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L-FUZZY HOLLOW MODULES AND L-FUZZY MULTIPLICATION
MODULES

SHRIRAM K. NIMBHORKAR1 AND JYOTI A. KHUBCHANDANI2

Abstract. In this paper, we give some characterizations of L-fuzzy hollow modules
and of L-fuzzy multiplication modules.

1. Introduction

The concept of a fuzzy set, which is a generalization of a crisp set, was introduced
by Zadeh [13]. Rosenfeld [12] used this concept to develop the theory of fuzzy sub-
groups. Naegoita and Ralescu [9] applied this concept to modules and defined a fuzzy
submodule of a module.

Barnad [3] introduced the concept of a multiplication module. An R-module M is
called a multiplication module if every submodule of M is of the form IM , for some
ideal I of R. Also, Elbast and Smith [4] have studied multiplication modules.

Lee and Park [6] studied fuzzy prime submodules of a fuzzy multiplication module.
Recently, Atani [2] introduced and investigated L-fuzzy multiplication modules over
a commutative ring with nonzero identity. He has proved a relation between a
multiplication module and an L-fuzzy multiplication module.

In this paper we introduce a notion of a hollow fuzzy module and prove some results.
Our notion is different from that of Rahman [11]. We prove some results on L-fuzzy
multiplication modules. We also show that an L-hollow fuzzy module is an L-fuzzy
multiplication module.
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2. Preliminaries

Throughout in this paper R denotes a commutative ring with identity, M a unitary
R-module with zero element θ. We recall some definitions and results from Moderson
and Malik [8] which will be used in this paper.

Definition 2.1. ([8, Definition 1.1.1]). A fuzzy subset of an R-module M is a mapping
µ : M → [0, 1]. We denote the set of all fuzzy subsets of M by [0, 1]M .

If µ is a mapping from M to L, where L is a complete Heyting algebra, then µ is
called an L-subset of M . We denote the set of all L-subsets of R by LR and the set
of all L-subsets of M by LM .

Definition 2.2. ([8, Definition 1.1.3]). If N ⊆ M and α ∈ [0, 1]M , then αN is defined
as

αN(x) =

α, if x ∈ N,

0, otherwise.

If N = {x}, then αx is often called a fuzzy point and is denoted by χα. If α = 1, then
1N is known as the characteristic function of N and is denoted by χN .

If µ, σ ∈ [0, 1]M , then for x, y, z ∈ M , we define
(i) µ ⊆ σ if and only if µ(x) ≤ σ(x);
(ii) (µ ∪ σ)(x) = max{µ(x), σ(x)} = µ(x) ∨ σ(x);
(iii) (µ ∩ σ)(x) = min{µ(x), σ(x)} = µ(x) ∧ σ(x);
(iv) (µ + σ)(x) = ∨{µ(y) ∧ σ(z) | y, z ∈ M, y + z = x}.

Definition 2.3. ([8, Definition 4.1.6]). Let ζ ∈ LR and µ ∈ LM . Define ζ · µ as
(ζ · µ)(x) = ∨{ζ(r) ∧ µ(y) | r ∈ R, y ∈ M, ry = x}, for all x ∈ M .

Definition 2.4. ([8, Definition 3.1.7]). Suppose that µ ∈ LR satisfies the following
conditions:

(i) µ(x − y) ≥ µ(x) ∧ µ(y);
(ii) µ(xy) ≥ µ(x) ∨ µ(y) for all x, y ∈ R.

Then µ is called an L-ideal of R.
We denote the set of all L-ideals of R by LI(R).

Definition 2.5. ([8, Definition 4.1.8]). Let M be a module over a ring R and L be a
complete Heyting algebra. An L subset µ in M is called an L-submodule of M , if for
every x, y ∈ M and r ∈ R the following conditions are satisfied:

(i) µ(θ) = 1;
(ii) µ(x − y) ≥ µ(x) ∧ µ(y);
(iii) µ(rx) ≥ µ(x).

Definition 2.6. ([8, Definition 4.5.1]). For µ, ν ∈ LM and ζ ∈ LR, define the residual
quotients µ : ν ∈ LR and µ : ζ ∈ LM as follows:
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µ : ν = ∪{η | η ∈ LR, η · ν ⊆ µ},
µ : ζ = ∪{ξ | ξ ∈ LM , ζ · ξ ⊆ µ}.

Theorem 2.1. ([8, Theorem 4.5.3] ). Let µ, ν ∈ LM and ζ ∈ LR. Then
(1) (µ : ν)ν ⊆ µ;
(2) ζ · ν ⊆ µ if and only if ζ ⊆ (µ : ν) if and only if ν ⊆ µ : ζ.

Definition 2.7 ([8]). Let c ∈ L\{1}. Then
(i) c is called a prime element of L if a ∧ b ≤ c, implies that a ≤ c or b ≤ c for all a,

b ∈ L;
(ii) c is called a maximal element if there does not exist a ∈ L\{1} such that

c < a < 1.
Remark 2.1 ([8]). If µ, ν ∈ LI(R), then (µ ◦ ν)(x) = ∨{µ(y) ∧ ν(z) | y, z ∈ R, yz = x}.
We write µ∗ = {x ∈ R | µ(x) = µ(0)}.
Definition 2.8. ([8, Definition 3.5.1]). Let ξ ∈ LI(R). Then ξ is called a prime
L-ideal of R if ξ is non-constant and µ ◦ ν ⊆ ξ, µ, ν ∈ LI(R) implies either µ ⊆ ξ or
ν ⊆ ξ.
Definition 2.9. ([8, Definition 3.6.1]). Let ξ ∈ LI(R) and let ρξ be the family of all
prime L-ideals µ of R such that ξ ⊆ µ. The L-radical of ξ, denoted by

√
ξ, is defined

by
√

ξ =

∩{µ | µ ∈ ρξ}, if ρξ ̸= ϕ,

1R, if ρξ = ϕ.

Definition 2.10. ([8, Definition 3.7.1]). Let ξ ∈ LI(R). Then ξ is called a primary
L-ideal of R if ξ is nonconstant and for any µ, ν ∈ LI(R), µ ◦ ν ⊆ ξ implies µ ⊆ ξ or
ν ⊆

√
ξ.

Theorem 2.2. ([8, Theorem 3.5.3]). If ξ is a prime L-ideal of R, then ξ∗ is a prime
ideal of R.
Theorem 2.3. ([8, Theorem 3.5.5]). Let ξ ∈ LR. Then ξ is a prime L-ideal of R
if and only if ξ(0) = 1, ξ∗ is a prime ideal of R, ξ(R) = {1, c}, where c is a prime
element in L.
Definition 2.11 ([5]). A ring R is called regular if, for each element x ∈ R, there
exists y ∈ R such that xyx = x.
Definition 2.12. A dense chain in a lattice L is a non-empty sublattice C such that,
for all ordered pairs x < y with x, y ∈ C, there exists some z ∈ C such that x < y < z.
Theorem 2.4 ([8]). Let R be a ring with identity, L be a dense chain and ξ be a
primary L-ideal of R. Then

√
ξ is a prime L-ideal of R.

Theorem 2.5. ([7, Theorem 3.10]). Let R be a ring with 1 and A be a nonconstant
fuzzy left (right) ideal of R. Then there exists a fuzzy maximal left (right) ideal B of
R such that A ⊆ B.
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Definition 2.13. ([5, Definition 4.3.2]). A fuzzy ideal µ of a ring R is called fuzzy
semiprime if, for any fuzzy ideal ζ of R, the condition ζn ⊆ µ implies that ζ ⊆ µ,
where n ∈ Z+.

Theorem 2.6. ([5, Theorem 4.4.3]). A commutative ring with unity is regular if and
only if each of its fuzzy ideal is fuzzy semiprime.

Definition 2.14 ([2]). Let M be a module over a commutative ring R. M is called
an L-fuzzy multiplication module provided for each L-fuzzy submodule µ of M , there
exists ζ ∈ LI(R) with ζ(0R) = 1 such that µ = ζχM .

One can easily show that if µ = ζχM for some ζ ∈ LI(R) with ζ(0R) = 1, then
µ = (µ : χM)χM .

Theorem 2.7. ([2, Theorem 10]). Let M be an R-module. Then M is a multiplication
module if and only if M is an L-fuzzy multiplication module.

Theorem 2.8. ([1, Theorem 2]). Let P be a primary ideal of R and M a faithful
multiplication R-module. Let a ∈ R, x ∈ M satisfy ax ∈ PM . Then a ∈

√
P or

x ∈ PM .

Definition 2.15. ([10, Definition 4.1]). Let M be a module over a ring R and
µ ∈ L(M). Then µ is said to be a small L-submodule of M , if for any ν ∈ L(M)
satisfying ν ̸= χM implies µ + ν ̸= χM .

Definition 2.16. ([11, Definition 2.10]). A fuzzy submodule µ(̸= χθ) of a module M
is said to be fuzzy indecomposable if there do not exist fuzzy submodules σ, γ of M
with σ ̸= χθ, γ ̸= χθ and σ ̸= µ, γ ̸= µ such that µ = σ ⊕ γ.

Theorem 2.9. ([10, Theorem 5.2]). Let µ ∈ LM . Then µ is a maximal L-submodule
of M if and only if µ can be expressed as µ = χµ∗ ∪ αM , where µ∗ is a maximal
submodule of M and α is a maximal element of L − {1}.

Definition 2.17. ([11, Definition 3.1]). A fuzzy submodule ν with ν∗ ̸= {θ} of M is
said to be a fuzzy hollow submodule if for every fuzzy submodule µ of ν with µ∗ ̸= ν∗,
µ is a fuzzy small submodule of ν. We say that an R-module M ̸= {θ} is fuzzy hollow
module if for every σ ∈ F (M) with σ∗ ̸= M implies σ ≪f M .

Theorem 2.10. ([11, Theorem 3.6]). Every fuzzy hollow submodule is indecomposable.

Theorem 2.11. ([2, Theorem 14]). Let M be a non-zero L-fuzzy multiplication R-
module. Then every L-fuzzy submodule µ ̸= χM of M is contained in a generalized
maximal L-fuzzy submodule of M .

Proposition 2.1. ([2, Proposition 18]). Suppose that M is a faithful L-fuzzy multi-
plication R-module. Let ζ be an L-fuzzy prime ideal of R. If η is an L-fuzzy ideal of
R such that ηχM ⊆ ζχM and ζχM ̸= χM , then η ⊆ ζ. In particular, (ζχM : χM) = ζ.
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Notations:
fspec(R): the set of all prime L-submodules of R;
MaxL(M): the set of all maximal L-submodules of M ;
JLR(M): the intersection of all maximal L-submodules of M is known as Jacobson

L-radical of M .

Definition 2.18 ([2]). An R-module M is called an L-fuzzy Noetherian module, if
every ascending chain of L-fuzzy submodules is stationary.

Definition 2.19. A module M is called L-local if M has exactly one maximal L-
submodule.

Definition 2.20. A module M is called L-serial if any two L-submodules of M are
comparable with respect to inclusion.

3. L-Fuzzy Hollow Modules and L-Fuzzy Multiplication Modules

In this section we introduce a slightly different notion of L-fuzzy hollow modules.
Also, we obtain some properties of the same and L-fuzzy multiplication module.

Definition 3.1. Let M be a module over a commutative ring R. M is called an L-
fuzzy hollow module if either MaxL(M) = χθ or for each maximal L-fuzzy submodule
µ of M and for each L-fuzzy submodule σ of M , the equality µ + σ = χM implies
that σ = χM .

Theorem 3.1. Let M be a non-zero module. Then the following statements are
equivalent.

(1) M is an L-fuzzy hollow module and MaxL(M) ̸= χθ.
(2) M is a cyclic and an L-local module.
(3) M is a finitely generated L-local module.

Proof. (1) ⇒ (2) Let µ be a maximal L-submodule of M and for m ∈ M , χ{m} be an
L-submodule of M such that χ{m} ⊈ µ. Since, µ + χ{m} = χM , and as M is a L-fuzzy
hollow module we have χM = χ{m}. Hence, M has only one maximal L-submodule.

Also, as χM = ⟨χ{m}⟩ = χRm implies that, M = Rm. Hence, M is cyclic.
(2) ⇒ (3) It is obivous.
(3) ⇒ (1) Let µ be a maximal L-submodule of M and σ be an L-fuzzy submodule

of M . If µ + σ = χM and σ ≠ χM , then by Zorn’s lemma there exists a maximal
L-submodule δ of M containing σ. Since, M is an L-local module, δ = µ and so
χM = µ + σ = µ, a contradiction. Thus, σ = χM . □

Theorem 3.2. Let M be an R-module and µ be an L-fuzzy submodule of M . Then
the following statements are equivalent.

(1) µ is a serial submodule.
(2) µ is an L-fuzzy hollow submodule.
(3) µ is fuzzy indecomposable.
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Proof. (1) ⇒ (2) Suppose that MaxL(µ) ̸= χθ and µ1, µ2 ∈ L(M) be such that
µ1 + µ2 = µ, where µ1 is a maximal L-submodule of µ and µ2 is an L-submodule of
µ. Since, µ1, µ2 are L-submodules of µ and µ is a serial submodule either µ1 ⊆ µ2 or
µ2 ⊆ µ1.

If µ1 ⊆ µ2, then µ = µ1 + µ2 = µ2. If µ2 ⊆ µ1, then µ = µ1 + µ2 = µ1, which
is not possible as µ1 is a maximal L-submodule of µ. Thus, µ is an L-fuzzy hollow
submodule of M .

(2) ⇒ (3) Follows from Theorem 2.10.
(3) ⇒ (1) Let µ1, µ2 be L-fuzzy submodules of µ with µ1 ̸= χθ, µ2 ̸= χθ, µ1 ̸= µ,

µ2 ̸= µ and µ1 ⊈ µ2. As µ is fuzzy indecomposable, µ1, µ2 does not satisfy µ1 +µ2 = µ
and µ1 ∩ µ2 = χθ. Then, µ2 ⊆ µ1, thus µ is a serial submodule. □

Lemma 3.1. Let M be an L-fuzzy multiplication module and µ be an L-fuzzy sub-
module of M . Then the following are equivalent.

(1) µ ⊆ JLR(M).
(2) µ is an L-small submodule in M .

Proof. (1) ⇒ (2) Let σ be an L-fuzzy submodule of M such that χM = µ + σ. If
σ ̸= χM , then by Theorem 2.11, there exists a maximal L-submodule δ of M such
that σ ⊆ δ. But, µ ⊆ JLR(M) ⊆ δ implies that µ + σ ⊆ δ ̸= χM . Thus, σ = χM

implies that µ is an L-small submodule in M .
(2) ⇒ (1) Assume that µ is an L-small submodule of M . Suppose that µ ⊈ JLR(M).

Then there exists a maximal L-submodule β of M such that µ ⊈ β. Thus, µ+β = χM .
But β ̸= χM , a contradiction. Hence, µ ⊆ β. □

Theorem 3.3. If M is an L-fuzzy hollow module, then M is an L-fuzzy multiplication
module.
Proof. As M is an L-fuzzy hollow module, by Theorem 3.1, M is cyclic. But, we
know that every cyclic module is a multiplication module. Thus, by Theorem 2.7, M
is an L-fuzzy multiplication module. □

We give an example of an L-fuzzy multiplication module by using Theorem 3.3.
Example 3.1. Let L = {0, 0.25, 0.5, 0.75, 1}. Then L is a complete Heyting algebra
together with the operations minimium (meet), maximium (join) and ≤ (partial
ordering), then 0.75 is a maximal element of L − {1}.

Consider, M = Z27 = {0, 1, 2, . . . , 26} under addition modulo 27, then M is a
module over the ring Z. Let A = {0, 3, 6, . . . , 24}.

Define, µ ∈ [0, 1]M as follows:

µ(x) =

1, if x ∈ A,

0.75, otherwise.

Then µ∗ = {0, 3, 6, . . . , 24} = A, which is a maximal submodule of Z27. Also, µ =
χµ∗ ∪ 0.75M , where 0.75 is a maximal element of L − {1}. So, by Theorem 2.9, µ is a
maximal L-submodule of Z27. Infact, µ is the only maximal L-submodule of Z27.
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Let B = {0, 9, 18} and define ν ∈ [0, 1]M as follows,

ν(x) =

1, if x ∈ B,

α, otherwise,

where α < 0.75. Then clearly µ, ν are the only fuzzy submodules of M . Also, here
ν ̸= χM implies that µ + ν ̸= χM . This shows that M is an L-fuzzy hollow module
and by Theorem 3.3, M is an L-fuzzy multiplication module.

Corollary 3.1. For ξ1, ξ2 ∈ LR with ξ1 ⊆ ξ2, then ξ1 · χM ⊆ ξ2 · χM and thus
(ξ1χM : χM) ⊆ (ξ2χM : χM).

Proof. We have
(ξ1 · χM)(x) =

∨
{ξ1(r) ∧ χM(y) | r ∈ R, y ∈ M ∧ ry = x}

=
∨

{ξ1(r) | r ∈ R, x ∈ rM}

≤
∨

{ξ2(r) | r ∈ R, x ∈ rM}

≤
∨

{ξ2(r) ∧ χM(y) | r ∈ R, y ∈ M ∧ ry = x}
= (ξ2 · χM)(x).

Hence, ξ1 · χM ⊆ ξ2 · χM , for all x ∈ M .
Again we have

(ξ1χM : χM) =
∨

{η | η ∈ LR, η · χM ⊆ ξ1 · χM}

≤
∨

{η | η ∈ LR, η · χM ⊆ ξ2 · χM}
≤ (ξ2χM : χM).

Hence, (ξ1χM : χM) ⊆ (ξ2χM : χM). □

Theorem 3.4. Let M be an L-fuzzy multilpication module. Then µ is a maximal
L-fuzzy submodule of M if and only if there exists a maximal ideal ξ of LI(R) such
that µ = ξχM ̸= χM .

Proof. By Theorem 2.11, if ξ is a maximal L-fuzzy ideal of R and χM ≠ ξχM , then
ξχM is a maximal L-submodule of M .

Conversely, assume that µ is a maximal L-submodule of M . Then there exists an
L-ideal ν of LI(R) such that µ = νχM . Suppose that ν is not a maximal L-ideal of
R. Then ν ⊆ β for some β ∈ LI(R) and so νχM ⊆ βχM implies that µ ⊆ βχM . This
implies µ is not a maximal L-submodule of M , a contradiction. Thus, ν is a maximal
L-fuzzy ideal of R. □
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Theorem 3.5. Let M be a faithful L-fuzzy Noetherian R-module. Then R satisfies
the ascending chain condition on L-prime ideals.

Proof. Let ξ1 ⊆ ξ2 ⊆ ξ3 ⊆ · · · be an ascending chain of L-prime ideals of R. Then
by Corollary 3.1, ξ1χM ⊆ ξ2χM ⊆ ξ3χM ⊆ · · · . But as M is an L-fuzzy Noetherian
R-module, there exists some n ∈ N such that ξnχM = ξn+1χM = · · · . Hence, by
Proposition 2.1, ξ1 ⊆ ξ2 ⊆ ξ3 ⊆ · · · ⊆ ξn. □

Theorem 3.6. Let R be regular ring with unity which satisfies ascending chain con-
dition on fuzzy semiprime ideals and M be an L-fuzzy multiplication module. Then
M is an L-fuzzy Noetherian module.

Proof. Let µ1 ⊆ µ2 ⊆ µ3 ⊆ · · · be an ascending chain of L-fuzzy submodules of M .
Then by Corollary 3.1, (µ1 : χM) ⊆ (µ2 : χM) ⊆ (µ3 : χM) ⊆ · · · is an ascending
chain of ideals of R. By Theorem 2.6, (µ1 : χM) ⊆ (µ2 : χM) ⊆ (µ3 : χM) ⊆ · · · is an
ascending chain of fuzzy semiprime ideals of R. By assumption there exists positive
integer t such that (µt : χM) = (µt+s : χM), for every positive integer s. Hence,
µt = (µt : χM)χM = (µt+s : χM)χM = µt+s gives µt = µt+s for every s and so the
chain is stationary. Hence, M is an L-fuzzy Noetherian module. □

Theorem 3.7. Let M be an faithful L-fuzzy multiplication module. Then for every
L-fuzzy submodule µ of M , if µχM ⊆ ξχM , where ξ ∈ fspec(R), then µ ⊆ ξ.

Proof. Given, µχM ⊆ ξχM . As, µ ⊆ (µχM : χM) ⊆ (ξχM : χM) = ξ by Proposition
2.1. Hence, µ ⊆ ξ. □

Theorem 3.8. Let R be a ring and M be an L-fuzzy multiplication R-module. Then
ξχM ̸= χM for any proper fuzzy ideal ξ of R.

Proof. As ξ is a proper fuzzy ideal of R, by Theorem 2.5, there exists a maximal
fuzzy ideal η of R such that ξ ⊆ η. Let µ be a proper L-fuzzy submodule of M .
As M is an L-fuzzy multiplication module, by Theorem 2.11, µ is contained in a
generalized maximal L-fuzzy submodule of M say ν. Then, ν is a maximal L-fuzzy
submodule of M . Hence, by Theorem 3.4, ν = ηχM ̸= χM . But as ξ ⊆ η implies that
ξχM ⊆ ηχM ̸= χM and so ξχM ̸= χM . □

Theorem 3.9. Let L be a dense chain and M be a faithful L-fuzzy multiplication
R-module. Let µ be a primary L-fuzzy ideal of R, a, b ∈ L and raxb ∈ µχM for some
r ∈ R and x ∈ M . Then ra ∈ µ or xb ∈ µχM .

Proof. As µ is a primary L-fuzzy ideal of R and L is a dense chain, then by Theorem
2.4 √

µ is prime L-fuzzy ideal of R. Now, by Theorem 2.3, for each r ∈ R, there exist
a prime ideal P of R and a prime element c ∈ L such that

√
µ(r) =

1, if r ∈ P,

c, otherwise.
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(I) As raxb ∈ µχM , it follows that µχM(rx) ≥ a ∧ b.
But, (II)

µχM(rx) = ∨{µ(s) ∧ χM(y) | s ∈ R, y ∈ M, rx = sy}
= ∨{µ(s) | s ∈ R, rx ∈ sM}.

Let A = {s ∈ P | rx ∈ sM}.
Case(I). If A = ∅, then there does not exist s ∈ P such that rx ∈ sM . Hence, from

(I) µχM(rx) = c ≥ a ∧ b. As c is a prime element of L, either c ≥ a or c ≥ b.
(i) Suppose that c ≥ a. As µ(r) ∈ {1, c}, we have

√
µ(r) ≥ a and so ra ∈ √

µ.
(ii) If c ≥ b, then similarly from (II) µχM(x) = ∨{µ(s′) : s′ ∈ R, x ∈ s′M}. So,

µχM(x) ∈ {1, c}. Therefore, µχM(x) ≥ b and so xb ∈ µχM .
Case (II). If A ̸= ∅, then there exists s′ ∈ P such that rx ∈ s′M . Therefore, using

(I) we have µχM(rx) = ∨{µ(s) | s ∈ R, rx ∈ sM} = 1 and rx ∈ s′M ⊆ PM . Now,
by using Theorem 2.7 and Theorem 2.8, we get either r ∈ P or x ∈ PM .

(i) If r ∈ P , then
√

µ(r) = 1 ≥ a implies that ra ∈ √
µ.

(ii) If x ∈ PM , then x = r1x1 + · · · + rnxn for some ri ∈ P and xi ∈ M such
that i = 1, 2, . . . , n. Hence, µχM(x) = µχM(Σrixi) ≥ µχM(r1x1) ∧ · · · ∧
µχM(rnxn) = 1 ≥ b and so, xb ∈ µχM . □

Corollary 3.2. Assume that M is a faithful L-fuzzy multiplication R-module and µ
is a primary L-fuzzy ideal of R such that χM ̸= µχM . Then µχM is a primary L-fuzzy
submodule of M .

Proof. Let µ be a primary L-fuzzy ideal of R and M be a faithful L-fuzzy multiplication
R-module. If raxb ∈ µχM , for r ∈ R and x ∈ M , then by Theorem 3.9, ra ∈ √

µ ⊆√
(µχM : χM) or xb ∈ µχM . Thus, µχM is a primary L-fuzzy submodules of M . □

4. Conclusion

In this article, we have defined an L-fuzzy hollow submodule in a different way and
some of its properties are investigated. Also, some theorems on L-fuzzy multiplication
modules are proved. Thus, this concept of an L-fuzzy multiplication module can be
extended to an L-fuzzy fully invariant multiplication modules.
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