ, t)

]
dρdxdt

−
∫ 1

0

∫ 1

0
zn(x, ρ, 0)y(x, ρ, 0)dρdx = 0.

Recalling (3.10) and (3.2), we obtain

(3.20)



∫ T

0

∫ 1

0

[
ρ1uvtt +

(
κux + bϕ

)
vx

]
dxdt + ρ1

∫ 1

0

[
u0vt(0) − u1v(0)

]
dx = 0,∫ T

0

∫ 1

0

[
ρ2ϕωtt + δϕxωx +

(
bux + ξϕx + µ1g1(ϕt) + µ2g2(z(x, 1))

)
ω
]
dxdt

+ρ2

∫ 1

0

[
ϕ0ωt(0) − ϕ1ω(0)

]
dx = 0,∫ T

0

∫ 1

0

∫ 1

0

[
− z(x, ρ, t)yt(x, ρ, t) + 1 − ρτ ′(t)

τ(t) zρ(x, ρ, t)y(x, ρ, t)
]
dρdxdt

−
∫ 1

0

∫ 1

0
f0y(x, ρ, 0)dρdx = 0.

As v(x, 0), vt(x, 0), ω(x, 0), ωt(x, 0), y(x, ρ, 0) are arbitrary, comparing identities (3.19)
and (3.20), we deduce (3.18). Consequently, (2.1) admits at least one global strong
solution (u, ϕ, z).
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For the uniqueness, we assume that (ũ, ϕ̃, z̃) and (˜̃u,
˜̃
ϕ, ˜̃z) are two solutions of system

(2.1). Then (u, ϕ, z) = (ũ, ϕ̃, z̃) − (˜̃u,
˜̃
ϕ, ˜̃z) verifies the following system

(3.21)

ρ1utt − κuxx − bϕx = 0,

ρ2ϕtt − δϕxx + bux + ξϕ + µ1
(
g1(ϕ̃t) − g1(

˜̃
ϕt)
)

+ µ2
(
g2(z̃(x, 1)) − g2(˜̃z(x, 1))

)
= 0,

τ(t)zt(x, ρ, t) + (1 − ρτ ′(t))zρ(x, ρ, t) = 0,

u(0, t) = u(1, t) = ϕ(0, t) = ϕ(0, t) = 0,

u(x, 0) = ut(x, 0) = ϕ(x, 0) = ϕt(x, 0) = z(x, ρ, 0) = 0.

To get the uniqueness of solution of (2.1), we must verify that (u, ϕ, z) = (0, 0, 0) is
the solution of (3.21). For that, a multiplication of (3.21)1 by 2ut and (3.21)2 by 2ϕt,
yields

d

dt

∫ 1

0

[
ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ

]
dx + 2µ1

∫ 1

0
ϕt

(
g1(ϕ̃t) − g1(

˜̃
ϕt)
)
dx

(3.22)

+ 2µ2

∫ 1

0
ϕt

(
g2(z̃(x, 1)) − g2(˜̃z(x, 1))

)
dx = 0.

Then, we multiply (3.21)3 by 2z, we get

(3.23) d

dt

∫ 1

0

∫ 1

0
τ(t)z2(x, ρ)dρdx +

∫ 1

0
(1 − τ ′(t))z2(x, 1)dx −

∫ 1

0
ϕ2

t dx = 0.

By setting

Λ(t) =
∫ 1

0

[
ρ1u

2
t + ρ2ϕ

2
t + κu2

x + δϕ2
x + ξϕ2 + 2buxϕ + τ(t)

∫ 1

0
z2(x, ρ)dρ

]
dx

and summing the estimates (3.22)–(3.23), we obtain

Λ′(t) =2µ1

∫ 1

0
ωt

(
g1(ϕ̃t) − g1(

˜̃
ϕt)
)
dx +

∫ 1

0
ϕ2

t dx −
∫ 1

0
(1 − τ ′(t))z2(x, 1)dx(3.24)

− 2µ2

∫ 1

0
ϕt

(
g2(z̃(x, 1)) − g2(˜̃z(x, 1))

)
dx.

As g1 is an increasing function, we can easily see that(
s0 − s

)(
g1(s0) − g1(s)

)
> 0, for all s0, s ∈ R.

Thus, (3.24) becomes

Λ′(t) ≤
∫ 1

0
ϕ2

t dx − (1 − θ)
∫ 1

0
z2(x, 1)dx − 2µ2

∫ 1

0
ϕt

(
g2(z̃(x, 1)) − g2(˜̃z(x, 1))

)
dx.

Using Young’s inequality, we get

Λ′(t) ≤ c
∫ 1

0
ϕ2

t dx −
∫ 1

0
z2(x, 1)dx + ϵ2

∫ 1

0

(
g2(z̃(x, 1)) − g2(˜̃z(x, 1))

)2
dx.
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Since g2 is C1 then g2 is Lipschitzien function, this leads us to

Λ′(t) ≤ c
∫ 1

0
ϕ2

t dx − (1 − cϵ2)
∫ 1

0
z2(x, 1)dx.

Hence, for a suitable ϵ2, we have

Λ′(t) ≤ c
∫ 1

0
ϕ2

t dx.

As Λ(t) is positive (for the same raison given in Remark 2.1) and Λ(0) = 0, Gronwall’s
Lemma forces that Λ(t) = 0 (0 ≤ t ≤ T ), which means that u = ϕ = z = 0.

Consequently, (2.1) has only one global strong solution.
If U0 ∈ H, then it results from the density of H0 in H that the system (2.1) has a

unique global weak solution. □

4. Asymptotic Behavior

This section will be concerned with the study of the solution’s asymptotic behavior
of system (2.1). In fact, using the Lyapunov method, we will prove that, under equal
wave speeds and non-equal wave speeds cases, the solution of (2.1) converges to zero
as t tends to infinity.

We start with this important notation. By setting ε = 0 in (2.9) and under the
assumption (A1), we have

(4.1) E ′(t) ≤ −β1

∫ 1

0
ϕtg1(ϕt)dx − β2

∫ 1

0
z(x, 1)g2(z(x, 1))dx ≤ 0, for all t ≥ 0.

Then (2.1) is dissipative with respect to E.

4.1. Technical lemmas. In this subsection, we state and prove various lemmas given
for (u, ϕ, z) a solution of (2.1). It would help us to estimate the derivative of the
Lyapunov functional.

Lemma 4.1. The functional

F1(t) = −ρ1

∫ 1

0
utudx

satisfies

(4.2) F ′
1(t) ≤ −ρ1

∫ 1

0
u2

t dx + 3κ

2

∫ 1

0
u2

xdx + c
∫ 1

0
ϕ2

xdx.

Proof. A simple differentiation with respect to t, using (2.1)1, yields

F ′
1(t) = −ρ1

∫ 1

0
u2

t dx + κ
∫ 1

0
u2

xdx + b
∫ 1

0
uxϕdx.

The Young’s and Poincaré’s inequalities lead to (4.2). □
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Lemma 4.2. The functional defined by

F2(t) = ρ2

∫ 1

0
ϕtuxdx + δρ1

κ

∫ 1

0
utϕxdx

satisfies for any η > 0

F ′
2(t) ≤ − b

2

∫ 1

0
u2

xdx + η
(
u2

x(1, t) + u2
x(0, t)

)
+ δ2

4η

(
ϕ2

x(1, t) + ϕ2
x(0, t)

)(4.3)

+ c
∫ 1

0
ϕ2

xdx + c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx +
(

δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx.

Proof. Direct computations, using (2.1)1–(2.1)2, lead to

F ′
2(t) =

∫ 1

0
ux

[
δϕxx − bux − ξϕ − µ1g1(ϕt) − µ2g2(z(x, 1))

]
dx

+ δ

κ

∫ 1

0
ϕx

[
κuxx + bϕx

]
dx +

(
δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx.

An integration by parts gives

F ′
2(t) =

[
δuxϕx

]x=1

x=0
− b

∫ 1

0
u2

xdx + bδ

κ

∫ 1

0
ϕ2

xdx − ξ
∫ 1

0
uxϕdx − µ1

∫ 1

0
g1(ϕt)uxdx

− µ2

∫ 1

0
g2(z(x, 1))uxdx +

(
δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx.

Using Young’s and Poincaré’s inequalities, (4.3) is established. □

Lemma 4.3. Let χ be a solution of{
χxx = −ϕx,

χ(0) = χ(1) = 0.

Then the functional

F3(t) =
∫ 1

0

(
ρ2ϕtϕ + bρ1

κ
utχ

)
dx

satisfies the following estimate

F ′
3(t) ≤ − δ

∫ 1

0
ϕ2

xdx − 1
2

(
ξ − b2

κ

)∫ 1

0
ϕ2dx + η0

∫ 1

0
u2

t dx + c
∫ 1

0
ϕ2

t dx(4.4)

+ c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx, for all η0 > 0.

Proof. Differentiating F3 and using (2.1)1–(2.1)2, we get

F ′
3(t) = − ξ

∫ 1

0
ϕ2dx + b2

κ

∫ 1

0
χ2

xdx − δ
∫ 1

0
ϕ2

xdx + ρ2

∫ 1

0
ϕ2

t dx + bρ1

κ

∫ 1

0
utχtdx(4.5)

− µ1

∫ 1

0
ϕg1(ϕt)dx − µ2

∫ 1

0
ϕg2(z(x, 1))dx.
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By exploiting Young’s inequality, we have
bρ1

κ

∫ 1

0
utχtdx ≤η0

∫ 1

0
u2

t dx + c
∫ 1

0
χ2

t dx,(4.6)

µ1

∫ 1

0
ϕg1(ϕt)dx ≤1

4

(
ξ − b2

κ

)∫ 1

0
ϕ2dx + c

∫ 1

0
g2

1(ϕt)dx,(4.7)

µ2

∫ 1

0
ϕg2(z(x, 1))dx ≤1

4

(
ξ − b2

κ

)∫ 1

0
ϕ2dx + c

∫ 1

0
g2

2(z(x, 1))dx.(4.8)

Inserting (4.6)–(4.8) into (4.5) and using the fact that∫ 1

0
χ2

xdx ≤
∫ 1

0
ϕ2dx,∫ 1

0
χ2

t dx ≤
∫ 1

0
χ2

txdx ≤
∫ 1

0
ϕ2

t dx,

we obtain (4.4). □

Next, in order to eliminate the boundary terms, appearing in (4.3), we introduce
the following function
(4.9) m(x) = −4x + 2, x ∈ [0, 1].
Then, we have the following result.

Lemma 4.4. For any η > 0, the functional F4 defined by

F4(t) = η

κ

∫ 1

0
ρ1m(x)utuxdx + δ

4η

∫ 1

0
ρ2m(x)ϕtϕxdx

satisfies

F ′
4(t) ≤ − η

(
u2

x(1, t) + u2
x(0, t)

)
− δ2

4η

(
ϕ2

x(1, t) + ϕ2
x(0, t)

)
+ cηρ1

∫ 1

0
u2

t dx + c
∫ 1

0
ϕ2

t dx +
((1

4 + η

4

)
b + 2η

) ∫ 1

0
u2

xdx(4.10)

+ c
∫ 1

0
ϕ2

xdx + c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx.

Proof. By using (2.1)1, (2.1)2 and (4.9), it holds that

F ′
4(t) =η

κ

[
− κ

(
u2

x(1, t) + u2
x(0, t)

)
+ 2ρ1

∫ 1

0
u2

t dx + b
∫ 1

0
m(x)uxϕxdx

+ 2κ
∫ 1

0
u2

xdx

]
+ δ

4η

[
− δ

(
ϕ2

x(1, t) + ϕ2
x(0, t)

)
+ 2ρ2

∫ 1

0
ϕ2

t dx

+ 2δ
∫ 1

0
ϕ2

xdx − b
∫ 1

0
m(x)ϕxuxdx − µ1

∫ 1

0
m(x)ϕxg1(ϕt)dx

− µ2

∫ 1

0
m(x)ϕxg2(z(x, 1))dx − 2ξ

∫ 1

0
ϕ2dx

]
.
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The estimate (4.10) follows by exploiting Young’s and Poincaré’s inequalities. □

Lemma 4.5. The functional

F5(t) = τ(t)
∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx

satisfies

F ′
5(t) ≤ − τ(t)e−τ1

∫ 1

0

∫ 1

0
G(z(x, ρ, t))dρdx − α1(1 − θ)e−τ1

∫ 1

0
z(x, 1)g2(z(x, 1))dx

(4.11)

+ c
∫ 1

0
ϕ2

t dx + c
∫ 1

0
g2

1(ϕt)dx.

Proof. Taking the derivative of F5 and using (2.1)3, we have

F ′
5(t) =τ ′(t)

∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx

+
∫ 1

0

∫ 1

0
(1 − ρτ ′(t))e−τ(t)ρzρ(x, ρ, t)g2(z(x, ρ, t))dρdx.

Then

F ′
5(t) = −

∫ 1

0

∫ 1

0

d

dρ

[
(1 − ρτ ′(t))e−τ(t)ρG(z(x, ρ, t))

]
dρdx

−
∫ 1

0

∫ 1

0
τ(t)e−τ(t)ρG(z(x, ρ, t))dρdx

= −
∫ 1

0

[
(1 − τ ′(t))e−τ(t)G(z(x, 1, t)) − G(z(x, 0, t))

]
dx

− τ(t)
∫ 1

0

∫ 1

0
e−τ(t)ρG(z(x, ρ, t))dρdx.

Using (2.4) with the fact that z(x, 0, t) = ϕt, e−τ(t) ≤ e−τ1ρ ≤ 1 for all ρ ∈ [0, 1] and
τ ∈ [τ0, τ1] , we obtain

F ′
5(t) ≤ − τ(t)

∫ 1

0

∫ 1

0
e−τ1G(z(x, ρ, t))dρdx. − e−τ1(1 − θ)α1

∫ 1

0
z(x, 1)g2(z(x, 1))dx

+ α2

∫ 1

0
ϕtg1(ϕt)dx.

The estimate (4.11) follows by exploiting Young’s inequality. □

Lemma 4.6. For a suitable choice of N and Ni, i = 1, 2, . . . , 5, the functional defined
by

(4.12) L(t) = NE(t) +
5∑

i=1
NiFi(t).
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satisfies, for a fixed positive constant m0, the estimate

L′(t) ≤ − m0E(t) +
(

δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx + c

∫ 1

0
ϕ2

t dx(4.13)

+ c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx.

Proof. From (4.1), (4.2), (4.3), (4.4), (4.10) and (4.11), it follows that for any t ≥ 0

L′(t) ≤ − (N4 − N2)
[
η
(
u2

x(1, t) + u2
x(0, t)

)
+ δ2

4η

(
ϕ2

x(1, t) + ϕ2
x(0, t)

)]
−
[
ρ1N1 − η0N3 − ηcρ1N4

] ∫ 1

0
u2

t dx +
[
N3 + N4 + N5

]
c
∫ 1

0
ϕ2

t dx

−
[

b

2N2 − 3κ

2 N1 −
((1

4 + η

4

)
b + 2η

)
N4

] ∫ 1

0
u2

xdx

− 1
2

(
ξ − b2

κ

)
N3

∫ 1

0
ϕ2dx −

[
δN3 −

(
N1 + N2 + N4

)
c
] ∫ 1

0
ϕ2

xdx

− τe−τ N5

∫ 1

0

∫ 1

0
G(z(x, ρ))dρdx +

[
N2 + N3 + N4 + N5

]
c
∫ 1

0
g2

1(ϕt)dx

+
[
N2 + N3 + N4

]
c
∫ 1

0
g2

2(z(x, 1))dx + N2

(
δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx.

Furthermore, we take

N1 = 3ηc, N2 = N4 = N5 = 1, η0 = ηcρ1

N3
,

to get

L′(t) ≤ − ηcρ1

∫ 1

0
u2

t dx + c
∫ 1

0
ϕ2

t dx − 1
4

(
b − η

(
18κc + b + 8

)) ∫ 1

0
u2

xdx

(4.14)

−
(

δN3 − c
) ∫ 1

0
ϕ2

xdx − 1
2

(
ξ − b2

κ

)
N3

∫ 1

0
ϕ2dx + c

∫ 1

0
g2

2(z(x, 1))dx

− τe−τ
∫ 1

0

∫ 1

0
G(z(x, ρ))dρdx + c

∫ 1

0
g2

1(ϕt)dx +
(

δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx.

Now, we select η < b
18κc+b+8 and then we choose N3 large enough such that

δN3 − c > 0.

Hence, the estimate (4.14) with the fact that κξ > b2 and (2.6) gives us (4.13). □

4.2. General decay rates for equal of wave speeds. In this subsection, we show
that the solution have a general decay rate in the case of equal speeds of wave
propagation.
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Theorem 4.1. Let U ∈ H. Assuming that (A1), (A2) and (A3) are fulfilled, κξ > b2

and that
ρ1

κ
= ρ2

δ
.

Then, there exist positive constants a, a1 and a2 such that the solution of (2.1) satisfies

(4.15) E(t) ≤ aH−1
1

(
a1t + a2

)
, for all t > 0,

where
H1(t) =

∫ 1

t

1
H2(s)ds and H2(t) = tH ′(ϵ0t).

Proof. Since ρ1
κ

= ρ2
δ

, then we can easily show for N sufficiently large, that the
functional L given by (4.12) is equivalent to E, i.e.,

L(t) ∼ E(t).
We consider, as is [8], the following two partitions of [0, 1]

D1 =
{
x ∈ [0, 1] : |ϕt| + |z(x, 1)| ≤ ϵ

}
, D2 =

{
x ∈ [0, 1] : |ϕt| + |z(x, 1)| > ϵ

}
and we define R(x, t) by

R(x, t) = ϕtg1(ϕt) + z(x, 1, t)g2(z(x, 1, t)).
Then by recalling (2.2) and (4.1), we obtain

(4.16) L′(t) ≤ −m0E(t) − cE ′(t) +
∫
D1

H−1
(
R(x, t)

)
dx.

Now, we discuss two cases.
1. H is linear on [0, ϵ]. In this case, we obtain, for some positive constant c′,

L′(t) ≤ −m0E(t) − cE ′(t) − c′E ′(t).
Hence, L0 = L + (c + c′)E ∼ E satisfies

L0(t) ≤ −L0(0)e−ct,

which leads to
E(t) ≤ −cE(0)e−ct.

2. H is non linear on [0, ϵ]. By using Jensen’s inequality and the concavity of H−1,
we find that ∫

D1
H−1

(
R(x, t)

)
dx ≤ cH−1

(∫
D1

R(x, t)dx
)

.

Thus, (4.16) rewrites as

(4.17) L′(t) ≤ −m0E(t) − cE ′(t) + cH−1
(∫

D1
R(x, t)dx

)
.

For ϵ0 < ϵ and m1 > 0, the functional given by

L1(t) = H ′
(

ϵ0
E(t)
E(0)

)
L(t) + m1E(t)
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satisfies, for some fixed positive constants ζ0 and ζ1,
(4.18) ζ0L1(t) ≤ E(t) ≤ ζ1L1(t)
and

L′
1(t) = ϵ0

E ′(t)
E(0) H ′′

(
ϵ0

E(t)
E(0)

)
L(t) + H ′

(
ϵ0

E(t)
E(0)

)
L′(t) + m1E

′(t).

Next, by recaling the fact that E ′ ≤ 0, H ′ > 0 and H ′′ > 0 on [0, ϵ] and using (4.17),
we get
(4.19)

L′
1(t) ≤ −m0E(t)H ′

(
ϵ0

E(t)
E(0)

)
+ cH ′

(
ϵ0

E(t)
E(0)

)
H−1

(∫
D1

R(x, t)dx
)

+ m1E
′(t).

Let H∗ be the convex conjugate of H, then by testing (2.8) with

A = H ′
(

ϵ0
E(t)
E(0)

)
and B = H−1

(∫
D1

R(x, t)dx
)

,

we get

H ′
(

ϵ0
E(t)
E(0)

)
H−1

(∫
D1

R(x, t)dx
)

≤ H∗
(

H ′
(

ϵ0
E(t)
E(0)

))
+
∫
D1

R(x, t)dx.

Using (4.1) with the fact H∗ ≤ s(H ′)−1(s), we have that

(4.20) H ′
(

ϵ0
E(t)
E(0)

)
H−1

(∫
D1

R(x, t)dx
)

≤ ϵ0
E(t)
E(0)H ′

(
ϵ0

E(t)
E(0)

)
− cE ′(t).

The substitution of (4.20) into (4.19) provides

L′
1(t) ≤ −

(
m0E(0) − cϵ0

)E(t)
E(0)H ′

(
ϵ0

E(t)
E(0)

)
+ (m1 − c)E ′(t).

Fixing ϵ0 sufficiently small, so that m0E(0) − cϵ0 > 0, then for m1 > c, we can find a
positive constant a0 such that

(4.21) L′
1(t) ≤ −a0

E(t)
E(0)H ′

(
ϵ0

E(t)
E(0)

)
= −a0H2

(
ϵ0

E(t)
E(0)

)
,

where H2(t) = tH ′(ϵ0t) is a positive non-decreasing function on [0, 1]. Next, by setting
L2 = ζ0L1

E(0) , we can easily show, by (4.18), that L2 ∼ E. And, from (4.21), we discover
that
(4.22) L′

2(t) ≤ −a1H2(L(t)).
From the definition of H1, we have

H ′
1(t) = − 1

H2(t)
,

whereupon the inequality (4.22) becomes

L′
2(t) ≤ a1

1
H ′

1(L2(t))
,
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which implies [
H1(L2(t))

]′
≤ a1.

An integration over [0, t] yields that

H1(L2(t)) ≤ a1t + H1(L2(0)).

Then, using the non-decreasing property of H−1, we infer that

L2(t) ≤ H−1
(
a1t + a2

)
.

The use of L2 ∼ E leads us to (4.15). Hence, the proof is completed. □

4.3. General decay rates for non-equal of wave speeds. In this subsection, we
investigate the situation when ρ1

κ
̸= ρ2

δ
, which is more realistic in the view of physics.

Theorem 4.2. Let U0 ∈ H0. Assume that (A1) and (A2) hold, κξ > b2 and that
ρ1

κ
̸= ρ2

δ
.

Then, for

(4.23) |µ2| < min
{

α1

α2
,

2c̃1

c̃2(2 − θ)

}
(1 − θ)µ1,

there exist some positive numbers w and w1 such that for any t > 0

(4.24) E(t) ≤ wH−1
2

(
w1

t

)
.

Proof. Differentiating (2.1) with respect to x, we obtain

(4.25)



ρ1uxtt − κuxxx − bϕxx = 0,

ρ2ϕxtt − δϕxxx + buxx + ξϕx + µ1ϕxtg
′
1(ϕt) + µ2zx(x, 1)g′

2(z(x, 1)) = 0,

τ(t)zxt(x, ρ, t) + (1 − ρτ ′(t))zxρ(x, ρ, t) = 0,

ux(0, t) = ux(1, t) = ϕx(0, t) = ϕx(1, t) = 0,

ux(x, 0) = u0
x(x), ut(x, 0) = u1

x(x),
ϕx(x, 0) = ϕ1

x(x), ϕxt(x, 0) = ϕ1
x(x),

zx(x, ρ, 0) = f 0
x(x, −ρτ(0)).

Then, for a fixed positive constant γ̃ satisfying

(4.26) c̃2|µ2|
(1 − θ) < γ̃ <

(
2c̃1µ1 − c̃2|µ2|

)
,
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where c̃1 and c̃2 are introduced in (2.7) and (2.3), we define the modified energy
functional to system (4.25) as

E(t) =1
2

∫ 1

0

[
ρ1u

2
xt + ρ2ϕ

2
xt + κu2

xx + δϕ2
xx + ξϕ2

x

+ 2buxxϕx + 2γ̃τ(t)
∫ 1

0
z2

xt(x, ρ, t)dρ
]
dx.

Our point of departure will be to show that the modified energy functional E is
non-increasing. So, we have the following result.

Lemma 4.7. Under the assumptions in Theorem 4.2, the modified energy functional
E is non-increasing and satisfies for any t ≥ 0

(4.27) E′(t) ≤ −c
∫ 1

0
ϕ2

xtdx − c
∫ 1

0
z2

x(x, 1)dx.

Proof. Multiplying (4.25)1 and (4.25)2 by uxt and ϕxt, respectively, and integrating
by parts over [0, 1], we obtain

1
2 · d

dt

∫ 1

0

[
ρ1u

2
xt + ρ2ϕ

2
xt + κu2

xx + δϕ2
xx + ξϕ2

x + 2buxxϕx

]
dx(4.28)

+µ1

∫ 1

0
ϕ2

xtg
′
1(ϕt)dx + µ2

∫ 1

0
ϕxtzx(x, 1)g′

2(z(x, 1))dx = 0.

Similarly, we multiply (4.25)3 by γ̃zx(x, ρ, t), we get

(4.29) γ̃

2
d

dt

∫ 1

0

∫ 1

0
τ(t)z2

xt(x, ρ, t)dρdx = − γ̃

2 (1 − τ ′(t))
∫ 1

0
z2

x(x, 1)dx + γ̃

2

∫ 1

0
ϕ2

xtdx.

Combining the estimates (4.28)–(4.29) and using the fact that c̃1 < g′
1(s) and (A2),

we yield that

E′(t) ≤ −
(

c̃1µ1 − γ̃

2

) ∫ 1

0
ϕ2

xtdx − γ̃

2 (1 − τ ′(t))
∫ 1

0
z2

x(x, 1)dx

− µ2

∫ 1

0
ϕxtzx(x, 1)g′

2(z(x, 1))dx.

By using Young’s inequality with the fact that |g′
2(s)| < c̃2, we arrive at

E′(t) ≤ −
(

c̃1µ1 − γ̃

2 − c̃2|µ2|
2

)∫ 1

0
ϕ2

xtdx −
(

γ̃

2 (1 − θ) − c̃2|µ2|
2

)∫ 1

0
z2

x(x, 1)dx.

Estimate (4.27) follows by using (4.23) and (4.26). □

Now, going back to the proof of Theorem 4.2. Defining, as in (4.12), a Lyapunov
functional L by

L(t) = ME(t) + L(t).
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It should be mentioned that L is not equivalent to E. Then, using (4.13) and (4.27),
we get

L′(t) ≤ − m0E(t) − cM
∫ 1

0
ϕ2

xtdx +
(

δρ1

κ
− ρ2

)∫ 1

0
ϕxtutdx

+ c
∫ 1

0
ϕ2

t dx + c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx.

Utilizing Young’s inequality and the definition of E(t), we get

L′(t) ≤ − (m0 − η1)E(t) − (cM − cη1)
∫ 1

0
ϕ2

xtdx + c
∫ 1

0
ϕ2

t dx

+ c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx.

Fixing η1 < m0 and then taking M sufficiently large, so that cM − cη1 ≤ 0, we obtain
for d0 > 0

L′(t) ≤ −d0E(t) + c
∫ 1

0
ϕ2

t dx + c
∫ 1

0
g2

1(ϕt)dx + c
∫ 1

0
g2

2(z(x, 1))dx.

Consequently by exploiting (2.2) and (4.1), it holds that

(4.30) L′(t) ≤ −d0E(t) − cE ′(t) +
∫
D1

H−1
(
R(x, t)

)
dx.

As in the proof of Theorem 4.1, we distinguish the following two cases.
1. H is linear on [0, ϵ]. From (4.30) and by using (4.1), we have, for some positive

constant c′,
L′(t) ≤ −d0E(t) − (c + c′)E ′(t).

Then, the functional L0 = L + (c + c′)E, satisfies
L′

0(t) ≤ −d0E(t).
Integrating over [0, t] and using the non-increasing property of E, we yield that

tE(t) ≤
∫ t

0
E(s)ds ≤ 1

d0
L0(0).

Hence, for d > 0 we have

E(t) ≤ d

t
, for all t > 0.

2. H is non-linear on [0, ϵ]. By repeating the same arguments as in the second
part of the proof of Theorem 4.1, we find that the functional

L1(t) = H ′
(

ϵ0
E(t)
E(0)

)
L(t) + d1E(t)

satisfies, for a fixed positive constant w0, the following property

L′
1(t) ≤ −w0H2

(
ϵ0

E(t)
E(0)

)
.
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An integration over [0, t] gives

(4.31)
∫ t

0
H2

(
ϵ0

E(s)
E(0)

)
ds ≤ 1

w0
L1(0).

It follows from the fact that E ′ ≤ 0 and H ′
2 > 0 that the map

t 7→ H2

(
ϵ0

E(t)
E(0)

)
is non-increasing. Thus, from (4.31), we obtain

tH2

(
ϵ0

E(t)
E(0)

)
≤
∫ t

0
H2

(
ϵ0

E(s)
E(0)

)
ds ≤ 1

w0
L1(0).

Consequently, for w, w1 > 0 we have

E(t) ≤ wH−1
2

(
w1

t

)
, for all t > 0,

which finishes the proof. □
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