
Kragujevac Journal of Mathematics
Volume 48(3) (2024), Pages 365–382.

IDENTITIES WITH MULTIPLICATIVE GENERALIZED
(α, α)-DERIVATIONS OF SEMIPRIME RINGS

GURNINDER SINGH SANDHU1, AYŞE AYRAN2, AND NEŞET AYDIN2

Abstract. Let R be a semiprime ring and α be an automorphism of R. A mapping
F : R → R (not necessarily additive) is called multiplicative generalized (α, α)-
derivation if there exists a unique (α, α)-derivation d of R such that F (xy) =
F (x)α(y) + α(x)d(y) for all x, y ∈ R. In the present paper, we intend to study
several algebraic identities involving multiplicative generalized (α, α)-derivations
on appropriate subsets of semiprime rings and collect the information about the
commutative structure of these rings.

1. Introduction

Troughout this paper, R denotes an associative semiprime ring with center Z(R). A
ring R is said to be prime if for any a, b ∈ R, aRb = (0) implies either a = 0 or b = 0
and is called semiprime if aRa = (0) implies a = 0. It is straight forward to observe
that every prime ring is semiprime but the converse is not true in general, e.g., Z×Z,
which is a semiprime ring but not prime. For a fixed integer n ≥ 1, a ring is said to
be n-torsion free if nx = 0 for all x ∈ R implies x = 0. For any x, y ∈ R, we denote
the commutator xy − yx and the anti-commutator xy + yx by the symbols [x, y] and
(x ◦ y), respectively. An additive mapping d : R → R is said to be a derivation if
d(xy) = d(x)y + xd(y) for all x, y ∈ R. The very first example of a derivation is the
differential operator ∆ on C[0, 1], the ring of the real valued differentiable functions
on [0, 1]. The notion of derivation has been generalized in many directions. Brešar
[6] introduced the notion of generalized derivation, which is an additive mapping
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F : R → R satisfying the relation F (xy) = F (x)y + xd(y) for all x, y ∈ R, where
d is the associated derivation of R. An additive mapping H : R → R such that
H(xy) = H(x)y for all x, y ∈ R is called the left multiplier of R. Clearly, with d = 0,
every left multiplier is a generalized derivation and with F = d, every derivation is a
generalized derivation. Let α : R → R be an automorphism of R. Then an additive
mapping δ : R → R is said to be an (α, α)-derivation if δ(xy) = δ(x)α(y) + α(x)δ(y)
for all x, y ∈ R. Note that every (1R, 1R)-derivation is the ordinary derivation of
R, where 1R stands for the identity mapping of R. Thus one can now think of the
notion of generalized (α, α)-derivation, which is a unified notion of both generalized
derivation and (α, α)-derivation. Accordingly, an additive mapping ξ : R → R is said
to be a generalized (α, α)-derivation if there exists a unique (α, α)-derivation δ of R
such that ξ(xy) = ξ(x)α(y) + α(x)δ(y) for all x, y ∈ R. If we drop the assumption of
additivity of ξ, then it is called multiplicative generalized (α, α)-derivation associated
with (α, α)-derivation δ, e.g. let S be any ring and R = {ae12+be13+ce23 : ∀a, b, c ∈ S}
be a subring of M3(S), the ring of 3×3 matrices over S. Define a mapping F : R → R
by ae12 + be13 + ce23 7→ (bc)e13, d : R → R by ae12 + be13 + ce23 7→ −ae12 + be13 and
α : R → R by ae12 + be13 + ce23 7→ −ae12 + be13 − ce23. Then α is an automorphism
of R and F is a multiplicative generalized (α, α)-derivation associated with (α, α)-
derivation δ.

The study of commutative structure of prime rings with derivations has been
initiated long back by Posner [15]. Precisely, Posner proved that: If R is a prime ring
and d is a derivation of R such that [d(x), x] ∈ Z(R) for all x ∈ R, then either R is
commutative or d = 0. Since then this result has been extended in many directions
by a number of algebraists. In 1987, Bell and Martindale [4] extended this result
to the class of semiprime rings and proved that: if a semiprime ring R admits a
derivation d which is nonzero and centralizing on a left ideal U of R, then R contains
a nonzero central ideal. In the same line of investigation, Daif [7] examined the
commutativity of semiprime rings admitting derivations that satisfy the identities:
(i) d([x, y]) − [xy] = 0, (ii) d([x, y]) + [x, y] = 0. Further, Fošner et al. [12] studied a
more general situation and proved that: if R is a 2-torsion free semiprime ring and d
is a derivation of R such that [[d(x), x], d(x)] = 0 for all x ∈ R, then D maps R into
Z(R). Dhara [8] discussed the generalized derivations of semiprime rings that act as
homomorphisms and anti-homomorphism on appropriate subsets of the ring. More
specifically, he proved the following.

1. Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero generalized
derivation of R associated with a derivation d. If F (xy) = F (x)F (y) for all
x, y ∈ I, then d(I) = (0), F is commuting left multiplier mapping on I.

2. Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero generalized
derivation of R associated with a derivation d. If F (xy) = F (y)F (x) for all
x, y ∈ I, then d(I) = (0), R contains a nonzero central ideal.

Moreover, Dhara and Mozumder [10] generalized these results by studying the iden-
tities F (xy) ± F (x)F (y) ∈ Z(R) and F (xy) ± F (y)F (x) ∈ Z(R) on (semi)prime
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ring R, where F is multiplicative generalized derivation of R. Very recently, Tiwari
and Sharma [17] studied the following identities: (i) G(xy) ± F (x)F (y) ∈ Z(R);
(ii) G(xy) ± F (x)F (y) ± α(yx) = 0; (iii) G(xy) ± F (x)F (y) ± α(xy) ∈ Z(R); (iv)
G(xy) ± F (x)F (y) ± α([x, y]) = 0; (v) G(xy) ± F (x)F (y) ± α(x ◦ y) = 0 on Lie
ideals of prime rings, where F and G are generalized (α, α)-derivations and α is an
automorphism.

On the other hand, Atteya [2] proved that a semiprime ring R that admits a
generalized derivation F, contains a nonzero central ideal if any one of the following
identity holds true: (i) F (xy) ± xy ∈ Z(R); (ii) F (xy) ± yx ∈ Z(R); (iii) F (x)F (y) −
xy ∈ Z(R); (iv) F (x)F (y) + yx ∈ Z(R) for all x, y ∈ I, a nonzero ideal of R. In
2013, Dhara et al. [9] studied the following identities: (i) [d(x), F (y)] = ±[x, y]; (ii)
[d(x), F (y)] = ±(x ◦ y); (iii) d(x) ◦ F (y) = ±(x ◦ y); (iv) d(x) ◦ F (y) = ±[x, y] on
ideals of semiprime rings, where F is generalized derivation with associated derivation
d. Then it seems more interesting to consider such identities with multiplicative
derivations. In this direction, Kumar and Sandhu [14] investigated the following
identities: (i) F ([x, y]) ± xy = 0; (ii) F ([x, y]) ± yx = 0; (iii) F (x ◦ y) ± xy = 0;
(iv) F (x ◦ y) ± yx = 0; (v) d(x)F (y) ± xy = 0; (vi) d(x)F (y) ± yx = 0; (vii)
[F (x), y] ± x ◦ G(y) = 0; (viii) F (x) ◦ y ± x ◦ G(y) = 0 on semiprime R, where F and
G are multiplicative (generalized)-derivations with the associated mappings d and g
respectively. In 2017, Tiwari et al. [16] examined the structure of semiprime rings
involving two multiplicative (generalized)-derivations that satisfy a list of algebraic
identities on appropriate subsets of the ring.

In light of the above discussion, in this paper, our aim is to study certain identities
with multiplicative generalized (α, α)-derivations of semiprime rings. More precisely,
we characterize the following situations: (i) G(xy) ± F (x)F (y) = 0; (ii) G(xy) ±
F (x)F (y) ± xy = 0; (iii) F (x)y + yG(x) = 0; (iv) F (xy) ± G(xy) = 0; (v) F (xy) ±
G(yx) = 0; (vi) α(x) ◦ F (y) ± G(yx) = 0; (vii) [α(x), F (y)] ± G(yx) = 0; (viii) α(x) ◦
F (y)±α([x, y]) = 0; (ix) [α(x), F (y)]±α(x◦y) = 0; (x) [F (x), d(y)]±x◦α(y) = 0; (xi)
d(x)◦d(y)±F (xy) = 0; (xii) [d(x), d(y)]±F (xy) = 0; (xiii) [d(x), F (y)]±F ([x, y]) = 0;
(xiv) d(x)◦F (y)±F (x◦y) = 0, for all x, y in an appropriate subset of R, where F and
G are multiplicative generalized (α, α)-derivations with associated (α, α)-derivations
d and g, respectively.

2. Preliminary Results

Lemma 2.1 (Brauer’s trick [11]). A group G cannot be the union of two of its proper
subgroups.

Lemma 2.2. ([1, Lemma 2.1]). If R is a semiprime ring and I is an ideal of R, then
I is a semiprime ring.

Lemma 2.3. ([4, Theorem 3]). Let R be a semiprime ring and U be a nonzero left
ideal of R. If R admits a derivation D which is nonzero on U and centralizing on U,
then R contains a nonzero central ideal.
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Lemma 2.4. ([13, Lemma 1.1.5]). Let R be a semiprime ring and ρ be a right ideal
of R. Then Z(ρ) ⊂ Z(R).

Lemma 2.5. ([3, Lemma 3.1]). Let R be a 2-torsion free semiprime ring and U be
a nonzero left ideal of R. If a, b ∈ R such that axb + bxa = 0 for all x ∈ U, then
axb = 0 = bxa for all x ∈ U.

Lemma 2.6. ([12, Theorem 1]). Let R be a 2-torsion free semiprime ring and
D : R → R be a derivation satisfying the relation [[D(x), x], D(x)] = 0 for all x ∈ R.
In this case D maps R into Z(R).

Lemma 2.7. ([5, Lemma 1]). Let R be a semiprime ring, I be a nonzero ideal of R
and a ∈ I and b ∈ R. If aIb = (0), then ab = ba = 0.

Lemma 2.8. Let R be a 2-torsion free semiprime ring and I be a nonzero ideal of
R. If R admits an (α, α)-derivation d such that d(I) ⊆ Z(R), then d(R) ⊆ Z(R).

Proof. By hypothesis, we have
(2.1) [r, d(x)] = 0, for all x ∈ I, r ∈ R.

Replacing x by xs in (2.1), where s ∈ R, we get
(2.2) d(x)[r, α(s)] + [r, α(x)]d(s) + α(x)[r, d(s)] = 0.

Replacing x by sx in (2.2), we find
d(s)α(x)[r, α(s)] + α(s)d(x)[r, α(s)] + α(s)[r, α(x)]d(s)(2.3)
+ [r, α(s)]α(x)d(s) + α(s)α(x)[r, d(s)] = 0.

Utilization of equation (2.2) in (2.3) gives that
d(s)α(x)[r, α(s)] + [r, α(s)]α(x)d(s) = 0, for all x ∈ I, r, s ∈ R.

Applying Lemma 2.5, we have
(2.4) d(s)α(x)[r, α(s)] = 0.

Taking xα−1(p) instead of x in (2.4), we get
d(s)α(x)p[r, α(s)] = 0, for all x ∈ I, r, s, p ∈ R.

We now can easily arrive at d(s)[α(x), α(s)]pd(s)[α(x), α(s)] = 0 for all x ∈ I and
s, p ∈ R. It forces that d(s)[α(x), α(s)] = 0 for all x ∈ I and s ∈ R. Linearizing on s,
we get
(2.5) d(r)[α(x), α(s)] + d(s)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.

Substituting sx in place of s in (2.5), we get
(2.6) d(r)[α(x), α(s)]α(x) + d(s)α(x)[α(x), α(r)] + α(s)d(x)[α(x), α(r)] = 0.

Right multiply (2.5) by α(x) and then subtract from (2.6) to obtain
d(s)[α(x), [α(x), α(r)]] + α(s)d(x)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.
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In particular, taking r = x in (2.5), we get d(x)[α(x), α(s)] = 0 for all x ∈ I and
s ∈ R. Using this in the above relation, we get

(2.7) d(s)[α(x), [α(x), α(r)]] = 0, for all x ∈ I, r, s ∈ R.

Replacing r by rp in (2.7), where p ∈ R, we find

d(s)α(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)]
+ d(s)[α(x), [α(x), α(r)]]α(p) = 0.

Using (2.7), we get

d(s)α(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)] = 0.

In view of (2.7), it can be re-written as

−α(s)d(r)[α(x), [α(x), α(p)]] + 2d(s)[α(x), α(r)][α(x), α(p)] = 0.

Again using (2.7), we get 2d(s)[α(x), α(r)][α(x), α(p)] = 0 for all x ∈ I and r, s, p ∈ R.
Since R is 2-torsion free, we obtain

d(s)[α(x), α(r)][α(x), α(p)] = 0.

Replacing p by qp, where q ∈ R, we get

d(s)[α(x), α(r)]α(q)[α(x), α(p)] = 0.

Replacing q by qα−1(d(s)) and put p = r in the above relation, we get

d(s)[α(x), α(r)]Rd(s)[α(x), α(r)] = (0), for all x ∈ I, r, s ∈ R.

Since R is semiprime, we get

d(s)[α(x), α(r)] = 0, for all x ∈ I, r, s ∈ R.

Replacing s by su in the above relation

(2.8) d(s)α(u)[α(x), α(r)] = 0, for all x ∈ I, r, s, u ∈ R.

Replacing u by xu in (2.8), we get

(2.9) d(s)α(x)α(u)[α(x), α(r)] = 0, for all x ∈ I, r, s, u ∈ R.

Left multiply (2.8) by α(x) and then subtract from (2.9), we obtain

[d(s), α(x)]α(u)[α(x), α(r)] = 0.

In particular, put r = α−1(d(s)), we get

[α(x), d(s)]α(u)[α(x), d(s)] = 0, for all x ∈ I, u, s ∈ R.

It implies that [α(x), d(s)] = 0 for all x ∈ I and s ∈ R. That means d(R) ⊆ Z(I ′),
where I

′ = α(I). And hence by Lemma 2.4, we are done. □



370 G. S. SANDHU, A. AYRAN, AND N. AYDIN

3. Main Results

Theorem 3.1. Let R be a semiprime ring, I be a nonzero ideal of R and α be an
automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations of R
associated with nonzero (α, α)-derivations d and g respectively. If G(xy)±F (x)F (y) =
0 for all x, y ∈ I, then R contains a nonzero central ideal and d and g maps R into
Z(R).

Proof. Assume that

(3.1) G(xy) + F (x)F (y) = 0, for all x, y ∈ I.

Replacing y by yr in (3.1), where r ∈ R, we find

0 = G(xyr) + F (x)F (yr)
= G(xy)α(r) + α(xy)g(r) + F (x)F (y)α(r) + F (x)α(y)d(r).

By using (3.1), we get

(3.2) 0 = α(xy)g(r) + F (x)α(y)d(r), for all x, y ∈ I, r ∈ R.

Replacing x by xs in (3.2), where s ∈ R, we get

(3.3) 0 = α(xsy)g(r) + F (x)α(s)α(y)d(r) + α(x)d(s)α(y)d(r).

Putting sy instead of y in (3.2), where s ∈ R, we get

(3.4) 0 = α(xsy)g(r) + F (x)α(sy)d(r).

Combining (3.3) and (3.4), we obtain

0 = α(x)d(s)α(y)d(r), for all x, y ∈ I, r, s ∈ R.

Substituting wy for y and then putting y = x and s = r, where w ∈ R, we have

0 = α(x)d(r)α(w)α(x)d(r), for all x ∈ I, r, w ∈ R.

Since R is semiprime ring, we find that

(3.5) 0 = α(x)d(r), for all x ∈ I, r ∈ R.

Replacing x by xy in (3.5), where y ∈ I, we have

(3.6) 0 = α(x)α(y)d(r), for all x, y ∈ I, r ∈ R.

Because I is ideal of R, α(I) is ideal of R. In view of Lemma 2.7, we have α(x)d(r) = 0
and d(r)α(x) = 0 for all x ∈ I, r ∈ R. That is

(3.7) 0 = [α(x), d(r)] , for all x ∈ I, r ∈ R.

Moreover, a particular case of (3.7) implies that [x, φ(x)] = 0 for all x ∈ I, where
φ = α−1d is an ordinary derivation of R. By Lemma 2.3, R contains a nonzero central
ideal of R. Further, from equation (3.7), we have d(r) ∈ Z(I) for all r ∈ R. In view
of Lemma 2.4, we conclude that d maps R into Z(R).
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Using (3.4) in (3.5), we obtain 0 = α(x)α(s)α(y)g(r) for all x, y ∈ I and r, s ∈ R.
Taking α−1(g(r))s instead of s in the last expression, we get in particular

(0) = α(x)g(r)Rα(x)g(r), for all x ∈ I, r ∈ R.

It yields that
0 = α(x)g(r), for all x ∈ I, r ∈ R.

Since this expression is same as (3.5) but with g instead of d. Therefore, the same
technique implies g maps R into Z(R), as desired.

Using similar approach, we conclude that the same result holds for G(xy) −
F (x)F (y) = 0 for all x, y ∈ I. □

Theorem 3.2. Let R be a semiprime ring, I be a nonzero ideal of R and α be an
automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations of R
associated with nonzero (α, α)-derivations d and g respectively. If G(xy)±F (x)F (y)±
xy = 0 for all x, y ∈ I then R contains a nonzero central ideal and, d and g maps R
into Z(R).

Proof. Assume that
(3.8) G(xy) + F (x)F (y) + xy = 0, for all x, y ∈ I.

Replacing y by yr in (3.8), where r ∈ R, we have
(3.9) 0 = G(xy)α(r) + α(xy)g(r) + F (x)F (y)α(r) + F (x)α(y)d(r) + xyr.

Right multiplying (3.8) by α(r), we get
(3.10) 0 = G(xy)α(r) + F (x)F (y)α(r) + xyα(r), for all x, y ∈ I, r ∈ R.

Subtracting (3.10) from (3.9), we obtain
(3.11) 0 = α(xy)g(r) + F (x)α(y)d(r) + xyr − xyα(r), for all x, y ∈ I, r ∈ R.

Replacing x by xs in (3.11), where s ∈ R, we have
(3.12) 0 = α(xsy)g(r) + F (x)α(s)α(y)d(r) + α(x)d(s)α(y)d(r) + xsyr − xsyα(r).
Again replacing y by sy in (3.11), where s ∈ R, we get
(3.13) 0 = α(xsy)g(r) + F (x)α(sy)d(r) + xsyr − xsyα(r).
Combining (3.12) and (3.13), we obtain
(3.14) 0 = α(x)d(s)α(y)d(r), for all x, y ∈ I, r, s ∈ R.

Substituting wx for y and r for s in (3.14), where w ∈ R, we have
0 = α(x)d(r)α(w)α(x)d(r), for all x ∈ I, r, w ∈ R.

It follows that
0 = α(x)d(r), for all x ∈ I, r ∈ R.

This expression also appeared as equation (3.5) in Theorem 3.1, so the result is
followed in the same way.
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Now replacing x by ux in (3.9), where u ∈ R, we get
0 = α(u)α(xy)g(r) + uxyr − uxyα(r).

Combining with the above relation, it implies that (α(u) − u)α(xy)g(r) = 0 for all
x, y ∈ I and u, r ∈ R. Using (3.11), it gives

(α(u) − u)xy(α(r) − r) = 0, for all x, y ∈ I, r, u ∈ R.

It implies that xα(r) = xr for all x ∈ I and r ∈ R. Now, using this in (3.11),
we obtain 0 = α(xy)g(r) for all x, y ∈ I and r ∈ R. That is, α(x)α(y)g(r) = 0.
Since α is an automorphism, replacing x by xα−1(g(r)) in the last relation to get
α(x)g(r)α(y)g(r) = 0. Further it implies that α(x)g(r)Rα(y)g(r) = (0) for all x, y ∈ I
and r ∈ R. In particular, α(x)g(r)Rα(x)g(r) = (0) for all x ∈ I and r ∈ R. Hence,
we get 0 = α(x)g(r) for all x ∈ I and r ∈ R. By repeating the similar argument as
above, we get our conclusion.

Using similar approach, we conclude that the same result holds for G(xy) −
F (x)F (y) − xy = 0, G(xy) − F (x)F (y) + xy = 0 and G(xy) + F (x)F (y) − xy = 0 for
all x, y ∈ I. □

Theorem 3.3. Let R be a semiprime ring, I be a nonzero ideal of R and α be an
automorphism on R such that α(I) = I. Let F and G be multiplicative generalized
(α, α)-derivations of R associated with nonzero (α, α)-derivations d and g respectively.
If F (x)y + yG(x) = 0 for all x, y ∈ I, then F maps I into Z(R) and G maps I into
Z(R). Moreover, R contains a nonzero central ideal and d + g maps R into Z(R).

Proof. Assume that
(3.15) F (x)y + yG(x) = 0, for all x, y ∈ I.

Substituting xz in place of x in (3.15), where z ∈ I, we obtain
(3.16) 0 = F (x)α(z)y + α(x)d(z)y + yG(x)α(z) + yα(x)g(z).
Replacing y by α(z)y in (3.15), we have
(3.17) 0 = F (x)α(z)y + α(z)yG(x), for all x, y ∈ I, z ∈ R.

Subtracting (3.17) from (3.16) and using (3.15), we get
(3.18) 0 = −F (x)yα(z) + α(z)F (x)y + α(x)d(z)y + yα(x)g(z).
Combining (3.16) and (3.18), we get

0 = [α(z), F (x)] y, for all x, y, z ∈ I.

Since I is semiprime, we have
0 = [α(z), F (x)] , for all x, z ∈ I.

That is F (I) ⊂ Z(I). In view of Lemma 2.4, we find F (I) ⊂ Z(R). Now right
multiplying (3.15) by α(z), where z ∈ I, we obtain
(3.19) 0 = F (x)yα(z) + yG(x)α(z), for all x, y, z ∈ I.
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Replacing y with yα(z) in (3.15), we have
(3.20) 0 = F (x)yα(z) + yα(z)G(x), for all x, y, z ∈ I.

Application (3.19) and (3.20) yields that
0 = y [α(z), G(x)] , for all x, y, z ∈ I.

By semiprimeness of I, we get
0 = [α(z), G(x)] , for all x, y, z ∈ I.

That is G(I) ⊂ Z(I). In view of Lemma 2.4, we find G(I) ⊂ Z(R). In view of
F (I) ⊂ Z(I) and G(I) ⊂ Z(I), our hypothesis yields
(3.21) 0 = y(F + G)(x), for all x, y ∈ I.

Replacing x by xr in (3.21), where r ∈ R, we find
(3.22) 0 = y(F + G)(x)α(r) + yα(x)(d + g)(r), for all x, y ∈ I, r ∈ R.

Application of (3.21) in (3.22), we have
(3.23) 0 = yα(x)(d + g)(r), for all x, y ∈ I, r ∈ R.

In view of Lemma 2.7 and the fact that α(I) = I, we have y(d + g)(r) = 0 and
(d + g)(r)y = 0 for all x ∈ I, r ∈ R. That is
(3.24) 0 = [y, (d + g)(r)], for all y ∈ I, r ∈ R.

Moreover, a particular case of (3.24) implies that [α(y), (d + g)(y)] = 0 for all y ∈ I.
That is [y, φ(y)] = 0 for all y ∈ I, where φ = α−1(d + g) is an ordinary derivation of
R. By Lemma 2.3, R contains a nonzero central ideal of R. Applying Lemma 2.4 on
relation (3.24), we find that (d + g)(R) ⊆ Z(R). □

Theorem 3.4. Let R be a semiprime ring, I be a nonzero ideal of R and α be
an automorphism of R. Let F and G be multiplicative generalized (α, α)-derivations
associated with nonzero (α, α)-derivations d and g respectively. If F (xy) ± G(xy) = 0
for all x, y ∈ I, then d ± g maps R into Z(R) and R contains a nonzero central ideal.

Proof. By the given hypothesis, we have
F (xy) ± G(xy) = 0 = (F ± G)(xy), for all x, y ∈ I.

Since sum of two multiplicative generalized (α, α)-derivations is a multiplicative gener-
alized (α, α)-derivation, we take H in place of F ± G, therefore our condition becomes
H(xy) = 0 for all x, y ∈ I. Which is a particular case of our Theorem 3.1 (with F = 0).
Hence, we are done. □

Theorem 3.5. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g respectively. If
F (xy) ± G(yx) = 0 for all x, y ∈ I, then d and g maps R into Z(R) and R contains
a nonzero central ideal.
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Proof. Assume that

(3.25) F (xy) + G(yx) = 0, for all x, y ∈ I.

Replacing x by xr in (3.25), where r ∈ R, we have

(3.26) 0 = F (xry) + G(yxr), for all x, y ∈ I, r ∈ R.

Again replace y with ry in (3.25), we find

(3.27) 0 = F (xry) + G(ryx), for all x, y ∈ I, r ∈ R.

Combining (3.26) and (3.27), we get

G(yxr) = G(ryx), for all x, y ∈ I, r ∈ R.

Putting yz instead of y in (3.25), where z ∈ I and using (3.25), we get

(3.28) 0 = −G(yx)α(z) + G(yz)α(x) + α(xy)d(z) + α(yz)g(x), for all x, y, z ∈ I.

Substituting xs in place of x in (3.28), where s ∈ R, we obtain

(3.29) − G(yxs)α(z) + G(yz)α(xs) + α(xsy)d(z) + α(yz)g(xs) = 0.

Taking sy instead of y in (3.28), where s ∈ R, we have

(3.30) − G(syx)α(z) + G(syz)α(x) + α(xsy)d(z) + α(syz)g(x) = 0.

Combining (3.29) and (3.30) and using G(yxs) = G(syx), we get

0 = G(yz)α(xs) + α(yz)g(xs) − G(syz)α(x) − α(syz)g(x).

Using G(syz) = G(yzs) in last expression, we find

G(yz)α(xs) + α(yz)g(xs) − G(yzs)α(x) − α(syz)g(x) = 0, for all x, y, z ∈ I, s ∈ R.

That is
(3.31)

G(yz)α([x, s]) + α(yz)(g(x)α(s) − g(s)α(x)) + α(yzx)g(s) − α(syz)g(x) = 0,

for all x, y, z ∈ I, s ∈ R. Replacing s by x in (3.31), we find

(3.32) 0 = α([yz, x])g(x), for all x, y, z ∈ I.

Putting wy instead of y in (3.32), where w ∈ I, we have 0 = α([w, x])α(y)α(z)g(x)
for all x, y, z, w ∈ I. It is implies that (0) = α([w, x])α(I)α(z)g(x) for all x, y, z ∈ I.
Because I is an ideal of R, α(I) is an ideal of R. In view of Lemma 2.7, we have

(3.33) 0 = α([w, x])α(z)g(x), for all x, y, z ∈ I.

That is, [I, x] I ((α−1g) (x)) = (0) for all x ∈ I. Since I is a semiprime ring in itself,
it must contains a family P of prime ideals such that ∩Pλ = (0). Let Pλ1 be a typical
member of this family and x ∈ I; by (3.33), we have find

[I, x] ⊂ Pλ1 or
((

α−1g
)

(x)
)

⊂ Pλ1 .
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Let A = {x ∈ I : [I, x] ⊂ Pλ1} and B = {x ∈ I : ((α−1g) (x)) ⊂ Pλ1} . Note that A
and B are additive subgroups of I such that A ∪ B = I. By using Brauer’s trick, we
obtain

[I, I] ⊂ Pλ1 or
((

α−1g
)

(I)
)

⊂ Pλ1 .

Together with these both cases, we have [I, I] ((α−1g) (I)) = (0). That is
(3.34) α([x, y])g(z) = 0, for all x, y, z ∈ I.

Replacing y by ry in (3.34), where r ∈ R, we have α([x, r])α(y)g(z) = 0. That is
(3.35) [α(x), r] α(y)g(z) = 0, for all x, y, z ∈ I, r ∈ R.

Right multiplying (3.35) by α(x), we get
(3.36) [α(x), r] α(y)g(z)α(x) = 0.

Substituting yx for y in (3.35), we have
(3.37) [α(x), r] α(y)α(x)g(z) = 0.

Combining (3.36) and (3.37), we obtain [α(x), r] α(y) [α(x), g(z)] = 0 for all x, y, z ∈
I, r ∈ R. In particular, we have [α(x), g(z)] α(I) [α(x), g(z)] = (0) for all x, z ∈ I.
Since α(I) is semiprime ring, we obtain
(3.38) [α(x), g(z)] = 0, for all x, z ∈ I.

That is g(I) ⊂ Z(I ′), where I
′ = α(I). By Lemma 2.4, g(I) ⊂ Z(R). In view of

Lemma 2.8, we get g(R) ⊂ Z(R). Moreover, a particular case of (3.38) implies that
[x, φ(x)] = 0 for all x ∈ I, where φ = α−1g is an ordinary derivation of R. By Lemma
2.3, R contains a nonzero central ideal of R.

Now from (3.25), by replacing y by yr, where r ∈ R, we get
(3.39) F (xyr) + G(yrx) = 0, for all x, y ∈ I, r ∈ R.

And replacing x by rx in (3.25), we obtain
(3.40) F (rxy) + G(yrx), for all x, y ∈ I, r ∈ R.

Combining (3.39) and (3.40), we get
F (xyr) = F (rxy), for all x, y ∈ I, r ∈ R.

Interchanging the role of x and y in this expression, we obtain
F (yxr) = F (ryx), for all x, y ∈ I, r ∈ R.

This relation has already existed in the above proof for G. Hence by repeating the
same arguments, we get that d maps R into Z(R). □

Theorem 3.6. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g respectively. If
α(x) ◦ F (y) ± G(yx) = 0 for all x, y ∈ I, then d maps R into Z(R) and R contains a
nonzero central ideal.
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Proof. Assume that α(x) ◦ F (y) ± G(yx) = 0 for all x, y ∈ I. That is
(3.41) α(x)F (y) + F (y)α(x) ± G(yx) = 0.

Replacing y by yx in (3.41), we find
α(x)F (y)α(x) + α(x)α(y)d(x) + F (y)α(x)α(x)
+ α(y)d(x)α(x) ± G(yx)α(x) ± α(yx)g(x) = 0.

Expression (3.41) reduces it to
(3.42) α(x)α(y)d(x) + α(y)d(x)α(x) ± α(yx)g(x) = 0.

Taking zy in place of y in (3.42), where z ∈ I, we get
(3.43) α(x)α(z)α(y)d(x) + α(z)α(y)d(x)α(x) ± α(z)α(yx)g(x) = 0.

By using (3.42), we find [α(x), α(z)]α(y)d(x) = 0 for all x, y, z ∈ I. By using Lemma
2.7, it yields that [α(x), α(y)]d(x) = 0 for all x, y ∈ I. Replacing y by α−1(r)y, where
r ∈ R, we get

[α(x), r]α(y)d(x) = 0, for all x, y ∈ I, r ∈ R.

It implies that
(3.44) [α(x), R]Rα(I)d(x) = (0).

Since R contains a family S of prime ideals such that ∩Pλ = (0). Let P be a typical
member of this family and x ∈ I, by (3.44), we find

[α(x), R] ⊂ P or α(I)d(x) ⊂ P.

Let A = {x ∈ I : [α(x), R] ⊂ P} and B = {x ∈ I : α(I)d(x) ⊂ P}. Note that A and
B are the additive subgroups of R such that A ∪ B = I. By using Brauer’s trick, we
obtain

[α(I), R] ⊂ P or α(I)d(I) ⊂ P.

Together with these both cases, we have [α(I), R]d(I) = 0. That is
(3.45) [α(x), r]d(y) = 0, for all x, y ∈ I, r ∈ R.

Replacing y by yt, in (3.45), where t ∈ I, we find
(3.46) [α(x), r]α(y)d(t) = 0.

This expression is same as (3.35) of Theorem 3.5 with d instead of g. With the similar
arguments, we get our conclusion. □

By the same implications as in Theorem 3.6 with necessary modifications, we can
get the following result.

Theorem 3.7. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F and G be multiplicative generalized (α, α)-
derivations of R associated with nonzero (α, α)-derivations d and g, respectively. If
[α(x), F (y)] ± G(yx) = 0 for all x, y ∈ I, then d maps R into Z(R) and R contains a
nonzero central ideal.
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Theorem 3.8. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation
of R associated with a nonzero (α, α)-derivation d. If α(x) ◦ F (y) ± α([x, y]) = 0 for
all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Proof. Assume that
(3.47) α(x) ◦ F (y) ± α([x, y]) = 0, for all x, y ∈ I.

Replacing y by yx in (3.47), we find
(α(x) ◦ F (y))α(x) + (α(x) ◦ α(y)d(x)) ± α([x, y])α(x) = 0, for all x, y ∈ I.

Equation (3.47) reduces it to
(3.48) (α(x) ◦ α(y)d(x)) = 0.

Replacing y by zy in (3.48), where z ∈ I, and using it, we get [α(x), α(z)]α(y)d(x) = 0
for all x, y, z ∈ I. This expression also appeared in Theorem 3.6, hence the conclusion
follows in the similar manner. □

By the same implications as in Theorem 3.8 with necessary modifications, we can
get the following result.

Theorem 3.9. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation
of R associated with a nonzero (α, α)-derivation d. If [α(x), F (y)] ± α(x ◦ y) = 0 for
all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Theorem 3.10. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation
of R associated with a nonzero (α, α)-derivation d. If [F (x), d(y)] ± (x ◦ α(y)) = 0 for
all x, y ∈ I, then d maps R into Z(R) and R contains a nonzero central ideal.

Proof. Assume that [F (x), d(y)] − (x ◦ α(y)) = 0 for all x, y ∈ I. That is
(3.49) F (x)d(y) − d(y)F (x) − xα(y) − α(y)x = 0.

Replacing y by yz in (3.49), where z ∈ I, we find
F (x)d(y)α(z) + F (x)α(y)d(z) − d(y)α(z)F (x)
− α(y)d(z)F (x) − xα(y)α(z) − α(y)α(z)x = 0.

Right multiplying (3.49) by α(z) and then comparing with the above expression to
obtain
(3.50) [F (x), α(y)d(z)] + d(y)[F (x), α(z)] − α(y)[α(z), x] = 0, for all x, y, z ∈ I.

Taking zy instead of y in (3.50), we have
α(z)[F (x), α(y)d(z)] + [F (x), α(z)]α(y)d(z) + d(z)α(y)[F (x), α(z)]
+ α(z)d(y)[F (x), α(z)] − α(z)α(y)[α(z), x] = 0, for all x, y, z ∈ I.
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Application of (3.50) yields
[F (x), α(z)]α(y)d(z) + d(z)α(y)[F (x), α(z)] = 0, for all x, y, z ∈ I.

In view of Lemma 2.5, it follows that
[F (x), α(z)]α(y)d(z) = 0 = d(z)α(y)[F (x), α(z)], for all x, y, z ∈ I.

Let us consider the expression
(3.51) [F (x), α(z)]α(y)d(z) = 0.

Replacing x by xz in (3.51), we get
(3.52) [F (x), α(z)]α(z)α(y)d(z) + [α(x)d(z), α(z)]α(y)d(z) = 0.

Substituting zy in place of y in (3.51) and then subtracting it from (3.52) in order to
find
(3.53) [α(x)d(z), α(z)]α(y)d(z) = 0, for all x, y, z ∈ I.

Replacing x by wx in (3.53), where w ∈ R, and using it to obtain
[α(w), α(z)]α(x)d(z)α(y)d(z) = 0, for all x, y, z, w ∈ I.

In particular, taking y = r[w, z]x in above expression, where r ∈ R, we get
[α(w), α(z)]α(x)d(z)R[α(w), α(z)]α(x)d(z) = (0), for all x, z, w ∈ I.

Since R is semiprime ring, it implies that [α(w), α(z)]α(x)d(z) = 0 for all x, z, w ∈ I.
This expression also appeared in Theorem 3.6, so the result is followed in the same
way.

Using similar approach we conclude that the same result holds for [F (x), d(y)] +
(x ◦ α(y)) = 0 for all x, y ∈ I. □

Theorem 3.11. Let R be a 2-torsion free semiprime ring and α be an automorphism
of R. Let F be a multiplicative generalized (α, α)-derivation of R associated with a
nonzero (α, α)-derivation d. If d(x) ◦ d(y) ± F (xy) = 0 for all x, y ∈ R, then d maps
R into Z(R) and R contains a nonzero central ideal.

Proof. We assume that d(x) ◦ d(y) ± F (xy) = 0 for all x, y ∈ R. That is
(3.54) d(x)d(y) + d(y)d(x) ± F (xy) = 0.

Replacing y by yz in (3.54) and using it, we get
(3.55) d(x)α(y)d(z) + α(y)d(z)d(x) + d(y)[α(z), d(x)] ± α(xy)d(z) = 0.

Taking xy in place of y in (3.55) to get
d(x)α(x)α(y)d(z) + α(x)α(y)d(z)d(x) + d(x)α(y)[α(z), d(x)](3.56)
+ α(x)d(y)[α(z), d(x)] ± α(x)α(xy)d(z) = 0, for all x, y, z ∈ R.

Application of (3.55) in (3.56) yields
[d(x), α(x)]α(y)d(z) + d(x)α(y)[α(z), d(x)] = 0, for all x, y, z ∈ R.
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In particular for x = z, we get

(3.57) [d(x), α(x)]α(y)d(x) = d(x)α(y)[d(x), α(x)], for all x, y ∈ R.

Replacing y by yα−1(d(x)) in (3.57) and using it, we have

d(x)α(y)[d(x), [d(x), α(x)]] = 0, for all x, y ∈ R.

It implies that

[d(x), [d(x), α(x)]]α(y)[d(x), [d(x), α(x)]] = 0, for all x, y ∈ R.

Using semiprimeness of R, we get [d(x), [d(x), α(x)]] = 0 for all x ∈ R. That is
equivalent to [φ(x), [φ(x), x]] = 0 for all x ∈ R, where φ = α−1d, which is an ordinary
derivation of R. Invoking Lemma 2.6, we get φ maps R into Z(R), i.e.,

[φ(x), y] = 0, for all x, y ∈ R.

In particular, we have [φ(x), x] = 0 for all x ∈ R, and hence R contains a nonzero
central ideal by Lemma 2.3. □

Theorem 3.12. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. Let F be a multiplicative generalized (α, α)-derivation
of R associated with a nonzero (α, α)-derivation d. If [d(x), d(y)] ± F (xy) = 0 for all
x, y ∈ I, then R contains a nonzero central ideal.

Proof. Following the same arguments as in Theorem 3.11, instead of equation (3.57),
we have

[d(x), α(x)]α(y)d(x) + d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

By Lemma 2.5, we find

(3.58) d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Taking xy in place of y in (3.58), we get

(3.59) d(x)α(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Left multiply (3.58) by α(x) to obtain

(3.60) α(x)d(x)α(y)[d(x), α(x)] = 0, for all x, y ∈ I.

Comparing (3.59) and (3.60), we obtain [d(x), α(x)]α(y)[d(x), α(x)] = 0 for all x, y ∈ I.
By semiprimeness of α(I), we find [α(x), d(x)] = 0 for all x ∈ I. It implies that
[x, φ(x)] = 0 for all x ∈ I, where φ = α−1d, which is an ordinary derivation. Hence,
in light of Lemma 2.3, we are done. □

Now onwards, we consider that F is a two sided multiplicative generalized (α, α)-
derivation associated with (α, α)-derivation d, i.e., F satisfies the following conditions:

F (xy) = F (x)α(y) + α(x)d(y) = d(x)α(y) + α(x)F (y), for all x, y ∈ R.
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Theorem 3.13. Let R be a 2-torsion free semiprime ring, I be a nonzero ideal of R
and α be an automorphism of R. If [d(x), F (y)] ± F ([x, y]) = 0 for all x, y ∈ I, then
R contains a nonzero central ideal.

Proof. Assume that

(3.61) [d(x), F (y)] ± F ([x, y]) = 0, for all x, y ∈ I.

Replacing y by yx in (3.61) and using it, we get

(3.62) F (y)[d(x), α(x)] + [d(x), α(y)]d(x) ± α([x, y])d(x) = 0, for all x, y ∈ I.

Replacing y by xy in (3.62), we have

α(x)F (y)[d(x), α(x)] + d(x)α(y)[d(x), α(x)] + α(x)[d(x), α(y)]d(x)
+ [d(x), α(x)]α(y)d(x) ± α(x)α([x, y])d(x) = 0, for all x, y ∈ I.

Using (3.62), we get

d(x)α(y)[d(x), α(x)] + [d(x), α(x)]α(y)d(x) = 0, for all x, y ∈ I.

This expression also appeared in Theorem 3.12, so the result is followed in the same
way. □

Theorem 3.14. Let R be a 2-torsion free semiprime ring and α be an automorphism
of R. If d(x) ◦ F (y) ± F (x ◦ y) = 0 for all x, y ∈ R, then d maps R into Z(R) and R
contains a nonzero central ideal.

Proof. Assume that

(3.63) (d(x) ◦ F (y)) ± F (x ◦ y) = 0, for all x, y ∈ I.

Replacing y by yx in (3.63) and using it, we get

(3.64) − F (y)[d(x), α(x)] + (d(x) ◦ α(y))d(x) ± α(x ◦ y)d(x) = 0, for all x, y ∈ I.

Replacing y by xy in (3.64), we find

− α(x)F (y)[d(x), α(x)] − d(x)α(y)[d(x), α(x)] + α(x)(d(x) ◦ α(y))d(x)
+ [d(x), α(x)]α(y)d(x) ± α(x)α(x ◦ y)d(x) = 0, for all x, y ∈ I.

Using (3.64), we obtain

d(x)α(y)[d(x), α(x)] = [d(x), α(x)]α(y)d(x), for all x, y ∈ I.

This expression also appeared as equation (3.57) in Theorem 3.11, so the result is
followed in the same way. □
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