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ITERATIVE ALGORITHM OF SPLIT MONOTONE VARIATIONAL
INCLUSION PROBLEM FOR NEW MAPPINGS

MOHAMMAD FARID!, SYED SHAKAIB IRFAN?, AND IQBAL AHMAD?

ABSTRACT. In this paper, we developed a new type iterative scheme to approximate
a common solution of split monotone variational inclusion, variational inequality
and fixed point problems for an infinite family of nonexpansive mappings in the
framework of Hilbert spaces. Further, we proved that the sequence generated by
the proposed iterative method converges strongly to a common solution of split
monotone variational inclusion, variational inequality and fixed point problems.
Furthermore, we give some consequences of the main result. Finally, we discuss a
numerical example to demonstrate the applicability of the iterative algorithm. The
result presented in this paper unifies and extends some known results in this area.

1. INTRODUCTION

Throughout the paper, let C; and C5 be nonempty subsets of real Hilbert spaces
H, and H,, respectively.
A mapping S; : C7 — (] is said to be nonexpansive if

HSliCl — SleH S H.Z'l — CEQH, for all X1, € Cl-

Let Fix(S;) denotes the fixed points of S that is Fix(S;) = {z; € C; : Siz1 = x1}.
The classical scalar nonlinear variational inequality problem (in brief, VIP) is: Find
r1 € (4 such that

(1.1) (Bxy,x9 —x1) >0, forall 25 € (Y,
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where B : (|} — H; is a nonlinear mapping. It was introduced by Hartman and
Stampacchia [10].
A mapping T : Hy — H; is said to be

(i) monotone, if
(Txy — Txg,x1 —x9) >0, forall z1,29 € Hy;
(ii) ~y-inverse strongly monotone (in brief, ism), if
(Txy — Twg, 11 — 33) > 7||Tay — Tas||?, for all 1,25 € Hy and 7 > 0;
(iii) firmly nonexpansive, if
(Tzy — Twg, 11 — 19) > ||Txy — Tas?, for all 1,29 € Hy;
(iv) L-Lipschitz continuous, if
|Txy — Tas|| < L||zy — x2||, for all xy,25 € H; and L > 0.

A set valued mapping M, : H; — 291 is called monotone if for every z1,z, € Hy,
u; € Miz; and uy € Mz, such that

<ZE1 — X9, U1 — UQ) 2 O

And it is maximal if G(M;), graph of M, defined as G(M;) = {(x1,u1) : uy € Mz}
does not contain properly in the graph of other. Note that, M; is maximal if and
only if for (z1,u1) € Hy X Hy, (X1 — 29, u1 —ug) > 0, for all (z2,us) € G(M;) implies
uy € Mizy.

An operator J)"* : Hy — H is defined as

Jé\flxl = (I +p M) 2y, forallz, € Hy,

known as resolvent operator, where p; > 0 and [ stands for identity mapping on H;.
In this paper, we consider the split monotone variational inclusion problem (in brief,
SpMVIP). Find Z € H; such that

and
(1.3) y = DI € H, solves 0 € go(7) + Ma(3),

where g1 : Hi — Hy, 9o : Hy — Hy be inverse strongly monotone mappings, D :
H, — H, be a bounded linear mapping and M; : H, — 271, M, : Hy — 22 be
multi-valued maximal monotone mappings, which is introduced by Moudafi [17]. Let
A={z € H :7 € Sol(MVIP(1.2)) and Dz € Sol(MVIP(1.3))} denote the solution
of SpMVIP (1.2)—(1.3).

The split feasibility, split zero and the split fixed point problems include as a special
cases. It studied broadly by various authors and solved real life problems essentially
in modelling of inverse problems, sensor networks in computerised tomography and
radiation therapy; for details [3,5,7].
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If g3 =0 and g, = 0 then we find a split null point problem (in brief, SpNPP):Find
T € H;i such that

(1.4) 0 € M (z)
and
(1.5) g = DI € Hj solves 0 € My(7).

The iterative algorithm for SpMVIP (1.2)—(1.3) was introduced and studied by
Moudafi [17]:

rg € Hy, xp41 = P(x,+nD*(Q—1)Dx,), forp>0,

where P := J)Y'(I — pg1), Q := J)*(I — pg>), D* be the adjoint operator of D and
0<n< %, ¢ be the spectral radius of D*D.

The convergence analysis was studied by Byrne et al. [4] of some iterative algorithm
for SpNPP (1.4)—(1.5). Moreover, Kazmi et al. [15] established an iterative method to
find a common solution of SpNPP (1.4)—(1.5) and fixed point problem. For instance,
see [1,12-14,20-22].

Recently, Qin et al. [19] proposed an algorithm for infinite family of nonexpansive
mappings as:

zo € C1, Tpp1 = pnbg(zn) + My + (1 = 10) 1 — pn D)Wy,
where g be a contraction mapping on H;, D be a strongly positive bounded linear
operator, W,, generated by Si, 5s,... as:
Vn,n—H = Ia
Vion = M Viner + (1= M),
Vn,nfl = )\nflSanVn,n + (1 - )\nfl)[>

Vi = AmSon Vi + (1 — A,
Vn,mfl = )\mflsmflvn,m + (1 - )\m71>17

Vmg = )\QSQVng, + (1 — )\3)[,
(16) Wn = Vn,l = Alslvng + (1 — )\1)],

where Sy, Ss,..., W, are nonexpansive mappings, {\,} C (0,1], for n > 1. For
further work see [8,11].

Inspirited by Moudafi [17], Byrne et al. [4], Kazmi et al. [14,15], Qin et al. [19] and
by continuing work, we propose and analyze a new type iterative algorithm to find a
common solution of split monotone variational inclusion, variational inequality and
fixed point problems for an infinite family of nonexpansive mappings in the framework
of Hilbert spaces. Further, we endowed that the sequence generated by the algorithm
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converges strongly to common solution. Furthermore, we listed some consequences of
our established theorem. Finally, we provide a numerical example to demonstrate the
applicability of algorithm. We emphasize that the result accounted in manuscript is
unifies and extends of various results in this field of study.

2. PRELIMINARIES

This section is devoted to recall few definitions, entailing mathematical tools and
helpful results that are required in the sequel.
To each x; € H;, there exists a unique nearest point Pg,x; to z7 in C} such that

|1 — Poyxq|| < ||lx1 — x2l|, for all 25 € (Y,

where Pp, is a metric projection of Hy onto C;. Also, Pp, is nonexpansive and holds

(x1 — 29, Po, w1 — Poy,xa) > || Poywy — Po,ws||?,  for all oy, 29 € Hy.
Moreover, Pg,x; is characterized by the fact that Po,zq € Cy and

(1 — Poyx1, 9 — Poyxq) <0, for all 25 € (Y.
This implies that
21 — 22]|* > ||21 — Peym1||* + |22 — Poya1|)?,  for all @y € Hy, for all x5 € O,

and

ez + (1 = paa® = plled® + (1= @) flz2]|* — p(1 = )21 — 2%,

for all z1, 29 € Hy and p € [0, 1].
Also, on H; holds following inequalities.

(a) Opial’s condition [18], that is for any {z,} with z,, — x; and
lim inf [#n — 21| < liminf [lz, — 2o,
holds, for all zo € Hy with xy # 1.
(b)
(2.1) |21 + 22| < ||z ||* + 2(2a, 21 + 22), for all 21,2, € Hj.

Definition 2.1. ([2]) A mapping 7T} : H; — H; is called averaged if and only if
Ty = (1= NI+ \Sy,
where A € (0,1), I be the identity mapping on H; and Sy : H; — H; be nonexpansive
mapping.
Lemma 2.1. ([17])

(i) If To = (1 — A\)T1 + ASy, where Ty : Hy — H; be averaged, Sy : Hy — Hy be
nonexpansive and 0 < X\ < 1, then T, is averaged.
(ii) If Ty is ~y-ism, then BT} is 5-ism, for 3> 0.
(ili) Ty is averaged if and only if I —T is vy-ism for some y > 5 .
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Lemma 2.2. ([17]) Let p > 0, f be a y-ism and M be a mazximal monotone mapping.
If p € (0,27), then J)'(I — pf) is averaged.

Lemma 2.3. ([17]) Let p1, pa > 0 and My, My be mazimal monotone mapping. Then
i solves (1.2)-(1.3) & &= J)"(I — p1f1) and BE = J)*(I — pyf2) BE.

Lemma 2.4. ([24]) Let {u,} and {v,} be bounded sequences in E, a Banach space
and let 0 < p, < 1 with 0 < hm mf iy < hm sup fn, < 1. Consider v, 1 = (1 — py)v,+

Hnln, 1 >0, and 11m_>sup(||vn+1 — vy — ||un+1 —uyl|) <0. Then
nlggo [vn = unll = 0.

Lemma 2.5. ([16]) Assume that B is a strongly positive self-adjoint bounded linear
operator on Hy with coefficient 7 > 0 and 0 < p < ||B||~*. Then ||I — pB|| <1 — p7.

Lemma 2.6. ([25]) Let {a,} be a sequence of nonnegative real numbers with
ant1 < (L= Np)a, + o, n >0,
where A, € (0,1) and {a,,} in R with
(i) A=

(ii) limsup §= < 0 or Z || < +00.

n—oo

Then lim a, = 0.
n—oo

Lemma 2.7. ([9]) Let Sy : C1 — H; be a nonexpansive mapping. If Sy has a
fized point, then (I — Sy), where I be the identity mapping, be demiclosed that is if
x, — 1 € Hy and ©, — Six, — 9, then (I — S1)x1 = 9.

Lemma 2.8. ([23]) Let Cy # () be closed convex subset of a strictly convez Banach
space E. Let S1,S,, ... be nonexpansive mappings of C1 to Cy such that ﬂ Fix(S;) # 0
and let A1, N, ... be real numbers satisfying 0 < X\; < 1 for all 1 > 1. Then hm V”x
exists for all ¥ € Cy and 5 € N.

Remark 2.1. By Lemma 2.8, define a mapping W : ¢} — () such that Wz =
lim W,z = hm Vi12 for all £ € C4, which is called the W-mapping generated by

i—00

S1, 59, ... and )\1, Ao, ... In the whole paper, we consider 0 < \; < 1 for all 7 > 1.

Lemma 2.9. ([23]) Let Cy # () be closed convex subset of a strictly conves Banach
space E. Let Sy, 5, ... be nonexpansive mappings of Cy to C such that ﬂ Fix(S;) #
0 and let \i, Ng, ... be real numbers satisfying 0 < X\; < 1 for all i > 1. Then
mﬂwy;ﬁmﬂ&y
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Lemma 2.10. ([6]) Let C7 # 0 be closed conves subset of Hy. Let S1,5,... be
nonexpansive mappings of Cy to Cy such that ﬂ Fix(S;) # 0 and let A\, Aa, ... be real

numbers satisfying 0 < \; < 1 for all i > 1. [fK be any bounded bounded subset of
Ch, then lim sup;cp [|W;2 — Wz|| = 0.
1—00

3. MAIN RESULT

We study the following convergence result for a new type iterative method to find
a common solution of SpMVIP (1.2)—(1.3), VIP (1.1) and fixed point problem.

Theorem 3.1. Let Hy and Hy denote the Hilbert spaces and C; C Hy be nonempty
closed conver subset of Hy. Let B : Hi — Hi be a y-inverse strongly monotone
mapping, D : Hy — Hs be a bounded linear operator with its adjoint operator D*,
M, : H — 28 M, : Hy — 272 pe multi-valued mazimal monotone operators
and g, : Hy — Hy, g5 : Hy — Hsy be oy, as-inverse strongly monotone mappings,
respectively. Let f : C; — Cy be a contraction mapping with constant T € (0,1), A be
a strongly positive bounded linear self adjoint operator on Cy with constant 0 > 0 such
that 0 < 0 < g <0+ % and {S;}2, : C1 — Cy be an infinite family of nonexpansive
mappings such that T := A N Sol(VIP(1.1)) N (N2, Fix(S;)) # 0. Let {x,} be the
sequence generated as:

x| € Cl,

zn = R(I +&D*(S — 1)D)xy,

Uy, = Po, (2, — 0,Bzy),

Up, = Opiy + (1 — 0) Wy,

Try1 = a0 f(2n) + Mpn + (1= 0)1 — pnA)vn, n>1,
where R = J(gl M) —prgr), S = Jﬁ(,g2’M2)([—p292), W, defined in (1.6), {tin}, {nn},

{6} C (0, 1) and£ € (0,1), € be the spectral radius of D*D. Let the control sequences
satisfying conditions:

(i) limun:O iojun:oo;

(11) 0< p1 < 20[1, 0 < pg < 20[2,
(iii) 0 < hm mf N, < limsupn, < 1;
)0
)

n—00

< hm mf o, <limsupo, < 2v;

n—oo

(iv
(v) lim (5 = 0.

Then, the sequence {x,,} converges strongly to some & € T, where & = Pr(0f+([—A))Z
which solves:

n—oo

(A-0f)z,v—2) >0, forallvel.
Proof. For sake of simplicity, we divide the proof into several steps.
Step 1. We prove that {z,} is bounded.

Let # € I' then £ € A and thus Rz = Z, S(D%) = Dz and PZ = &, where
P =1+4nD*(S—1)D. By Lemma 2.2 and firmly nonexpansive, R and S are averaged.
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Also, P is averaged since it is -ism for some v > £. From Lemma 2.1 (iii), I — S is
v-ism. Thus, we obtain

<D*(I — S)D.ﬁl}l — D*([ — S)ng,xl — 33'2> :<(I — S)D.I'l — (I — S)DI’Q, Dilfl — Dl’2>
>v||(I — S)Dzy — (I — S)Das?
E%HD*(I — 8)Day — D*(I — S)Das |

This implies that nD*(I — S)D is go-ism. Since 0 < £ < % therefore its complement

(I —&(D*(I — S)D) is averaged and hence R(I + {D*(S — I)D) = Z(say). Thus,

I +¢D*(S—1)D, R, S and Z are nonexpansive mappings.
Next, we calculate

[E ||J511’M1(I = p1g1)(@n + ED*(S — I)Dxy,) — ngl’Ml(I — mg)z|?

< ||z + ED*(S — I) Dz, — |
(3.1) = ||lzn — Z||* + €| D*(S — I) Dz, ||* + 2¢{z,, — %, D*(S — I)Dxy,).
Now,

& D*(S — I)Dz,|* = (S — I)Dx,, DD*(S — I)Dx,,)

< e*((S — I)Dx,,, (S — I)Day,)
(3.2) = e£%||(S — I) Dy, |
Consider T, := 2¢(x,, — &, D*(S — I)Dx,,) and we estimate
T, =2z, — &, D*(S — I)Dx,)
=2¢(D(x, —z)+ (S — I)Dx,, — (S — I)Dx,, (S — I)Dz,,)
— 26[(S(D () — D, (S — D)D) — (S — D)D)

1
< 2[5 = DDl = I(S — 1D

(3.3) = —¢|l(S = I) Dz *.

From (3.1), (3.2), (3.3), we obtain

(3.4) 120 = Z[* < [Jan — Z[* + (€ = IS — I) Dan||*.
Since 0 < £ < %, therefore

(3.5) lzn = 2| < lon — 2.

Using ~v-ism and 0 < 0, < 27, we have
lun = 2| = || Pey (20 — 00 Bza) = Poy (20 — 0, B7) |
< |lzn — onBzn — (20 — 0, BZ)|?
= [|(20 — %) — 0u(Bz, — BI)|”

= ||z, — :I:H2 —20,(Bz, — BZ,z, — I) + JiHan — Ba?||2
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< ||z = 7|12 = 2021| B2 — B3|/ + 02| B2, — Ba?
= llza = Z|* + on(on — 27)|| Bzn — BE||*
(3.6) < llza — 2%,
this implies
(3.7) [un — Z[| < |20 — 2.
By using (3.5) and (3.6), we calculate
lvn = Z|| < Onflun — 2| 4+ (1 = 6,) [Wru, — 2|
= Onllun — Z[| + (1 = 6n)[Jun — ]

< lun — 2|
= [z — 2|
(3.8) = ||z, — &

By using (3.7) and (3.8), we calculate
201 — Z|| = (|0 f(2n) + 0n + (1 = 190) ] — pnA)vy, — 7|
=[lpn(0f (2n) — AZ) + 1 (20 — )
+ (=m0 = pn A) (vn — T)|
Spnl|0f (2n) = AZ|| + nullzn — ]|
+ (A =) — ) v — 2|
Spnl|0f (zn) — 0f(Z) +0f(2) — AZ|
+ lln — 2+ (1= 70) T — ), — 2|
< b\ f (@) = F@)| + pa |0 (7) — AZ]
+ alln = Z[ + (1= 10)I = )20 — 2|
Spn07 |20 — Tl + pn|0F () — AZ]
+ (1 = pab) |z — 2
< = (0 = 07))l|lzn — 2| + pall0.f (7) — AZ]|

jWWﬂ@—AM}’nEL

< — —
_maX{Hxn 5 or

Using induction, we get
. of(z) — Az
o Ler@) — sl
0 —0r
Thus, {z,} is bounded. Also, {z,}, {u.}, {v.}, {f(x,)} and {W(x,)} are bounded

due to (3.4), (3.7) and (3.8).
Step 2. We show that lim [|zn11 — x| =0, lm [lz, — Wyu,[| =0, lim v, —

|mm1—stmeﬁm1—

zn|| = 0 and lim |vn, — unl| = 0.
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Since R(I + {D*(S — I)D) is nonexpansive therefore

[zni1 = znll = |R( +ED™(S = 1) D)nis — R+ ED™(S — 1) D)y |
(3.9) < [ enar — 2l

Using (3.9), we estimate

tns1 — unl| = [[Po(I — 0ny1B)zny1 — Po(I — 0,B)2,|]
< (= on41B)znir = (I — 0nB) 2|
= (I = ont1B)zns1 — (I — 0p1B) 20 + (00 — Ony1) Avy |
< lzn41 = zll + lon = opaa| | Bzl
< [ #ns1 = @]l 4 |on = onga|[| Bzn]|
(3.10) < |[Tnt1 — wull + Nifon, — onpal,

where Ny = sup,,, || Bz,||.
Forie1,2,...,n, S; and V, ;, are nonexpansive therefore from (1.6), we obtain

Woirtn, — Wou, || = [|A1S1 Vg 2t, — A1S1 Vi, 2w, ||
< )‘1||Vn+1,2un - Vn,ZuTLH
< A1 X252 Vi1 st — A2 SV, 3wy, ||
< MAe|| Vg sun — Vi sun|

S )\1)\2 e )\n||Vn+1,n+1un - Vn,n+1unH
(3.11) <N [T,
i=1

where Ny > 0 with |V, 11 p41un — Vi1t || < Nj for all n > 1.
Using (3.10) and (3.11), we estimate

[Vns1 = Onll <[[0n1tings + (1 = 0ng 1) Woiatlngr — 0ty — (1 — 0) W, ||
<[ Gni1tni1 + (1 = 0nr1) Whiatni1 — Sty — (1 — 0,) Wy,
+ (1= 0n)Wongu, — (1 — 8,) W, u,|
<1 = 60) [[Wopaty — Wottn|| + [[Wopitn g1 — Wy u, |
+ i1 [[Whga i1 — g || + 60 [[Wirtn — un|

<(1 = 6u)No JT A + Nt — | + 0n N3 + 6,N,

i=1

(3.12) <(1 = 6,)No [T Ni + |lzng1 — 2|l + Ni|ow — oni] + 6ns1Ng + 6, Ny,

=1
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where N3 = sup,,>; [|[Wyi1tns1 — tnyi]| and Ny = sup,,5; [|Whp1u, — up||. Setting

Tpt1 = (1 — 0n)Sp + My, then we have s, = % and
_Mn+19f(ffn+1) + (1 = 1) — pns1A)0ng1
Spnt+1 — Sn =
1— Th+1
_ i f () + (1= nu)I — pnA)vy,
1- Tin
. Hn+1 9 Hn
=———(0f(xp41) — Avpy1) + ——(Av, — 0f(x)) + Vg1 — Vp.
1—- Mn+1 1— n
Hence,
Hn+1
[Sn+1 = Sull 17+<H9f<xn+l)”+HAUn+1H)
Ln
A p— ([Ava[| + 16 (za)l]) + llont1 — vnl
< Hnt1 N5 + Hn NG + ||Un+1 - Un”v

Tl = 1-
where Ny = sup,,», ([|[0f (zn11)]| + [[Avna[]) and No = sup,,o, (| Ava || + 10 (zn)])-
Using (3.12) in above inequality

51 = sall <3720

N+ (19 NQHA

N5 +
_n+15 1

+ ||xn+1 - xn” + I\Il|0-n - Un+1| + 6n+1N3 + 5nN47

and thus

s = sall = oy = ] <TE—Ns +

— T+t — M

Ne

+ Niloy, — 0pp1] + (1 = 6,)No [T i + 0541 N3 + 6, Ny
i=1
Using the given conditions in above inequality, we have
lim sup(f|sp+1 = $nll = llens1 — 2all) <0

By Lemma 2.4, we get
nlglgo [$n — @al| = 0.

As xp1 = (1 —ny)8p + Npy, therefore

|Zns1 — znll = [[(1 = m0) (80 — 20) ],
which yields
(3.13) lim |Tnt1 — zn|| = 0.
Now,
Hxn - Wn“n” :Hxn — Tp+1 + LTn+1 — WnunH

SNwnr = zall + ([0 f (20) + Nt
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+ (1= 1) = pn A)vn — Wi,
=llznir = znll + [[pn(0.f (20) — Av)|
+ (1= nm)I = paA) (v — Wrtin) + m (20 — Wiuy)
(3.14) SN#nr = zall + pall0F (20) = Avall + 1l = Woun[|.
Hence,
(1= mn)llzn = Watin || < [[2n41 = 2nll + pn[|0f (20) — Avn]|.
Using the given conditions and (3.13) in (3.14), we get
(3.15) dim [z, = Woun[| = 0.
By (3.5) and (3.7), we compute
201 = Z)* =l b f (20) + 1nn + (1= 0T = pn A)vy, — 2|2
<IHL = 00) (v — &) + (20 — 2)|°
+ 2(nb f(2n) = pnAvn, Tngr — T)
<(L =) lvn = Z|* + nall20 — 2|
= (1 = )| — va|*
+ 20unl|0.f (2n) — Avn|[l2n 11 — 7]
(3.16) <tallzn = Z[* + (1= 1) on — Z||* + 20Ny,
where N7 = max{sup,>, [|0f(zn) — Avy||,sup,>; |2ns1 — Z[|}. From (3.4) and (3.8),
we get
11 = ZI* <nullzn — 20 + (1 = o) 20 — 27
+ (1= n)€(e§ = DII(S = 1) Dan|* + 20, N7
<llwn = 2)* + (1 = na)é(e§ = DII(S = I) Dn|* + 2 N7,
which yields
(1= m)é(1 = €)lI(S = D) Danll* < 2 = T = |2ns1 — T/ + 20aNo.
Since €(1 — €§) > 0, lim p, = 0 and {z,}, {u,} are bounded, and using (3.13), we
have

(3.17) lim [[(S = I) Dz, = 0.

Next, prove that lim |zn — x| = 0.

By using firmly nonexpansive of J,gflle)

120 — 2| =|| M) (2, + £D*(S — I)Day) — J@M |2
<(zpn —Z,x, +&D*(S — I)Dx, — T)

, we compute

1
—5{ 20 = I+ a4+ €D°(S = DDy = 31 = |z — 3
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[0+ £D*(S = I) D, — 7] \\2}

_1
2
1

:2{Hzn = &7 + Nl = #I = [0 = 2all® + ED*(S = ) D

—28(zp, — x,, D*(S — I)Dxnﬂ }

{ e = 31+ iz = 311> = 120 = 2 = €D°(S = DD}

Hence, we obtain
o = 7% < 0 = 71 — [120 — 2all® + 261 D (20 — 2)]|(S = D) Dl
Using (3.7), (3.8) and (3.16) in above inequality, we obtain
0+t = Z[I* <nallzn — 2 + (L= 9a) |2 — 2|
— (L =na)ll20 — 2a®
+2(1 = m)E [ Dz — 2 [I[[(S = 1) D] + 214N
(1= 1)l — 2l Kl — B = nes — 31
+2(1 = )€l Dz — 2) [|(S = 1) Dz || + 2pn N7
S(lzn = 2 + l[2ns1 = 220 — znsa]
+2(1 = )€l D(zn — 2) [|(S = 1) Dazn || + 2pnN7.
By (3.13), (3.17) and the given conditions, we have

(3.18) dim [[z, — 2, = 0.
Next, prove that lim |z — un|| = 0.

We estimate
241 = Z1* =1 = 1) (V0 = 2) + (20 — 7)
+ (0 (20) — Avy)|?
<L = ma)llvn = ZI* + |2 — 2|
+ 2pn Ky Tps1 — T)
<L = na)llva = 2| + nallzn — 2)1* + 2071
<(1 = na)llun = Z)* + mallzn — 2| + 207 .
In the above inequality we set x,, = 0f(x,) — Av,, and let w > 0 be a suitable constant
with w > sup, {||&nll, ||zn — Z||}. Thus,
71 = 312 <(1 = m){ 1Py (zn = 0B20) = Pe, (5 = o BO)I |
+ |z — 2% + 2%,

< =m){ = 21 + alo = 20)1 B2, — B3}
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+ 1llzn = Z|* + 201
<= n){llen = 21 + oalow = 20)|Bzn — B}
+ Nll2n — Z|1* + 203y,
(3.19) <(1 —np)on(o, — 2w)|| B2z, — BE|)? + ||z, — Z|* + 202,
which implies
(1 = 1)on(2w — 0u)[| Bz — BE|* <llzn — 2l1* = |2nsn — 2|* + 20° s
<(lzn = 2l + llzns1 = EDN2n = Tl + 207 1.
By (3.13) and the given conditions, we get
(3.20) lim [|Bz, — BZ| = 0.
From (2.1), we compute
|un — Z|1> =||Pe, (20 — 00 B2n) — Pe, (i — 0, B3) ||?
<(un, — %, (z2n, — 0nBz,) — (T — 0,BT))
<l = 217 4+ 0 — 00 82)
— (7 = 0B = | (un = 20) + (B — B}

<5 {ln = 312 + 12 = 31 =l — 20) + 0Bz = B}
<lzn = Z[* = lJun — 20* = 02| B2, — Bi||?
+ 20, (u, — 2, Bu, — BT)
<Nz — &l = tn — 2al® + 200 [lun — zull]| Bzn — BE|
<lln = &2 = [|tn — 2l[* + 20u]|tn — 20| Bzn — BE].
By (3.19), we obtained
|2nsr — 1% <(1 =) ltn — F[2 + nalln — 72 + 202
< =) {ll#n — 1% = fJun — 2a?
+ 200 [tn — 2l B2 — B} + nallwn — | + 207,
which implies
(1= m)lun = 2l <[l — [ = [[@ns1 — 32
4+ 2(1 — ) opl|tn — 2ul|| Bzn — BE|| + 2w s,
<(lzn — &l + [Znss = Z) 20 = 2n

+2(1 — ) op||tn — 2a||[|Bzn — BE|| + 2wy,
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Using (3.13), (3.20) and the given conditions, we get

(3.21) Lim |un, — 2zn|| = 0.
From (3.18) and (3.21), we have
(3.22) 1im ln — || = 0.

By (3.15) and (3.22), we get
(3.23) Jim Wy, — uy|| = 0.
Further, using (3.22) and (3.23)

[0 = 2 [1* < (|00t + (1 = 6,) Wity — 2|
< 571”“71 - xn” + (1 - 5n)||Wnun - xn“

(3.24) —0 as n— oo.
Therefore, by (3.22) and (3.24), we get
(3.25) 1im |tn, — vn|| = 0.

Step 3. We claim that 2 € I'.

Since {x,} is bounded therefore consider Z € H; be any weak cluster point of {z,}.
Hence, there exists a subsequence {z,,} of {z,} with z,,, = #. By Lemma 2.7 and
(3.23), we have Z € N, Fix(S;).

And z,;, = R[z,, +1nD*(S — I)Dxy,] can write as

(Tn; — 2n;) + D*(S — I) Dy,
P1

Taking j — oo in (3.26) and by (3.17), (3.18) and the concept of the graph of a
maximal monotone mapping and ail—Lipschitz continuity of g1, we get 0 € Mz +
917 that is & € Sol(MVIP(1.2)). Furthermore, since {z,} and {z,} have the same
asymptotical behaviour, Dx,;, — DZ. As S is nonexpansive, by (3.17) and Lemma
2.7, we get (I — S)Dx = 0. Hence, by Lemma 2.3, 0 € ¢5(DZ) + MyDZ that is
Dz € Sol(MVIP(1.3)). Thus, z € A.

Next, we prove Z € Sol(VIP(1.1)). Since lim ||z, —u,[| = 0 and lim ||z, —z,[ =0,

(3.26)

S Mlznj.

there exist subsequences {z,,} and {u,,} of {z,} and {u,}, respectively such that
Zn, — T and u,, — T.
Define the mapping M as

_J D(p1) + Ney(pr), if pr € Oy,
M@”_{& if p, & Cy,

where N¢, (p1) := {p2 € Hy : (pr —y,p2) > 0 for all y € C} is the normal cone to
Ch at p; € Hy. Thus, M is a maximal monotone and hence 0 € Mp; mapping if
and only if p; € Sol(VIP(1.1)). Let (p1,p2) € graph(M). Then, we have p, € Mp; =
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Bp:1 + Ne¢, (p1) and hence p, — Bpy € Ng, (p1). So, we have (p; — y, po — Bpy) > 0, for
all y € C7. On the other hand, from u, = Pg, (2, — 0,Bz,) and z; € C}, we have
<(Zn - UnBZn) = Up, Up — p1> Z 0.
This implies that
Up — Zn
<p1 — Up, — + an> > 0.

Since (p1 —y,ps — Bp1) > 0 for all y € Cy and u,, € C}, using monotonicity of B, we
have
(P1 — Un;> P2) >(P1 — Un;, Bp1)

Un,

. — Zn,
>(p1 — Un,, Bp1) — <p1 — Up,, ——— + Buni>

=(p1 — Un,, Bp1 — Bu,,) + (p1 — un,, Bu,, — Bzy,)

Up; — Zn,
— (D1 — unia
O'ni
Up, — Zn,;
>(p1 — Up,, Bu,, — Bzy,) — <p1 — Up,, 7’0 > :
n;

Since B is continuous therefore on taking limit i — oo, we have (p; —Z, p2) > 0. Since
M is maximal monotone, we have & € M~(0) and hence Z € Sol(VIP(1.1)). Thus,
zel.
Step 4. Finally, we prove that lim sup ((0f — A)z,x, — z) < 0, where z =
n—oo
Pr(I —A+0f)z and x,, — Z.
By (3.24), we obtain
lim sup ((6f — A)z,z,, — z) = lim sup ((0f — A)z,v, — 2)
n—oo n—oo
< lim sup((0f — A)z, vy, — 2)
1—+00
=((0f —A)z,7 —2)
(3.27) 0.
Using (3.5) and (3.7), we calculate

s — 212 =(an 0F (22) — AT) + 1 — )
+ (L =) I — pnA) (0n = T), Tnp1 — T)
=un(0f(xn) — AZ, X1 — T) + (T — T, Tnp1 — T)
+ (A= )] = pnA)(0n — T), Znpa — T)
<tin (O0Cf (x) = f(Z), 2p41 — ) +(0f(T) — AT, 21 — 7))
+llzn = | — 2 + (1= 1) — puAflllvn — 2201 — 2|
<Ot — s — ]+ i85 (F) — AT, 7ps — )

IN
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+ |z = Ellllznrs = El 4+ (1= 10 = ) [[vn — &l 20s1 — 7|

=[1 = pn(0 = Ol = Zllllwnss — T + pal0f () = AT, 201 — T),

~ 1 _:un(é_eT) ~ ~
fown — 2l < 20D (a7 4 o - 21P)
+ pn(0f(2) — AZ, xpyq — T)
1— (0 — 07 2 1 i . - -
OO0 32 4 L — P+ 05— AT, 21— ),

which yields that
lZni1 =2 < [1 = (0 = 07|z — Z[* + 20 ((0f (&) — AT, 2011 — T)
(3.28) = [1 = (0 — 07|y — Z[|* 4 200 (0f (2) — AZ, 2011 — ).

Thus, by (3.27), (3.28), Lemma 2.6 and using dim i, = 0, we get z;, — &, where
T=P{I+0f—-A). O

Now, we listed following consequences from Theorem 3.1.

Corollary 3.1. Let H, and Hy denote the Hilbert spaces and C; C Hy be nonempty
closed conver subset of Hi. Let B : Hi — Hi be a y-inverse strongly monotone
mapping, D : Hy — Hs be a bounded linear operator with its adjoint operator D*,
M, : H — 20 M, : Hy — 272 pe multi-valued mazimal monotone operators
and g, : Hy — Hy, g5 : Hy — Hy be oy, as-inverse strongly monotone mappings,
respectively. Let f : C; — Cy be a contraction mapping with constant T € (0,1), A
be a strongly positive bounded linear self adjoint operator on Cy with constant 6>0
such that 0 < 6 < g <0+ % and S : Cy — C} be a nonexpansive mapping such that
I':= AN Sol(VIP(1.1)) NFix(S)) # 0. Let {x,} be the sequence generated as:

T € Cla

zn = R(I +&D*(S — 1)D)xy,

Uy, = Po, (2, — 0, Bzy),

Up = Opliy + (1 — 0,,) Sy,

Toy1 = a0 f(2n) + Mpn + (1= 00)] — ppA)vn, n>1,
where R = Jp(fl’Ml)(I —pma), S= Jp(§2’M2)(I — 0292), {pn}t, {mn}, {0n} C (0,1) and
I (O,%), € be the spectral radius of D*D. Let the control sequences satisfying
conditions:

(i) lim g, =0, Zun—oo

(i) 0 < p1 < 2041, O < po < 2a;
(iii) 0 < hm 1nf N, < limsupn, < 1;

n—o0

)
)

(iv) 0 < hm mf o, < limsupo, < 27v;
)

n—oo
(v lim 5 —0.
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Then, the sequence {x,} converges strongly to some & € I', where & = Pr(0f+([—A))Z
which solves:

(A=0f)z,v—2) >0, forallvel.

If we consider p; = ps, g1 = go = B =0 and 1, = 0 in Theorem 3.1 then we have
following corollary.

Corollary 3.2. Let Hy and Hy denote the Hilbert spaces. Let D : Hy — Hy be a
bounded linear operator with its adjoint operator D*, My : Hy — 271, My : Hy — 212
be multi-valued mazimal monotone operators, respectively. Let f : Hy — H; be a
contraction mapping with constant 7 € (0,1), A be a strongly positive bounded linear
self adjoint operator on Hy with constant > 0 such that 0 < 6 < g < 0+ %
and {S;}2, : Hi — Hj be an infinite family of nonexpansive mappings such that
[':=AN(NZ,Fix(S;)) # 0. Let {x,} be the sequence generated as:

xr1 € Hl,

Zny = Jé”l(f + SD*(J;M2 —I)D)x,,

Up = On2n + (1 — 0p) W 2,

Tpi1 = 0 f(xy) + (I — ppA)v,, n>1,

where W,, defined in (1.6), {pn}, {6,} C (0,1) and £ € (0, 1), € be the spectral radius

of D*D. Let the control sequences satisfying conditions:
(i) lim p, =0, ioj [y, = 00
n—00 n—o
(ii) dim 4, = 0.
Then, the sequence {x,} converges strongly to some & € I', where & = Pr(0f+(1—A))Z
which solves:

(A-0f)z,v—2) >0, forallvel.

4. NUMERICAL EXAMPLE

Ezxample 4.1. Let H; = Hy = R, the set of all real numbers, with the inner product
defined by (u,v) = uv for all u,v € R, and induced usual norm | - |. Let C; = [0, 00);
let the mappings ¢; : R — R and go : R — R be defined by g;(u) = %u for all u € Hy
and gy(v) = v+3 for all v € Hy. Let My, My : R — 2% be defined by M;(u) = {u—1}
for all u € R and Ms(v) = {4v} for all v € R. Let the mapping D : R — R be defined
by D(u) = —2u for all u € R. Let the mappings {S5;}32, : C1 — Cy be defined by
S;u = Y2t for each i € N, let the mapping B : H; — R be defined by Bu = 5u — 2

1+5¢

for all u € H;. Let the mapping f : C1 — C} be defined by f(u) = % for all u € C}

and Au = % with 6 = . Setting {1} = {gh}, {m} = (b {0} = 4. {0} = 1
and {\,} = {ﬁ} for all n > 1. Let W,, be the W-mapping generated by Sy, So, . ..
and A1, Ao, ..., which is defined by (1.6). Then, there are sequences {z,}, {z.}, {u.}
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and {v,} as: Given xy,

tn = SDxy, = J9M) (I — pygy) Dixy,
Tn = Ty + ED*(t, — Dxy,)

2z, = JorMy,

un, = Po,(2n, — 0,Bzy,),

U = Opzn + (1 — 6,) Wy 2y,

Then, {x,} converges to & = {2} € I.

Proof. Obviously, D is a bounded linear operator on R with adjoint D* and ||D|| =
|D*|| = 2, and hence £ € (0,3). Therefore, we choose { = 0.1. Further, g; and g,
are 3 and 1-ism, therefore p; C (0,3) and p; C (0,2), thus choose p; = 5 > 0 and

pg = 1 > (). For each i, S; is nonexpansive with Fix(.S;) = {%} Further, B is 5-ism and

Sol(VIP(1.1)) = {2}. Furthermore, Sol(MVIP(1.2)) = {%} and Sol(MVIP(1.3)) =
{2}, and thus A = {2 € C': 2 € Sol(MVIP(1.2)) : D(2) € Sol(MVIP(1.3))} = {2}.
Therefore, I := A N Sol(VIP(1. 1)) (N2, Fix(S;)) # 0. Thus,

y ~ —6z, +9 . _ 3lz, — 61, ; 3+ 1
n - 14 ) n - 40 ) n - 4 I
0, if x <0,
Uy, = Poy(2n — 00 Bz,) =< 1, if x>1,
%*2 otherwise;
Step 1:
1= 1;
1 (W, + 2i) 1
W, = (1=
32 1450 +< 3n2)“
1=1+1;

if (i < N) go to Step 1;
1 1

Up = —Up + (1 - > Wnuna
n n

1 Ty 1 1 1 v,
Ty = + 5 Tn + (1—) Up — ——

100n 5 2n 2% 2n? 10n 2°
which show that {,} converges to & = £ as n — +oo and Jim |W,x — Wz|| =0 for
each r € (. O
5. FIGURES

Finally, by the software Matlab 7.8.0, we obtain following figures which show that
{xn} converges to & = 2 as n — 400, and 1im |W,,z — Wz| = 0 for each z € C}.
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Fig.1: Convergence of {x n} when X, =2
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F1cure 1. Convergence of {x,} when z; = 2.

Fig.2: Convergence of ||[W nx-Wx||
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FIGURE 2. Convergence of ||W,zx — Wzx||.
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