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THREE-WEIGHT AND FIVE-WEIGHT LINEAR CODES OVER
FINITE FIELDS

PAVAN KUMAR! AND NOOR MOHAMMAD KHAN!

ABSTRACT. Recently, linear codes constructed from defining sets have been studied

extensively. For an odd prime p, let Try" be the trace function from F,m onto Fye,

where e is a divisor of m. In this paper, for the defining set D = {x € Fom :

T (2% +2) =0} = {d1,da, . ..,d,} (say), we define a p°-ary linear code Cp by
Cp = {co = (Tr]*(xdy), Trl*(xd2), ..., T (xdy,)) : @ € Fpm}

and present three-weight and five-weight linear codes with their weight distributions.

We show that each nonzero codeword of Cp is minimal for ** > 5 and, thus, such
codes are applicable in secret sharing schemes.

1. INTRODUCTION

Throughout this paper, let p be an odd prime, and let F,= be the finite field with
p™ elements for any positive integer m. Denote by Fy. = Fym \ {0} the multiplicative
group of Fym.

An (n, M) code over Fpe, where e | m and 7 > 2, is a subset of F}. of size M. Since
linear codes are easier to describe, encode and decode than nonlinear codes, they have
been an interesting topic in both theory and practice for many years. A linear code €
over [y is a subspace of Fj.. An [n, k,d] linear code C is a k-dimensional subspace of
[y with minimum Hamming-distance d. The vectors in a linear code € are known as
codewords. The number of nonzero coordinates in ¢ € € is called the Hamming-weight
wt(c) of a codeword c. Let A; denote the number of codewords with Hamming weight
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346 P. KUMAR AND N. M. KHAN

7 in a linear code € of length n. The weight enumerator of C is defined by
14+ Az + A2 + -+ A,2",

where (1, Ay,..., A,) is called the weight distribution of €. Throughout the paper,
#{-} denotes the cardinality of the set. If #{i : A; # 0,1 < i < n} = t, then the
code C is said to be t-weight code. Several classes of linear codes with various weights
have been constructed in [3,5,6,8,19], and a lot of literature is present on the weight
distributions of some special linear codes [1,2,14,15].

Let D = {d;,ds,...,d,} C Fym. A linear code Cp of length n over F, is defined by

Cp = {(Th] (wdy), T (wdlp), ..., T (wdy)) : @ € Fp},

where Tr{" denotes the absolute trace function from F,= onto F,. The set D is known
as the defining set of this code Cp. Ding et al. introduced this construction (see
[6,7]), and many others used it to obtain linear codes with few weights [8,17]. In
3,6,11,14,17,19], the authors constructed the code Cp over F, with few weights
by considering certain defining sets with absolute trace function. In particular, the
authors, in [11], give linear codes over F, by employing Gauss sums and Pless Power
Moments [10, page 260].

In this paper, we use Gauss sums and cyclotomic numbers to find linear codes over
[F,e by considering a new defining set obtained by replacing Tr by Tr]" in the defining
set D given in [11]. Let m, s and e are positive integers with s > 2 and m = es. Now
we define the trace function Tr]" from F,» onto F,. as follows:

s—1
T (z) =) o
k=0
Now, set
D={ze€F,. : Ttl'(a*+ ) =0} = {d,ds,....dy},
(1.1) Cp ={c, = (Tr)" (xdy), Tr (xds), ..., Tr)' (2dy)) - @ € Fym}.

Then we present the weight distribution of the proposed linear code €p of (1.1) in
the Section 4.

2. PRELIMINARIES

We begin with some preliminaries by introducing the concept of cyclotomic numbers.
Let a be a primitive element of F,» and p™ = Nh+ 1 for two positive integers N > 1,

h > 1. The cyclotomic classes of order N in F,m are the cosets NP — gi(aM)
for i =0,1...,N —1, where (a") denotes the subgroup of F?, generated by a™. It

is obvious that #GEN’pm) = h. For fixed ¢ and j, we define the cyclotomic number
(1, 7)N*™) to be the number of solutions of the equation

T, +1= Tj, X; € GZ(N’pm), T; € G;N’pm),
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where 1 = a° is the multiplicative identity of Fym. That is, (4,5)™*") is the number
of ordered pairs (s,t) such that

V1 =N 0<st<h—1.

Now, we present some notions and results about group characters and Gauss sums
for later use (see [12] for details).

An additive character x of F,» is a mapping from F,~ into the multiplicative
group of complex numbers of absolute value 1 with x (g1 + g2) = x (91)x(g2) for all
g1, g2 € Fpm. By ([12], Theorem 5.7), for any b € Fym,

(2.1) Xo(x) = C]Trin(bx), for all z € Fym,
2my=T

defines an additive character of IF,m, where (, = e » , and every additive character
can be obtained in this way. An additive character defined by yo(z) = 1 for all
x € Fym is called the trivial character while all other characters are called nontrivial
characters. The character x; in (2.1) is called the canonical additive character of Fym

The orthogonal property of additive characters of F,m can be found in ([12], Theorem
5.4) and is given as

p™, if x trivial,
(2.2) > x(= { . .

2€Fym 0, if x non-trivial.

Characters of the multiplicative group Fy. of Fym are called multiplicative character
of Fym. By [12, Theorem 5.8], for each j = 0,1,...,p™ — 2, the function t; with

T/ —1j
V(") = eQP’"—lljk, for k=0,1,...,p" —2

™1

defines a multiplicative character of F,m, where g is a generator of IF;,.. For j = F5—,

we have the quadratic character n = ¥pm 1 defined by
2

1, 2tk
k\ ) 3
n(g)_{l, it 2| k.

Moreover, we extend this quadratic character by letting 7(0) = 0.
The quadratic Gauss sum G = G(7, x1) over F,m is defined by

G(n,xa)= Y. n(z)

zelF* m

Now, let 77 and ; denote the quadratic and canonical character of [F,. respectively.
Then we define the quadratic Gauss sum G = G(7, yl) over F,e by

Gm,xy) = Y, 7(x)

xEF*

The explicit values of quadratic Gauss sums are given by the following lemma.
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Lemma 2.1. ([12, Theorem 5. 15]) Let the symbols be the same as before. Then

Gl = (D) VTV, G = ()T VR

Lemma 2.2. ([13, Lemma 2]). Let the symbols be the same as before. Then the
following hold.

1. If s > 2 is even, then n(y) =1 for each y € F}.;

2. If s is odd, then n(y) =7n(y) for each y € F;..

Lemma 2.3. ([16]). When N = 2, the cyclotomic numbers are given by
L. h even: (0,0)#™) =122 (0, 1)") = (1,0)@™) = (1,1)@?"™) = 4.
2. h odd: (0,0)7™) = (1,0)@P™) = (1,1)*P™) = 221 (0, 1)EP™) = 251

Lemma 2.4. ([12, Theorem 5.33]). Let x be a non-trivial additive character of Fym,
and let f(x) = agr® + a1x + ag € Fym[x] with ag # 0. Then

> x(f(x) = x(ao — ai(4az) " )n(az) G(n, x)-

wEIFpm

Lemma 2.5. ([12, Theorem 2.26]). Let Tr" and Tr] be absolute trace functions over
Fym and Fye respectively, and let Tr)" be the trace function from Fym onto Fpe. Then

Ty’ () = Try(Tre' (7)),
for all x € Fym

3. Basic RESULTS

In this section, we provide some important results to establish our main results.

Lemma 3.1. For each A € Fye, set Sy = #{x € Fym : Tr'(2?) = A}. If s is odd, then

g )P AT (=0INGE, i A,
AT e if A = 0.

Proof. For each A € Fpe, we have

s Z (Z (T (o A)))

Z‘G]F m yE]F e

Z(Jrzg WAy)>

wE]Fpm yEIF‘*

:pm—e+ Z Cp—Trf()\y) Z X1(y$2)

yEIF;E merm

=p" + G > xi(= y)n(y).

ye]F;e

This completes the proof. O
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Lemma 3.2. For \,u € Fpe, define

N\ p) =#{x € Fpm : T (2?) = A and T (z) = p}.
Then the following assertions hold.

1. If2| s and p | s, then
P 4 pe(p¢ — )G, if A=0 and pu =0,
pm2e if A\ =10 and p # 0,
pm2e — pe@, if A4 0 and pu =0,
P, if A #£0 and pu # 0.

2. If2| s and pts, then

m=2e | pe(y, if A\=0and p # 0,
m—2e if A # 0 and p? — s\ =0,
m=2 L — sA)p~°G,  if A # 0 and p? — s\ # 0.
3. If2¢s and p| s, then
pm2e if A =0,
pm_ze + ﬁ(—/\)p_eGé, if A\ #0 and p =0,
pn2e, if A #0 and p # 0.

pmo2e, if \=0and =0,
p
b
p

4. If2ts and p1s, then

—2 | = -2 A2
P 4+ m(—s)p ¥ (p¢ — 1)GG,  if p* —sA =0,

N(/\a :u) = m—2e 7< ) —23( Yal ) .9
P —7(=s)p~*°GG, if po— s\ #0.

Proof. By the properties of additive character and Lemma 2.4, we have

—2e e mx27 EZ ml‘f
N =p2 Y < T () A)))( S (mEEm @) u)))

z€F,m ~y€F e 2€Fpe
_ 2 Te§ (yTe (%) —yA) Trf (2 Teg () —2p)
—p Y (14 X g )1+ 2 ¢ )
z€F,m yGIF;e ZGF;E
(3.1) = p" % £ p (S + Sy + S3),

where

= Y > METT@m = Ny (—zp) > xalzw) =0,

z€F,m ZEIF ZGIF z€F,m
Sa= 3 D GUUETEITN = 3T R (—yA) YD xalye?),
z€F,m yGIF yGIF* z€F,m

Z Z Cgr‘f(yTr?(ﬁ)—yA) Z CpTri(zTrZ"(a:)—zu)

QZEFpm yG]F;e ZeF;e
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= > =y D Xal=zu) > xalya® + zx).

yE]F;e zE]F;e z€Fpm
By Lemma 2.4, it is easy to prove that
G(pc—1), if A=0and 2| s,
0, if \=0and 21 s,

-G, if A\ 40 and 2| s,
N(—=\GG, ifX#£0and 21s.

Sy =

By Lemma 2.4, we have

Sy= > Xi(=yA) D xXu(—zp) D xa(ya® + zx)

yG]F;e ZG]F* z€F,m
- Sz
=G Y (=X Z:m<——u>
yeF;e ZG]F y

and there are the following cases to consider.
Case 1. Suppose that 2 | s and p | s. Then

G(p¢—1)% ifA=0and u=0,

Y v _G(P —1), if A=0and pu#0,

S3=G Y xi(=\y) Y Xa(—pz) = '
3 ygil zgél G(p* —1), ifA#0and p=0,
G, if A\ # 0 and u # 0.

Case II. We consider that 2 | s and p{s. Then, from Lemma 2.4, we have

522
=G Z X1(—Ay) Z X1 <_4y_,u2>

yeFr, 2€F%,

:G§:M<&w»«—£>G—G§:MFﬁw

ye]F* ye]F;e

—G(pt—1), if A\=0and u =0,
G, if A\ =0 and p # 0,
G, if A # 0 and pu? — s\ =0,

(ﬁ(;ﬂ — SA)p° + l)G, if A # 0 and p? — s\ # 0.
Case III. Assume that 21 s and p | s. Then

if A =0,

0,
=G > xi(=W)ly) Y. Xa(—nz) = (=N —1)GG, if A#0and p =0,
yeF e #€F e -n(=\GG, if A # 0 and p # 0.
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Case IV. Suppose that 21 s and p{s. Then, by Lemma 2.4, we have

Sy =G Z X1(—=\y)

yeF;e ZGF;6

3
—~
<
N—
>
=
|
V)
g‘N
[\
|
=
N
N——

-a@ ¥ mewion ()7 (-5) -6 ¥ wewi

yelye yeFs.
— 2 s\
—1(-968 3 (“52) -6 X nl-wi
yeF”. s yEF?,
7(—s)(p® — 1)GG, if A\=0and pu=0,
-n(-s)GG, if \=0and pu#0,
- ((]0e —Dn(=s) — ﬁ(—)\))Gé, if A #£ 0 and pu? — s\ =0,
—(ﬁ(—s) +ﬁ(—)\))G@, if A # 0 and p? — s\ # 0.

Combining (3.1) and the values of S, Sy and S3, we get the complete proof.

Lemma 3.3. Let the symbols be the same as before, and let

Q=Y 3 (I

yeF’, oeFpym

Then

(p°—=1)G, if2|sandp]s,
-G, if2| s andp1s,
0, if 2ts and p| s,
(—s)GG, if21s andpfts.

Proof. By Lemmas 2.4 and 2.5, we have

Q=Y > xiyr’+yx)=G Y xa (—Z) n(y)

yeF;e merm yeF;e
Te§ (= Trg (1))

T (-4
=G > ny)& Y_gqg > (Y
yeF;e yE]F;;e
G > ny), if p | s,
yGF;e
= Tr(— %2 .
G S e T fpts

ye]F;e

351
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G ¥ 1, if 2| sandp]s,
yGJF;e
Cp 7, if 2| sand p1s,
o yGJFpe
G ), if 2¢sand p| s,
yele
G ny)e T, if2fsandpts,
yel .
(p*—=1G, if2|sandp]s,
)G, if 2| sand p1s,
o, if 24/ s and p| s,
n(—s)GG, if2tsand pts,

as required.

Lemma 3.4. For b€ F,. and c € F., let

= Z Z Z x1(yz? + yx + bzx).

ZEIF;;E ye]F;e z€F,m

Then we have the following statemets.

L. If Y (b%) # 0 and Tx'(b) # 0, then

~1)GG* - G(p® — 1),
G,

(T (02) — (T (b) + 20)2) GG + G,

if2]sandp] s,
if2]s, pts and (Tr
if2]s, pts and (Tr

if21s, pts and (T ;”(b))2 # sTr'™(b?).

0y =1 e .
-7 — Tr™(b?)) GG, if 2ts and p| s,
n(— T (6?)GG(p* — 1) —n(—s)GG, if21s, pts and (Tx"
—7(— Ty (b)) GG —7(—5)GG,
2. If Yl (b?) # 0 and Trl'(b) = 0, then
—(p° = 1)G, if 2| s andp] s,
O — 7(sTel" (b ))GG + G, if2|s andpfts,
COICTE) e -GG, if2ts andp| s,
—(A(=Txl (6%) +77(—5))GG, if2fs andpts.

3. If el (b?) = 0 and Trl'(b) # 0, then

—(p*—=1G, if2|sandp]|s,
Q, — G, if 2| s andpts,
0, if2¢s andp| s,
—n(—s)GG, if2tsandpfts.
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4. If T (b*) = 0 and Tx'(b) = 0, then

(p° —1)2G, if2]|sandp|s
0.}~ =G, if2]sandpts,
7o, if2tsandp|s

n(—s)(p° — 1)GG, if21s andpfs.

Proof. By Lemma 2.4, we have

= > > Y xilyx® +yz + bea)

ZGF;e ye]F;e x€F,m

=G Y. > 1y (—wbz)z)

z€F e yel i,

=G Y > 1y <_y2_

2€Fy yeFy.

Y bz b?2?
=G > nyx (—) X1 (— -
yEF;e 4 ZEF;Q 2 4y
Y Ty (-~ b 222
=G Y Y (—4) G
yer”, 2€F},
y Tri zTrm(b) z Trm(bz)
=G >y (—4) > G ( )

Note that, in the first part, Tr”"(b*) # 0 and Tr*(b) # 0. Therefore,

Q=G > nyx(—5 Z X1< ™ ?’(bz)—;TrZ”(b)>

yeFs, 2€F%,

‘Z) (de X1 (—Tr (b?) — ;Trzl(b)> - 1)
>

2—8 m(p2
:ﬁ(—TrZ‘(b?)) GG > nw)x: (( < (?%r,en(bffe &) >n -G >y < 4>

yeF .
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ﬁ(—l)Gé2 —G(p® —1), if2|sandp|s
G, if2|s, ptsand (Tr] b) = (b%),
EC: < ) — (L (1) b)A)GG + G, if2]s,pfsand (Ti" <>>2¢ < ),
- ( (%) GG, if2fsand p|s
(- (b)))GG(p® — 1) —n(—s)GG, if21s, ptsand (Trl( ) = (b?),
< (b?))GG 7(~$)GG, if 21 5,pfsand (Tr)" ())2# < ).

This completes the proof of the first part.
Following the similar arguments used in the first part, one can easily prove the
remaining parts. U

Lemma 3.5. For p € Fr., let V = #{x € Fym : Tr)*(x) = p and (Tr;”(x))2 = sTy"(x?)}.
Then, for pt s, we have

P, if2]s,
V= m—2e = —2e (€ ral :
P+ a(=s)pT(pt — GG, if 21 s.

Proof. We can rewrite V as

2
V=4# {x € Fym : Tt (x) = p and Tr(z°) = 'M} .
s

Then, by definition, we have

V:p_ge Z (Z Q?T(y(ﬁz‘(xz)“f))) (Z Cpﬁ;«(zm;ﬁ(x)u)))

z€F,m \y€F,e €Fpe
2
—9% Tré (Tr (yx?)— 22— e (TY™ () — 2
:p2 Z 1_,_2(1 (ya® s) 1_'_24;1&‘1(%8() )
z€F,m yGIF* ZGF;E
= p" 7% 4 p (N1 + Ny + Ns),
where

T (yz?)— Tr‘f(%)
_ Y Y e —g, N,= Y g ,

zEIE‘;e z€F,m yG]F e TEF,m

=2 2 26

yE]F*e zE]F"e z€F,m

Trm e y,u2
(yz?+zz)—Tr§ —tzp

Now, by Lemma 2.4, we obtain

_Tye '!JN2

No= > ¢ (s )X(O)n(y)G

ye]F;e
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B> Cpm(y”, i£2 s,
= yeFy,
USREPI (—25) % (—22), if21s,

)G, if 2 | s,
- \7(—=s)GG, if21s,
and

y/t2

Ny — Z Z Cpﬁi( s +zu) Z X1(y352+2x)

zE]F;e yEIF;8 xe]Fpm

=2 2 Czo_Tﬁ(yzzm)xl (—22> n(y)G

2€F*, yeF?,

Also
Vv :pm—Qe +p—2€<N1 —|—N2 +N3)
Thus, we get the desired result. O

Lemma 3.6. Suppose that A, € Fy.. Fori € {1,—1}, let K; denote the number of
pairs (A, 1) such that n(u* — s\) = i. Then we have

1 1
Ki=50 =00 =3), Ka=50" - 1)%.

Proof. We can rewrite p? — s\ # 0 as

/\ 2
S 11= M

2 .
(32) 12 — s\ (2 — s\
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Set p¢ = 2h + 1. Now, for any fixed 712 — s\ such that 7(zi2 — s\) = 1, the number of
the pairs (A, p?) satisfying (3.2) is equal to

(0,0)7) 4+ (1,0)?7) = h —1 (by Lemma 2.2).
Similarly, for a fixed 712 — s\ such that 7j(z? — s\) = —1, the number of pairs (\, u?)
satisfying (4.1) is equal to

(0,1)P) 4 (1,1)?P) = b (from Lemma 2.2).
Consequently, the number of the pairs (\, ) such that 7(72 — s\) = 1 (resp. 7(@> —

s\) = —1) is 2(h — 1) (resp. 2h). We conclude that K; = (p* —1)(h—1) (resp. K_; =
(p® — 1)h), and hence the result follows. O

Lemma 3.7. Suppose that A, u € F,. and pu?—s\#0. Fori€ {1,—1}, let 1; denote
the number of the pairs (X, p) such that j(—\) = i. Then we have

(p —1)(p°—-3), ifn(-s)=1,
’ ifn(=s) = —1,

<

=

I
——
D= N |—=
A

- 1)%
and
oy = a1 ifi(=s) =1,
- s(0° =D =3), ifn(—s)=—1.

Proof. The proof of the lemma is similar to the proof of Lemma 3.6 and is omitted
here. 0
4. MAIN RESULTS

Our task in this section is to prove some lemmas needed to obtain a class of 3-weight

and 5-weight linear codes over [F ..
Now, let D be the defining set defined by

D ={z €F, : Tr]"(2* + z) = 0}.
Assume that lo = |D|+ 1. Then

- Z Z CTrl(yTrm(x2+a: — m— Z Z CTr (yTr® 2+J:

xE]F m YyEF e J:EF m ye]F

Define N = #{x € Fym : Tr)' (2 + 2) = 0 and Trl'(bx) = 0}. Let wt(cp) denote the
Hamming-weight of the codeword ¢, of the code Cp. It is easy to verify that

(41) Wt(Cb) = lo — Nb.
For b € [}, we have

N, =p2¢ Z (Z CI)TTT(yTrZ”(mZer))) (Z CETT(ZTTZ”(M)))

z€F,m \y€F e 2€Fpe
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:p—2e

>

LEEFPM yEIF;e

1+ Y CpTrT(yTrZ”(wQH))

357

1+ Z CpTr‘f(zTré”(bx))

ze]F;e

—p R p e 3 YT (TGt e 3§ T )

yGF;e z€F,m

yE]F;;e z€F,m

+p—2e Z Z Z Cg‘r‘f(Trgn(yxZ-‘rya:-l—bzx))

yGF;e ZEJF;;E z€F,m

(4.2)

yGIF;ZE z€F,m

:pm—Ze +p—2€ Z Z C—g‘r’ln(yx2+yx)+p—26 Z Z Z gg‘r’l"(yx2+yac+bzm)'

yE]F;e zeIF;e z€F,m

In this section, we calculate ly, N, and give the proofs of the main results.

4.1. The first case of three-weight linear codes. In this subsection, we consider
that 2 | s and p | s. In order to determine the weight distribution of Cp of (1.1), we

need the following lemma.

Lemma 4.1. Let b € F}. and the symbols be the same as before. Then

m—2e

p )

N, =
P4+ pe(pt — 1)G,

pmfZe + pfer7

if Tl (b%) = 0 and Trl'(b) # 0,
or Tr"(b?) # 0 and Tx'(b) = 0,
if T (b*) = 0 and Trl"' (b) = 0,
if Tl (b%) # 0 and Trl'(b) # 0.

Proof. The proof of the lemma directly follows from (4.2), Lemmas 3.3 and 3.4. [

Theorem 4.1. Let s be even and p | s. Then the code Cp of (1.1) is a [p™ ¢ —
1+ p~¢(p° — 1)G, s] linear code with the weight distribution given in Table 1, where

mp-1)2 m

G=—(-1)"38 p>2.

TABLE 1. The weight ditribution of the codes in Theorem 4.1
Weight w Frequency A,
0 1
(pe _ 1)pm—2e pm—Qe — 1+ p—e(pe _ 1>G
(p° — 1)p™ % +p~c(p° — 1) 2(p° — )p™ > —pe(p° — 1)G

QQ

(pe _ 1>pm—26 + p—e(pe _ 2)

<pe _ 1)2pm—2e

Proof. By Lemma 3.3, we have

lo=p"“+p°(p° - 1)G.

Combining (4.1) and Lemma 4.1, we have the following distinct cases.

Case I. If Tr*(b?) = 0 and Tr*(b) # 0 or Tr*(b*) # 0 and Tr*(b) = 0, then we

obtain

wt(ep) =1lo— Ny = (p° — 1)p" > +p~“(p° — 1)G.
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By Lemma 3.2, wt(c,) = (p°—1)p™ 2 +p~¢(p° — 1)G occurs 2(p¢ —1)p™~2¢ —p~¢(p° —
1)G times.

Case II. If Tr"(b*) = 0 and Tr*(b) = 0, then we have wt(cy) = lp — N =
(p® — 1)p™~2¢. By Lemma 3.2, the frequency is p™2¢ — 1 + p~¢(p¢ — 1)G.

Case IIIL. If Tr*(b?) # 0 and Trl*(b) # 0, then we have

wt(cp) = (p° — 1)p" 7 +p~(p° — 2)G.
From Lemma 3.2, the frequency is (p® — 1)*p™2¢. Hence, the result is established. [

Ezample 4.1. Let (p,m, s,e) = (3,12,6,2). Then the corresponding code Cp has pa-
rameters [58400, 6, 51840] and the weight enumerator 1+ 1056242°1810 4 419904251921 4
5912252488,

4.2. The second case of three-weight linear codes. In this subsection, suppose
2| sand pts. By (4.2), Lemmas 3.3 and 3.4, it is easy to get the following lemma.

Lemma 4.2. Let b € F;m. Then

Mol
o
2
S
S8
H
==

P (

P 26 +n(=sTr"(b?))p—°G, if Trl" (b%)

pm % —p G, if Te'(b%) = 0 and Trm(b
P e

(Tr (b)) = sTre (0%),
P (T (0)? = ST (02))peG, if Tl (b2) # 0, Tal'(b) # 0
and (Tr;n(b)>2 # (sTel (b)).

Theorem 4.2. Let 2 | s and p{s. Then the code Cp of (1.1) is a [p™~¢—p~*G—1,

m(P*1)2 m

linear code with the weight distribution given in Table 2, where G = —(—=1)" 5 p=.

TABLE 2. The weight distribution for the codes in Theorem 4.2

Weight w Frequency A,

0 1

(p° — Dp™ 72 —p~°G (- —1)(2p e +2f€G)

(p° = 1)pm—2 2 1)( G)+pm7 =1
(p° — Dp™ 2 = 2p~°G 2 (0" =) (p° - 2)( "+ peG)

Proof. 1f 2 | s and p { s, then by Lemma 3.3, we have
lo=p" °—p °G.

By (4.2) and Lemma 4.2, we have following distinct cases to consider.
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Case I. If Tr*(b*) = 0 and Tr*(b) # 0 or Tr*(b*) # 0 and (T[‘rZ‘(b))2 = sTr"(b?),

then we can acquire
wt(cy) = lp — Ny = (p° — 1)p™ % — p~°G.
By Lemmas 3.2 and 3.5, the frequency is (p¢ — 1)(2p™ ¢ + p~°G).

Case II. If Tv'(v*) # 0, Tel'(b) = 0 and f(—sTe'(b?) = 1 or TX)*(b?) #
0, Trl"(b) # 0, (Tr?(b))2 # sTr*(b?) and ﬁ((Tlr;"(b))2 — 3Tr2"(b2)) = 1, then we
have

wt(cp) = lp — Np = (p° — 1)p™ % — 2p °G.
From Lemmas 3.2 and 3.5, the frequency is 5(p° — 1)(p° — 2)(p™ > + p °G).

Case III. If TY"(b?) = 0 and Tr*(b) = 0 or Tx"(¥?) # 0, Tr"(b) = 0 and
N-sTe(12) = —1 or Ti'(1?) # 0, (")) # sT(4?) and p((Te" (1)) —
sTrZ”(b2)) = —1, then

wt(cp) = lp — Ny = (p° — 1)p™ 2.

It follows from Lemmas 3.2 and 3.5 that wt(c,) = (p® — 1)p™ % — 2p~“G occurs

2(p° = 1)(p™° — G) + p™ ¢ — 1 times. Thus, the proof is completed. O

Ezample 4.2. Let (p,m,s,e) = (3,8,4,2). Then the corresponding code Cp has
parameters [737, 4, 648] and the weight enumerator 1+ 33202548 + 12242557 4- 20162966,

4.3. The first case of 5-weight linear codes. In this subsection, we assume that
2fsand p|s. By (4.2), Lemma 3.3 and Lemma 3.4, we get the following lemma.

Lemma 4.3. For b € ., and Tr]"(b*) # 0, we have

P —p(=1)GG, if Ty (b) # 0 and 7(Tr" (b)) = 1,
N, *+pPn(-1)GG if T (b) # 0 and 7( Teg' (0%)) = —1,

pm 2€+p 2eq(—1)(p° — 1)Gé if Te™(b) = 0 and 7(Tr™(0?)) = 1,

p" % —p¥n(—1)(p¢ — 1)GG, if Tr'(b) = 0 and 7(Tx' (%)) = —1.

Moreover, if Trl'(b*) = 0, then N, = p™~2¢.
Theorem 4.3. Let 21 s and p | s. Then the linear code Cp of (1.1) has parameters

[p™~¢ —1, s| and weight distribution in Table 3, where GG = (—1)ym+e=2(- yle=tymte) (mie)
Proof. Note that 2 t s and p | s. By Lemma 3.3, we have [y = p™~¢, which gives
the length of the code Cp. It follows from (4.1) and Lemma 4.3 that wt(c,) has five
distinct values under following cases.

Case L. If Tr"(b?) = 0, then we have wt(c,) = lp — N, = (p® — 1)p™2¢. By Lemma
3.1, the frequency of such codewords is p™ ¢ — 1.

Case II. If Tv*(b?) # 0, Tr*(b) # 0 and 7(Tr"(b?)) = 1, then we can acquire

wt(cp) = lo — Ny = (p° — 1)pm_26 +p‘28ﬁ(—1)Gé.
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From Lemma 3.2, the frequency is (p® — 1)%p™ 2.

Case III. If Tr" (b%) # 0, Tr"(b) # 0 and (T (b*)) = —1, then we can obtain
wt(cy) = lo — Ny = (p° — 1)p™ % — p~275(-1)GG.

It follows from Lemma 3.2 that the frequency is §(p® — 1)%p™ 2.
Case IV. If Tr["(b%) # 0, Tr*(b) = 0 and 7(Tr}(b*)) = 1, then we can obtain

wt(cp) = lo — Ny = (p° — 1)p™ > — p*0(—1)(p° — 1)GG.

By Lemma 3.2, the frequency is 1 (p® — 1)(p™ % + p~*7j(—1)GG).
Case V. If Tv"(b?) # 0, Tr?*(b) = 0 and 7(Tr*(b?)) = —1, then we have

wt(ep) = lo — Ny = (p° — D)p™ > + p~*0(—1)(p° — 1)GG.

From Lemma 3.2, the frequency is 1 (p® — 1)(p™ 2 — p~*7(—1)GG). Hence, the result
is established. O

Ezample 4.3. Let (p,m,s,e) = (3,6,3,2). Then the corresponding code Cp has
parameters [80, 3,64] and the weight enumerator 1 + 72254 4 2882 + 8027 + 2882™.
By Table 3, Cp in Theorem 4.3 is a four-weight linear code if and only if p = s = 3.

TABLE 3. The weight distribution of the codes in Theorem 4.3

Weight w Frequency A,

0 1

(pe _ 1)pm—26 B pm—e -1

(= p >+ p7>0(-1)GC 2 =1

(p° 1)pm*2e - p*;n(—l)GG B ?(pe 1) p’”*; B
(p° = Dp™ % —p>m(=1)(p° — 1)GG 5 = D™ +p~n(—1)GG)
(p° — Dp™* + p~*7(=D(p° — 1)GG S(0° =D ("> — p~7(=1)GG)

Ezample 4.4. Let (p,m,s,e) = (5,10,5,2). Then the corresponding code Cp has
parameters [5% — 1, 5,24 x 5 — 600] and the weight enumerator 1+ A, 2% + Ay, 2" +
Ay 2 + Ay, 2" 4+ Ay, 2, where the values of A,, and w; for 1 <7 < 5, are given
in Table 4.

TABLE 4. The weight distribution of the code in Theorem 4.3 for
(p7 m, s, 6) = (57 1Oa 57 2)

Weight Frequency

wy = 24 x 55 — 600 Ay, = 12(5° + 5%)
wy = 24 x 56— 25 Ay, =12 x 24 x 55
wz = 24 x 5° Ay, =5%—1

wy = 24 x 5%+ 25 Ay, = 12 x 24 x 58

ws = 24 x 5% + 600 Ay, = 12(55 — 54)




THREE-WEIGHT AND FIVE-WEIGHT LINEAR CODES 361

4.4. The second case of five-weight linear codes. In this subsection, suppose
2t s and pts. The auxiliary result that we need is the following.

Lemma 4.4. Let b € F. and the symbols be the same as before. Then

pm2e, if Tel' (b?) = 0 and Tx*(b) # 0,

p" % + pmen(—s)GG, if Tr'(b%) = 0 and Tr"(b) = 0,

pmTe — p*Q"’ﬁ( - Tr;n(bQ))G@, if Tl (b%) # 0 and Tr(b) =0,

N, =P+ p7 2 (=s)(p° = VGG, if Tr'(B?) # 0, Th” ( ) # 0 an

( "(b) ‘o =sTrl"

pme — p‘Qeﬁ( — Tr’c:”(bZ))Gé, if Trl" (bQ) #£0, Tr ( ) # 0 and
(Ter(8))” # sTem(82).

Proof. The proof of the lemma follows from (4.2), Lemmas 3.3 and 3.4. O

Theorem 4.4. Let s be odd with p t s. Then the linear code Cp of (1.1) has
parameters [p™¢ + p~N(—s)GG — 1,s| and weight distribution in Tables 5 and 6,

— (p=1)%(m+e) (m+e)
where GG = (—1)m+e2(—1) "5 pr,

Proof. Firstly, we assume that 7j(—s) = 1. For 2t s and p{ s, by Lemma 3.3, we have
lo=p""°+p °GG.

It follows from (4.1) and Lemma 4.4 that wt(c,) has five distinct values under following

cases.
Case L. If Tr"(b?) = 0 and Tr[*(b) # 0, then we have

wt(cp) =log — Ny = (p° — 1)pm’26 +p ¢GG.

By Lemma 3.2, the frequency is (p¢ — 1)(p™ ¢ — p~2°GGQ).
Case IL. If Tr7*(b*) = 0 and Tr*(b) = 0, then wt(c,) = lp — N = (p© — 1)p™2¢.
From Lemma 3.2, the frequency is p™~2¢ + p=2¢(p® — 1)GG — 1.
Case IIL If Tr'(b?) # 0, Tel*(b) # 0 and (Trzl(b))2 = sTrl"(b?), then we can
obtain
wt(cpy) = lp — Ny = (p° — 1)p™ % + p **GG.

e

It follows from Lemmas 3.2 and 3.5 that the frequency of such codewords is (p® —
l)pmf2e + p72e(pe _ 1)2Gé
Case IV. If Tr'(b?) # 0, TY"(b) = 0 and 7(—Tr*(b?)) = 1 or Tr*(b?) # 0,
Trl' (b) # 0, (Trgn(b))2 # sTrl"(b?) and B(—Tr"(b*)) = 1, then we can obtain
wt(cp) = lop — Ny = (p° — 1)p™ 2 + p~*(p° + 1)GG.

By Lemmas 3.2 and 3.7, the frequency is %(p6 —1)(p™ ¢ - p~°GQ).
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Case V. If Ty (b?) # 0, Trl'(b) = 0 and 7(—Tr"(b?)) = —1 or Tr'(b?) # 0,
Tr' (b) # 0, (Trgn(b))2 # sTr!"(b?) and 7j(—Tr"(b*)) = —1, then we have
wt(cp) = lo — Ny = (p° — 1)p™ % + p~*(p° — 1)GG.

From Lemmas 3.2 and 3.7, the frequency is (p® — 1)(p® — 2)(p™ % — p *GG),
which completes the Table 5. Similarly, we can complete the Table 6 by taking
7(—s) = —1. O

TABLE 5. The weight distribution of the codes in Theorem 4.4 with

G G-t “GC) _
pm—Qe +p—2e(pe o 1)GG %(pe )( 2)(pm 2e QeGG)

3
3
+

3
<
+
=
)
@Q

n(=s) =1

Weight w Frequency A,
0 1

(p 1>pm—26 + p—eGé <pe _ 1)<pm—26 _ p—2eG§)
(pc — 1)pm=2e B P 4 pe(pt — 1)GG -1
(pe _ 1)pm—2e +p—26GG (pe )pm 2e +p—26( e )2GG
(p° —1)

(P°—1)

S

TABLE 6. The weight distribution of the codes in Theorem 4.4 with
7(=s) = -1

Weight w Frequency A,

1
pm 2e __ 76GG ( e )( m—2e +p72eG§)
% m—2e p p—Qe(pe _ 1)GG -1
(

(r" = 1)

(r"=1) B

Epe 1;pm Vo pe — 1)p" % — p7(p° — 1)°GC
1

(" =1)

€

§S

pe—pn T —p T (pt = NGG St - D" +p GG
P D = p e+ NGGE (07— 1) = 2)(p" T +p*GE)

e

Ezample 4.5. Let (p,m,s,e) = (5,6,3,2). Then the corresponding code Cp has
parameters [649, 3, 600] and the weight enumerator as 14482990 +11762%1 + 6624254 +
5762925 + 72002526,

5. CONCLUDING REMARKS

In this paper, we have presented a class of three-weight and five-weight linear codes.
A number of three-weight and five-weight codes were discussed in [1,3,4,6,9,14,19,20].
Let wy and ws denote the minimum and maximum non-zero weight of a linear
code Cp, respectively. The linear code €p with > > ®°=D can be used to construct

a secret sharing scheme with interesting access structures (see [18]).
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For the linear code Cp in Theorem 4.1, we have

m—2e

wo _ (- =) wy (p° — L)pm 2
Woo (pe — D)pm-2¢ Weo  (pe — 1)pm=2¢ 4 (pe — 1)p™z "
Let > 4. Then by simple computation, we have
m—2e
Wo _ (p° = pm=* =D -t —lp = (- 1)
Woo  (p¢ — L)pm2 4 (pr — 1)p™7 (pe — 1)pm—2 P
For the linear code Cp of Theorem 4.2, we have
m—2e
ﬂ _ (pe _ 1)pm—2e _ 2p 5 or ﬂ _ (pe _ 1)pm—2e
Weo (pe _ 1)pm—26 Woo (pe o 1)pm—2€ + 2pm;2e
Then it can easily be checked that
e _ 1)pm—2e e _1 m—2e_2m725 e _1
wo _ -t (f = Dp AR W=D ™y
wOO (pe i 1)pm726 + 2p 3 (pe — 1)pm e pe e
For the linear code Cp of Theorem 4.3, we have
e _1)pm2 _ (pt — 1] m=3e e _1
wo _ (p°—1)p (p )pm; _ )7 for ™ > 5.
Woo  (p¢— 1)pm=2¢+ (p¢—1)p 2 P° 2
For the linear code Cp of Theorem 4.4, we have
m—3e
wo _ (PP (0 Dt w (p* = Dpm>
Woo (pe _ 1)pmf2e Woo (pe _ 1)pm72e + <pe + 1)pm53€
Let > 5. Then by simple calculation, we can show that
m—3e
ﬂ _ (pe _ 1)pm72e (pe _ 1)pm726 _ (pe + 1)pT - (pe _ 1)
Weo  (pe — 1)pm—2¢ 4 (p° + 1)pmg35 (pe — 1)pm—2¢ e

Consequently, one can easily see that the codewords of the linear code Cp are minimal
for > > 5. These linear codes can be used in secret sharing schemes.
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