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ANALYTIC STUDIES OF A CLASS OF LANGEVIN
DIFFERENTIAL EQUATIONS DOMINATED BY A CLASS OF
JULIA FRACTAL FUNCTIONS

RABHA W. IBRAHIM! AND DUMITRU BALEANU?%34

ABSTRACT. In this investigation, we study a class of analytic functions of type
Carathéodory style in the open unit disk connected with some fractal domains. This
class of analytic functions is formulated based on a kind of Langevin differential
equations (LDEs). We aim to study the analytic solvability of LDEs in the advan-
tage of geometric function theory consuming the geometric properties of the Julia
fractal (JF) and other fractal connected with the logarithmic function. The analytic
solutions of the LDEs are obtainable by employing the subordination theory.

1. INTRODUCTION

Recently, analysis on fractals has been established by numerous investigators study-
ing various problems in engineering (fractal antennas), physics (material processing),
chemistry (chimical processing), biology (DNA) and computer science (image pro-
cessing) [1-8]. Harmonic analysis is employed to describe derivatives and integrals
on fractal sets. Probability theory is utilized to formulate Laplacians on fractals [9].
Fractional spaces are plotted to continuous real space in order to explain differential
equations on fractals [10-15]. Fractional calculus is smeared in fractal spaces to clar-
ify anomalous diffusion [16-20]. Extended fractional Langevin equations to complex
domain are indicated by special types of fractal [21]. The fractal Langevin equation
is studied presenting the dynamics of Brownian elements in the long time boundary
[22]. Other studies such as an approximate fractal Langevin differential equation are
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consumed and an approximate solution is indicated [23-27]. In the present study, we
aim to investigate the analytic solution of Langevin differential equation by using a
Julia fractal functions and other fractal [28-30].

1.1. Differential equation formula. The second order LDE of a complex variable
z is structured by [31]

(1.1) f"(2) + Af'(z) = A(f(2)),

where A > 0 indicates the damping connection parameter and A is the noise term. To
investigate the geometric properties of (1.1), we consume the analytic function f(z)
in U achieving the expansion f(z) = z+377, a,2". This class of analytic functions is
known as the normalized class denoting by A. Extend (1.1) with complex coefficient,
then we have equivalent equation

(1.2) F(2) = A\(2) (Zij("Z()Z)> + (ifé?) . zel,

where A(z) is analytic function in the open unit disk U. Evidently F(0) = 1, for all
A(z) € U (see the following example).

Ezample 1.1. e Assume the function f(z) = %,

F(z) =14 2+322 4523+ 724 + 925 + O(29).
e Let A\(z2) =1 and f(z) = t%. This implies the series F(z) = 1432+ 52> 4 72° +
924 +112° + O(29).

A(z) = z. Then we get the series

We demand the following preliminaries.

Definition 1.1. e Two analytic functions f and g in U are called subordinate denoting
by f < g, if for a function h is selected such that |h(z)| < |z| indicating the equation
f=g(h) [32].

e The Ma-Minda construction inequalities signified by S*(p) and K(p) of starlike

and convex functions are structured by (i{gi?) < p(z) and (1 + Zﬂé?) < p(z),

respectively, where p achieves the existing in the class P where Re (p(z)) > 0, p(0) =
L [p'(0)] > 1.

By utilizing the definition of LDEs, we formulate a new class of analytic functions
as follows.

Definition 1.2. A function of the power series
f(z)=2+> a,2", zeU,
n=2

is in the class M, (p) if and only if

(;2) e (zzjf(’;()z)> N (z}f(’z)

) <p(z), zeU, p0)=1,p(0)>1,\z) €U.
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We study the analytic solvability of (1.3) by using different types of the parametric
Julia fractal formulas taking the construction (see Figure 1)

Jo(2) =1+2—-k2* z€U,

1 2
T,(2) :1+22 =1+ (k+1)22+ (k¥ +x)2*+0(z%), zeuy,
— Kz
and
L.(2) = 2 + !
A 1 — K22

=1+ k+1D2+ k2P 0%, zey |z <1/y/(k).

E it %@é@ fim L

FIGURE 1. The plot of J,, k = 1,1/2,1/3,1/4, T,k = 1,2,3,4 and
L.,k =3,5,10,100, respectively

The technique is to find the optimal value of x which satisfies the inequality subor-

dination
zp/(2) _
1+/i<[p(z)]k>-<(1—|—z) , e,

to satisfy one of the following inequalities
p(z) < Jey p(2) < Th, p(2) < Ly

As an application, we consider the LDEs to investigate the solvability by using the
Julia fractal functions

F(z) < J., F(2)<7T., F(z)=< L.

Special cases are investigated for some well known classes of analytic functions.

2. COMPUTATIONAL RESULTS

This section deals with consequences regarding p(z) and F(z).
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Theorem 2.1. Let the function p € P admitting the inequalities

1+k <(22<9;<;))k> < Xu(2), zeu,

where k =0,1,2 and X (z) = (1 + 2)*, z € U. Then

(A) p(2) < Ju(2), 2 €U, for k > max rj, = 1.3247;
(B) p(z) < Yu(2), z €U, for k > max ky = i;

(C) p(z) < Lu(2), z €U, for k > max K = 0.550667.

Proof. Firstly, we aim to prove the inequality p(z) < J.(z), therefore we have the
following cases.
Case . k=0=1+k(zp'(2)) < (14 2)". Let T, : U — C admitting the structure

(F*+r+1D) =+ D) R(Le+1,5+2,2)
K2+ K
where o F7 indicates the hypergeometric function for all z € U with the power series

= (@)n(B)n 2"
oy, Biy;2) = ) 5
nzzo (Vo !
Clearly, T,;(z) is analytic in U satisfying 7,,(0) = 1 and it is an approximate solution

by a hypergeometric function of the differential equation

T.(z) =

, ze€U,

(2.1) 1+ k(zT.2)) = (241", zeU.
Let
W(z) = _g (:T7(2)) = (z+1)"((z — 1>2F1(i7f;— Lk+2,2)+ 2+ 1))
Then by [32, Lemma 4.5¢], where
(2.2) 2Fi(, Bivs2) = (1 —2)%, B <,
we have for k > 0
W(z) = -5 (= T0(=))
_ 1 (z+1D)"(z—=1)2F1(L,k+ 1, k+2,2)+ 2+ 1))
3 z—1
_ 1 (4+D"((z—1)(1—=2)+2+1))
3 z—1

(8

2 1 1
:z—|—(/i+3>22+6(3/<a2+k+4)z3—|—6(/13—/£2+4/£+4)z4

1
(3k% — 10k> + 33K2 + 22K + 48)2° + O(2°).

T
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By the assumption of the theorem, we have

o (20) 14 (042) 4 (3 0) 2+ (1 2)

80 4 242\ 5 6)
+(81 /<;>z —|—</<;—|—243>z + O(z°)
>0

provided 0 < k < 4.27772. That is, 20(z) is starlike function. Thus, by using
&(z) :=W(z) + 1/(—3), one can obtain

2 W (z)\ . 2®'(2)
e () = () o

Thus, Miller-Mocanu Lemma (see [32, page 132]) admits

1+ k(2P (2) <14+ k(2T 2)) = p(z) < Tu(2).
Our aim is to prove that p(z) < J,(2), which indicates if T,(2) < Jx(z). To complete
this conclusion, we have to prove that Ty(z) < (1 + z)*. By using (2.2), we have
(K2 +rK+1)
K2+Kk

/<2+/~€+1_

K2 4+ K T,,i(—l) = TH(D =

Since

thus, we obtain

whenever k > 0.78124. As a conclusion, we have T, (z) < J.(z) when

(k2 + K+ 1)

K= Jo(=1) <T,(=1) =T,(1) = K2+ r

< J.(1) =2 =k,

which is provided

~ 1.3247.

/97 3vEa\ (;(9+\/@))1/3
Z9) -

0.7812 < s < g e

This implies the relation
Tu(z) = Ju(2) = p(z) < Ju(2), ze€U.

Casell. k=1= 14k (%) < (1+2)". Define a function E, : U — C formulating

the structure

1— 1) L F (1 1 2
En(z):exp< 2+ )™ oA et 1 e+ ’Z)>.

K2+ K
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Obviously, F,(z) is analytic in U satisfying E,(0) = 1 and it is an approximated
solution by a hypergeometric function satisfying the differential equation
2z El(2)
1 = = (1 " u.
+fi<ER(Z)> (1+2), ze€
By considering 20(z) = k (%"((ZZ))) = (14 2)" —1, which is starlike function with x # 0
and T(z) = W(z) + 1, we attain

o (20) e (260) 2o, e

Thus, Miller-Mocanu Lemma, yields

14k (ifg?) <14k (fé’?) = p(2) < Eu(2).

Consequently, one can recognize the next equality

P (IiQ :— Ii) = B(=1) = E(l) = exp (IiQ :— Ii) ‘
Moreover, this implies E,(z) < (1 4 z)" such that for x # 0 the inequality
0=3.(-1) < Eo(~1) = B.(1) < S.(1) = 2%, & > 0.876764,
holds. Thus, we get E(z) < J.(2z) when

k=Ji(—1) < E.(-1) < E.(1) =exp ( ) < Ju(+1) =2 — k.

K2+ K
This leads to the following subordination for k & 1
Ei(2) = Ju(2) = p(z) < Ju(2), z€U.

Case I k=2=1+k (ig((j))) < (1+z)". Consume that H, : U — C satisfies the

formula
k(k+1)

R2+r+ (z+ 1) R (Lk+ 1,6+ 2,2)
Clearly, H.(z) is analytic in U admitting H.(0) = 1 and it is the approximated
outcome in terms of the hypegoemetric function

2HL(2)) _ .
1+K<H’%(z)> = (14+2)" zeuU.

Similarly, we use the starlike function 20(z) = ¥,.(z) — 1 and 9(z) = 2(z) + 1, we

get
Re (Zw(z)> — Re <zan'(z)> >0, z€U.
)

H.(2) =

W(z)
Hence, the Miller-Mocanu Lemma yields

1+ & (Zp,(z)> <14k (ZH;(Z)
p*(2)
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Accordingly, for k > 1, we obtain
1=H.(-1)=H.(1)=1.
Moreover, for k = 1, we have
k=Jo(=1) < H.(-1) < H,1) < J.(+1) =2 — k.
Thus, one can realize that
H.(2) < Ju(z) = p(z) = Ju(2), ze€U.

For the second and third part, we proceed in the same manner of above construction
of the functions T,,(z), E,(z) and H,(z). We conclude that for the second part,

11—k K2+ K 11—k
whenever
1
2 (2-2 ( 47 + 3/249 ) ~ 0.3532000. .
"3 <( ((47+3\/24 AR 9) )
2 2
L Y (1) < E.(~1) < E.(1) = <To(41) = ,
ST S B S B mexp () STu() =
whenever k ~ 0.490561 and
2 2 1
—_— = —1) < —1) < < ~ —.
Then we get p(z) < Yu(2), K > 0.5, z € U. For the last part, we obtain
2—K (K2 +rK+1) 2—K
L (1) < To(=1) =Ty (1) =T8T p gy = 228
T x (—1) < T.(-1) (1) o D =1—
whenever, K = /(2) — 1~ 0.414213. ..,
2—kK 1 2—kK
— L (1)< BE(-1)<EBE. 1) =exp(—— ) < Lo(+1) = :
= L) € Bl-) < B mexp () S La(#1) = T
whenever k£ ~ 0.550667 and
2—kK 2—kK 1
HW<H.(-1)<H.(1) <L 1) = ~—.
1+ r w(—1) < Hy(—1) < Hy(1) < Ly(+1) 1_7"1 5
Then, we conclude that p(z) < L.(z), x> 0.550667, z € U O
As an application of Theorem 2.1, we let p(z) = ZJ]: , fA. Thus, one can recognize

the following consequence.
Corollary 2.1. Let f/\ ]f one of the inequalities is indicted
2 z 4
(a)l—l—/-@( G (z) — (e )) (1+2)%;
(b) 145 (14 25 — ) < (14 2)°

(c) 1+k ( J{l/é()) ( J{(S)) I (Zf(g)) 1) D
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then f € S*(J,), k > 1.3247, f € S*(Y,.), k > 3 and f € S*(L,), £ > 0.550667.

Corollary 2.2. Let p(z) = }igz,—l < B < A < 1. If one of the inequalities is

indicted
(a)
kz(A— B) A+1 (—A+2B+1)
_— 1 r . = 1.3247:
+(Bz+1)2<( 2)", B+1<O676’ K Bl > 1.3247;
(b) B
kz(A —
1+ < (14 2)~,
(Az + 1)(Bz + 1)) (1+2)
where
(A-2B-1) 1
A+1 = ‘> B+1 A>4B :
+1#£0, K A+ 1) >2, +1#0, A> + 3;
(c) ho B
kz(A —
14—~ 1 K
+(Az+1)2 < (1+2)",
where
(A-2B—1) A (2B)
A#£Br=-—"2"") Byt1 - - 55;
e R ek o7y Sl oy Rl = g
then _
+ Az
g, <), s> 1324,
1+ Az
T 1/2
ek ORI T)
and

1+ Az
L . .
1+ Bs =< K(Z), Kk > 0.55066

Corollary 2.3. Let p(z) = 1+ sin(z). If one of the inequalities is indicted

(a) 1+ kzcos(z) < (1+2)", k > 1.324;

(b) 142258 < (14 2)%, 5 > 0.5;

(0) 1+ 5 < (1+2)%, K > 0.55066;
then p(z) < Ju(z), k > 1.324, p(z) < Tw(2), £ > 0.5, p(2) < Lx(2), £ > 0.55066.
Corollary 2.4. Let p(z) = e*. If one of the inequalities is indicted

(a) 1+ kze* < (14 2)", k> 1.324;

(b) 1+ kz < (14 2)", k> 0.5;

(c) 1+ krze* < (1+2)%, k> 0.55066;

then p(z) < Ju(2), k > 1.324, p(2) < Tu(2), k > 0.5, p(2) < L.(2), k > 0.55066.

Next result admits some properties of LDE.
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Theorem 2.2. Consider two functions ¥.(z) = (1 + 2)", k € R, and
(

re) =20 (2099 4 (9

If one of the inequalities

1+ x (FFF(;)Z],Z) < (142

is occurred, where k = 0,1,2, then
o F(z) < Ju(2), k > 1.324;
o F(2) <T.(2),r > 0.5
o F(2) < Ju(2), k > 0.55066.
Furthermore, if Re (F(z)) > 0 and \(z) satisfies

Re(A(2)) >0, [S(1=A(2))]* < 3[Re (A(2)))%,
then f is starlike in U.
Proof. Since for all A\(z),z € U, we have F(0) = 1, then by using the same technique

in Theorem 2.1, we have the first part regarding the subordinated inequalities. For
the second part, we assume that

_2f'(z)
p(z) = ) feEN z€U.
Then a computation implies that
F(z) = M2)2p'(2) + A2)p”* + [1 = A(2)]p(2)-

Then by the assumptions and in view of [32, Example 2.4], we have Re (p(z)) > 0
which implies that f(z) is starlike. O

3. EXAMPLES

In this section, we deal with special cases of the LDEs depending on the formula

of A(2).
Case I. Let A\(z) = 1. The construction of LDE becomes
Z2f"(2)> <Zf’(2)> _
(3.1) ( ) + ) =F(z), zeU, feA.

Then by using J.(z) = 1+ 2z — k23, Figure 2 shows the solution for different values of
Kk > 1.324, Figure 3 indicates the solution by using Y, (z) = fj:; for k > 0.5. It can
be seen that the solution satisfies when
20)(1—0.6¢,14 0.62
f(2) :ch§272§< 05,05 0.622>

+0.774¢; 2 (2F1(0.5 — 0.6, 0.5 + 0.6i; 2; 0.6z2)) ,

e x = 0.6, we have
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2\
\ AT

:\/\/\/\fww'

F1GURE 2. The plot of (3.1) by using J,.(z) for A\(z) =1, k = 1.5, 2,4, respectively

where f(0) = 0 provided ¢y = 0;

e 1 = 2, we obtain

1) =eaG2Y (1 BN 2z2)
0.5,0.5
+in/(2)erz <2F1(1/4(2 —iJ@), 142+ i) 2 222));

o k=4, we get

1 1
£(2) = &G 2,0) (1 —— 14 -

—~

2,2) 4 4
—0.5,0.5

FIGURE 3. The plot of (3.1) using Y, (z) for A(z) =1, k = 0.6, 2, 4, respectively

Figure 4 imposes the behavior of (3.1) by using L,(2).
Case II. Let A(z) = z. The construction of LDE becomes

(3.2) p (ZQJZC(';()Z)> + (i{é?) —F(2), zeU, feA

A computation implies the following constructions of F'(z).
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‘‘‘‘‘

FIGURE 4. The plot of (3.1) using L.(z) for A(z) =1, k = 0.6, 2, 4, respectively

e For

Jis =F(2) = —1.5(2 — 1.12271)(2* 4 1.12271z + 0.593803),
Jo(2) =F(z) =1+ =2

and Jy(z) = F(z) =1+ z;

o for
1.6666722 + 1.66667
Yo =F(z) =
05 > F(2) 1.66667 — 22
To(2) = F(2) = s, 1
2\# T 02 T 20
and
Tu(2) = F(2) = o1
4% 2_1—422 1 — 422’
e for
—1.53946 1.53946) (22 + 0.703257
Log = F(2) = (2 )(z + )(22 + )7
(z — 1.29099)(z + 1.29099)
(z=1)(z+1)(222+1)
L2 :>F(Z) = 222 1
and

424 — 22— 1
(22 —1)(2z + 1)'

Ly= F(z) =

Figures 5-7 show the behavior of (3.2) for J.(z), T.(2) and L.(z), respectively.
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FIGURE 5. The plot of (3.2) by using J.(z) for A(z) = 1, k = 1.5,2,4, respectively

FIGURE 6. The plot of (3.2) using Y. (z) for A(z) = 1, k = 0.6, 2, 4, respectively

FIGURE 7. The plot of (3.2) using L.(z) for A(z) =1, k = 0.6, 2, 4, respectively
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