Kragujevac Journal of Mathematics Volume 48(3) (2024), Pages 345–364.

THREE-WEIGHT AND FIVE-WEIGHT LINEAR CODES OVER FINITE FIELDS

PAVAN KUMAR¹ AND NOOR MOHAMMAD KHAN¹

ABSTRACT. Recently, linear codes constructed from defining sets have been studied extensively. For an odd prime p, let Tr_e^m be the trace function from \mathbb{F}_{p^m} onto \mathbb{F}_{p^e} , where e is a divisor of m. In this paper, for the defining set $D = \{x \in \mathbb{F}_{p^m}^* : \operatorname{Tr}_e^m(x^2 + x) = 0\} = \{d_1, d_2, \dots, d_n\}$ (say), we define a p^e -ary linear code \mathcal{C}_D by

$$\mathfrak{C}_D = \{c_x = \left(\operatorname{Tr}_e^m(xd_1), \operatorname{Tr}_e^m(xd_2), \dots, \operatorname{Tr}_e^m(xd_n)\right) : x \in \mathbb{F}_{p^m}\}$$

and present three-weight and five-weight linear codes with their weight distributions. We show that each nonzero codeword of \mathcal{C}_D is minimal for $\frac{m}{e} \geq 5$ and, thus, such codes are applicable in secret sharing schemes.

1. Introduction

Throughout this paper, let p be an odd prime, and let \mathbb{F}_{p^m} be the finite field with p^m elements for any positive integer m. Denote by $\mathbb{F}_{p^m}^* = \mathbb{F}_{p^m} \setminus \{0\}$ the multiplicative group of \mathbb{F}_{p^m} .

An (n, M) code over \mathbb{F}_{p^e} , where $e \mid m$ and $\frac{m}{e} > 2$, is a subset of $\mathbb{F}_{p^e}^n$ of size M. Since linear codes are easier to describe, encode and decode than nonlinear codes, they have been an interesting topic in both theory and practice for many years. A linear code \mathbb{C} over \mathbb{F}_{p^e} is a subspace of $\mathbb{F}_{p^e}^n$. An [n, k, d] linear code \mathbb{C} is a k-dimensional subspace of $\mathbb{F}_{p^e}^n$ with minimum Hamming-distance d. The vectors in a linear code \mathbb{C} are known as codewords. The number of nonzero coordinates in $c \in \mathbb{C}$ is called the Hamming-weight wt(c) of a codeword c. Let A_i denote the number of codewords with Hamming weight

Key words and phrases. Linear code, weight distribution, Gauss sum, cyclotomic number, secret sharing.

²⁰¹⁰ Mathematics Subject Classification. Primary: 11T71. Secondary: 94B05.

DOI 10.46793/KgJMat2403.345K

Received: March 22, 2020.

Accepted: April 23, 2021.

i in a linear code \mathcal{C} of length n. The weight enumerator of \mathcal{C} is defined by

$$1 + A_1 z + A_2 z^2 + \dots + A_n z^n$$
,

where $(1, A_1, ..., A_n)$ is called the weight distribution of \mathcal{C} . Throughout the paper, $\#\{\cdot\}$ denotes the cardinality of the set. If $\#\{i: A_i \neq 0, 1 \leq i \leq n\} = t$, then the code \mathcal{C} is said to be t-weight code. Several classes of linear codes with various weights have been constructed in [3,5,6,8,19], and a lot of literature is present on the weight distributions of some special linear codes [1,2,14,15].

Let $D = \{d_1, d_2, \dots, d_n\} \subseteq F_{p^m}$. A linear code \mathcal{C}_D of length n over \mathbb{F}_p is defined by

$$\mathfrak{C}_D = \{ \left(\operatorname{Tr}_1^m(xd_1), \operatorname{Tr}_1^m(xd_2), \dots, \operatorname{Tr}_1^m(xd_n) \right) : x \in \mathbb{F}_{p^m} \},$$

where Tr_1^m denotes the absolute trace function from \mathbb{F}_{p^m} onto \mathbb{F}_p . The set D is known as the defining set of this code \mathcal{C}_D . Ding et al. introduced this construction (see [6,7]), and many others used it to obtain linear codes with few weights [8,17]. In [3,6,11,14,17,19], the authors constructed the code \mathcal{C}_D over \mathbb{F}_p with few weights by considering certain defining sets with absolute trace function. In particular, the authors, in [11], give linear codes over \mathbb{F}_p by employing Gauss sums and Pless Power Moments [10, page 260].

In this paper, we use Gauss sums and cyclotomic numbers to find linear codes over \mathbb{F}_{p^e} by considering a new defining set obtained by replacing Tr by Tr_e^m in the defining set D given in [11]. Let m, s and e are positive integers with s > 2 and m = es. Now we define the trace function Tr_e^m from \mathbb{F}_{p^m} onto \mathbb{F}_{p^e} as follows:

$$\operatorname{Tr}_{e}^{m}(x) = \sum_{k=0}^{s-1} x^{p^{ke}}.$$

Now, set

$$D = \{x \in \mathbb{F}_{p^m}^* : \operatorname{Tr}_e^m(x^2 + x) = 0\} = \{d_1, d_2, \dots, d_n\},$$

$$(1.1) \qquad C_D = \{\boldsymbol{c}_x = (\operatorname{Tr}_e^m(xd_1), \operatorname{Tr}_e^m(xd_2), \dots, \operatorname{Tr}_e^m(xd_n)) : x \in \mathbb{F}_{p^m}\}.$$

Then we present the weight distribution of the proposed linear code \mathcal{C}_D of (1.1) in the Section 4.

2. Preliminaries

We begin with some preliminaries by introducing the concept of cyclotomic numbers. Let a be a primitive element of \mathbb{F}_{p^m} and $p^m = Nh + 1$ for two positive integers N > 1, h > 1. The cyclotomic classes of order N in \mathbb{F}_{p^m} are the cosets $\mathcal{C}_i^{(N,p^m)} = a^i \langle a^N \rangle$ for $i = 0, 1, \ldots, N-1$, where $\langle a^N \rangle$ denotes the subgroup of $\mathbb{F}_{p^m}^*$ generated by a^N . It is obvious that $\#\mathcal{C}_i^{(N,p^m)} = h$. For fixed i and j, we define the cyclotomic number $(i,j)^{(N,p^m)}$ to be the number of solutions of the equation

$$x_i + 1 = x_j, \quad x_i \in \mathcal{C}_i^{(N,p^m)}, x_j \in \mathcal{C}_j^{(N,p^m)},$$

where $1 = a^0$ is the multiplicative identity of \mathbb{F}_{p^m} . That is, $(i, j)^{(N, p^m)}$ is the number of ordered pairs (s, t) such that

$$a^{Ns+i} + 1 = a^{Nt+j}, \quad 0 < s, t < h - 1.$$

Now, we present some notions and results about group characters and Gauss sums for later use (see [12] for details).

An additive character χ of \mathbb{F}_{p^m} is a mapping from \mathbb{F}_{p^m} into the multiplicative group of complex numbers of absolute value 1 with χ $(g_1 + g_2) = \chi$ $(g_1)\chi(g_2)$ for all $g_1, g_2 \in \mathbb{F}_{p^m}$. By ([12], Theorem 5.7), for any $b \in \mathbb{F}_{p^m}$,

(2.1)
$$\chi_b(x) = \zeta_p^{\operatorname{Tr}_1^m(bx)}, \quad \text{for all } x \in \mathbb{F}_{p^m},$$

defines an additive character of \mathbb{F}_{p^m} , where $\zeta_p = e^{\frac{2\pi\sqrt{-1}}{p}}$, and every additive character can be obtained in this way. An additive character defined by $\chi_0(x) = 1$ for all $x \in \mathbb{F}_{p^m}$ is called the trivial character while all other characters are called nontrivial characters. The character χ_1 in (2.1) is called the canonical additive character of \mathbb{F}_{p^m} .

The orthogonal property of additive characters of \mathbb{F}_{p^m} can be found in ([12], Theorem 5.4) and is given as

(2.2)
$$\sum_{x \in \mathbb{F}_{n^m}} \chi(x) = \begin{cases} p^m, & \text{if } \chi \text{ trivial,} \\ 0, & \text{if } \chi \text{ non-trivial.} \end{cases}$$

Characters of the multiplicative group $\mathbb{F}_{p^m}^*$ of \mathbb{F}_{p^m} are called multiplicative character of \mathbb{F}_{p^m} . By [12, Theorem 5.8], for each $j=0,1,\ldots,p^m-2$, the function ψ_j with

$$\psi_j(g^k) = e^{\frac{2\pi\sqrt{-1}jk}{p^m-1}}, \text{ for } k = 0, 1, \dots, p^m - 2$$

defines a multiplicative character of \mathbb{F}_{p^m} , where g is a generator of $\mathbb{F}_{p^m}^*$. For $j = \frac{p^m-1}{2}$, we have the quadratic character $\eta = \psi_{\frac{p^m-1}{2}}$ defined by

$$\eta(g^k) = \begin{cases} -1, & \text{if } 2 \nmid k, \\ 1, & \text{if } 2 \mid k. \end{cases}$$

Moreover, we extend this quadratic character by letting $\eta(0) = 0$.

The quadratic Gauss sum
$$G = G(\eta, \chi_1)$$
 over \mathbb{F}_{p^m} is defined by

$$G(\eta, \chi_1) = \sum_{x \in \mathbb{F}_{n^m}^*} \eta(x) \chi_1(x).$$

Now, let $\overline{\eta}$ and $\overline{\chi}_1$ denote the quadratic and canonical character of \mathbb{F}_{p^e} respectively. Then we define the quadratic Gauss sum $\overline{G} = G(\overline{\eta}, \overline{\chi}_1)$ over \mathbb{F}_{p^e} by

$$G(\overline{\eta},\overline{\chi}_1) = \sum_{x \in \mathbb{F}_{p^e}^*} \overline{\eta}(x) \overline{\chi}_1(x).$$

The explicit values of quadratic Gauss sums are given by the following lemma.

Lemma 2.1. ([12, Theorem 5.15]). Let the symbols be the same as before. Then

$$G(\eta,\chi_1)=(-1)^{m-1}\sqrt{-1}^{\frac{(p-1)^2m}{4}}\sqrt{p^m},\quad G(\overline{\eta},\overline{\chi}_1)=(-1)^{e-1}\sqrt{-1}^{\frac{(p-1)^2e}{4}}\sqrt{p^e}.$$

Lemma 2.2. ([13, Lemma 2]). Let the symbols be the same as before. Then the following hold.

- 1. If $s \geq 2$ is even, then $\eta(y) = 1$ for each $y \in \mathbb{F}_{p^e}^*$; 2. If s is odd, then $\eta(y) = \overline{\eta}(y)$ for each $y \in \mathbb{F}_{p^e}^*$.

- **Lemma 2.3.** ([16]). When N=2, the cyclotomic numbers are given by 1. h even: $(0,0)^{(2,p^m)}=\frac{h-2}{2}$, $(0,1)^{(2,p^m)}=(1,0)^{(2,p^m)}=(1,1)^{(2,p^m)}=\frac{h}{2}$; 2. h odd: $(0,0)^{(2,p^m)}=(1,0)^{(2,p^m)}=(1,1)^{(2,p^m)}=\frac{h-1}{2}$, $(0,1)^{(2,p^m)}=\frac{h+1}{2}$.

Lemma 2.4. ([12, Theorem 5.33]). Let χ be a non-trivial additive character of \mathbb{F}_{p^m} , and let $f(x) = a_2 x^2 + a_1 x + a_0 \in \mathbb{F}_{p^m}[x]$ with $a_2 \neq 0$. Then

$$\sum_{x \in \mathbb{F}_{p^m}} \chi(f(x)) = \chi(a_0 - a_1^2 (4a_2)^{-1}) \eta(a_2) G(\eta, \chi).$$

Lemma 2.5. ([12, Theorem 2.26]). Let Tr_1^m and Tr_1^e be absolute trace functions over \mathbb{F}_{p^m} and \mathbb{F}_{p^e} respectively, and let Tr_e^m be the trace function from \mathbb{F}_{p^m} onto \mathbb{F}_{p^e} . Then

$$\operatorname{Tr}_1^m(x) = \operatorname{Tr}_1^e(\operatorname{Tr}_e^m(x)),$$

for all $x \in \mathbb{F}_{p^m}$.

3. Basic Results

In this section, we provide some important results to establish our main results.

Lemma 3.1. For each $\lambda \in \mathbb{F}_{p^e}$, set $S_{\lambda} = \#\{x \in \mathbb{F}_{p^m} : \operatorname{Tr}_e^m(x^2) = \lambda\}$. If s is odd, then

$$S_{\lambda} = \begin{cases} p^{m-e} + p^{-e}\overline{\eta}(-1)\overline{\eta}(\lambda)G\overline{G}, & \text{if } \lambda \neq 0, \\ p^{m-e}, & \text{if } \lambda = 0. \end{cases}$$

Proof. For each $\lambda \in \mathbb{F}_{p^e}$, we have

$$\begin{split} S_{\lambda} &= \frac{1}{p^e} \sum_{x \in \mathbb{F}_{p^m}} \left(\sum_{y \in \mathbb{F}_{p^e}} \zeta_p^{\operatorname{Tr}_1^e(y(\operatorname{Tr}_e^m(x^2) - \lambda))} \right) \\ &= \frac{1}{p^e} \sum_{x \in \mathbb{F}_{p^m}} \left(1 + \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{\operatorname{Tr}_e^m(yx^2) - \operatorname{Tr}_1^e(\lambda y)} \right) \\ &= p^{m-e} + \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{-\operatorname{Tr}_1^e(\lambda y)} \sum_{x \in \mathbb{F}_{p^m}} \chi_1(yx^2) \\ &= p^{m-e} + G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-\lambda y) \eta(y). \end{split}$$

This completes the proof.

Lemma 3.2. For $\lambda, \mu \in \mathbb{F}_{p^e}$, define

$$N(\lambda,\mu) = \#\{x \in \mathbb{F}_{p^m} : \operatorname{Tr}_e^m(x^2) = \lambda \text{ and } \operatorname{Tr}_e^m(x) = \mu\}.$$

Then the following assertions hold.

1. If $2 \mid s$ and $p \mid s$, then

$$N(\lambda,\mu) = \begin{cases} p^{m-2e} + p^{-e}(p^e - 1)G, & \text{if } \lambda = 0 \text{ and } \mu = 0, \\ p^{m-2e}, & \text{if } \lambda = 0 \text{ and } \mu \neq 0, \\ p^{m-2e} - p^{-e}G, & \text{if } \lambda \neq 0 \text{ and } \mu = 0, \\ p^{m-2e}, & \text{if } \lambda \neq 0 \text{ and } \mu \neq 0. \end{cases}$$

2. If $2 \mid s \text{ and } p \nmid s$, then

$$N(\lambda, \mu) = \begin{cases} p^{m-2e}, & \text{if } \lambda = 0 \text{ and } \mu = 0, \\ p^{m-2e} + p^{-e}G, & \text{if } \lambda = 0 \text{ and } \mu \neq 0, \\ p^{m-2e}, & \text{if } \lambda \neq 0 \text{ and } \mu^2 - s\lambda = 0, \\ p^{m-2e} + \overline{\eta}(\mu^2 - s\lambda)p^{-e}G, & \text{if } \lambda \neq 0 \text{ and } \mu^2 - s\lambda \neq 0. \end{cases}$$

3. If $2 \nmid s$ and $p \mid s$, then

$$N(\lambda,\mu) = \begin{cases} p^{m-2e}, & \text{if } \lambda = 0, \\ p^{m-2e} + \overline{\eta}(-\lambda)p^{-e}G\overline{G}, & \text{if } \lambda \neq 0 \text{ and } \mu = 0, \\ p^{m-2e}, & \text{if } \lambda \neq 0 \text{ and } \mu \neq 0. \end{cases}$$

4. If $2 \nmid s$ and $p \nmid s$, then

$$N(\lambda,\mu) = \begin{cases} p^{m-2e} + \overline{\eta}(-s)p^{-2e}(p^e - 1)G\overline{G}, & \text{if } \mu^2 - s\lambda = 0, \\ p^{m-2e} - \overline{\eta}(-s)p^{-2e}G\overline{G}, & \text{if } \mu^2 - s\lambda \neq 0. \end{cases}$$

Proof. By the properties of additive character and Lemma 2.4, we have

$$N(\lambda, \mu) = p^{-2e} \sum_{x \in \mathbb{F}_{p^m}} \left(\sum_{y \in \mathbb{F}_{p^e}} \zeta_p^{\text{Tr}_1^e(y(\text{Tr}_e^m(x^2) - \lambda))} \right) \left(\sum_{z \in \mathbb{F}_{p^e}} \zeta_p^{\text{Tr}_1^e(z(\text{Tr}_e^m(x) - \mu))} \right)$$

$$= p^{-2e} \sum_{x \in \mathbb{F}_{p^m}} \left(1 + \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e(y\text{Tr}_e^m(x^2) - y\lambda)} \right) \left(1 + \sum_{z \in \mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e(z\text{Tr}_e^m(x) - z\mu)} \right)$$

$$= p^{m-2e} + p^{-2e} (S_1 + S_2 + S_3),$$
(3.1)

where

$$S_{1} = \sum_{x \in \mathbb{F}_{p^{m}}} \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \zeta_{p}^{\operatorname{Tr}_{1}^{e}(z\operatorname{Tr}_{e}^{m}(x) - z\mu)} = \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-z\mu) \sum_{x \in \mathbb{F}_{p^{m}}} \chi_{1}(zx) = 0,$$

$$S_{2} = \sum_{x \in \mathbb{F}_{p^{m}}} \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \zeta_{p}^{\operatorname{Tr}_{1}^{e}(y\operatorname{Tr}_{e}^{m}(x^{2}) - y\lambda)} = \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-y\lambda) \sum_{x \in \mathbb{F}_{p^{m}}} \chi_{1}(yx^{2}),$$

$$S_{3} = \sum_{x \in \mathbb{F}_{p^{m}}} \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \zeta_{p}^{\operatorname{Tr}_{1}^{e}(y\operatorname{Tr}_{e}^{m}(x^{2}) - y\lambda)} \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \zeta_{p}^{\operatorname{Tr}_{1}^{e}(z\operatorname{Tr}_{e}^{m}(x) - z\mu)}$$

$$= \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-y\lambda) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-z\mu) \sum_{x \in \mathbb{F}_{p^m}} \chi_1(yx^2 + zx).$$

By Lemma 2.4, it is easy to prove that

$$S_2 = \begin{cases} G(p^e - 1), & \text{if } \lambda = 0 \text{ and } 2 \mid s, \\ 0, & \text{if } \lambda = 0 \text{ and } 2 \nmid s, \\ -G, & \text{if } \lambda \neq 0 \text{ and } 2 \mid s, \\ \overline{\eta}(-\lambda)G\overline{G}, & \text{if } \lambda \neq 0 \text{ and } 2 \nmid s. \end{cases}$$

By Lemma 2.4, we have

$$S_{3} = \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-y\lambda) \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-z\mu) \sum_{x \in \mathbb{F}_{p^{m}}} \chi_{1}(yx^{2} + zx)$$
$$= G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y) \eta(y) \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}\left(-\frac{sz^{2}}{4y} - \mu z\right),$$

and there are the following cases to consider.

Case I. Suppose that $2 \mid s$ and $p \mid s$. Then

$$S_{3} = G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y) \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\mu z) = \begin{cases} G(p^{e} - 1)^{2}, & \text{if } \lambda = 0 \text{ and } \mu = 0, \\ -G(p^{e} - 1), & \text{if } \lambda = 0 \text{ and } \mu \neq 0, \\ -G(p^{e} - 1), & \text{if } \lambda \neq 0 \text{ and } \mu = 0, \\ G, & \text{if } \lambda \neq 0 \text{ and } \mu \neq 0. \end{cases}$$

Case II. We consider that $2 \mid s$ and $p \nmid s$. Then, from Lemma 2.4, we have

$$\begin{split} S_3 &= G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-\lambda y) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1 \left(-\frac{sz^2}{4y} - \mu z \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1 \left(\frac{\mu^2 - s\lambda}{s} y \right) \overline{\eta} \left(-\frac{s}{4y} \right) \overline{G} - G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-\lambda y) \\ &= \begin{cases} -G(p^e - 1), & \text{if } \lambda = 0 \text{ and } \mu = 0, \\ G, & \text{if } \lambda = 0 \text{ and } \mu \neq 0, \\ G, & \text{if } \lambda \neq 0 \text{ and } \mu^2 - s\lambda = 0, \\ \left(\overline{\eta}(\mu^2 - s\lambda)p^e + 1 \right) G, & \text{if } \lambda \neq 0 \text{ and } \mu^2 - s\lambda \neq 0. \end{cases} \end{split}$$

Case III. Assume that $2 \nmid s$ and $p \mid s$. Then

$$S_3 = G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-\lambda y) \overline{\eta}(y) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1(-\mu z) = \begin{cases} 0, & \text{if } \lambda = 0, \\ \overline{\eta}(-\lambda)(p^e - 1)G\overline{G}, & \text{if } \lambda \neq 0 \text{ and } \mu = 0, \\ -\overline{\eta}(-\lambda)G\overline{G}, & \text{if } \lambda \neq 0 \text{ and } \mu \neq 0. \end{cases}$$

Case IV. Suppose that $2 \nmid s$ and $p \nmid s$. Then, by Lemma 2.4, we have

$$S_{3} = G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y)\overline{\eta}(y) \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}\left(-\frac{sz^{2}}{4y} - \mu z\right)$$

$$= G \overline{G} \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y)\overline{\eta}(y)\overline{\chi}_{1}\left(\frac{\mu^{2}y}{s}\right)\overline{\eta}\left(-\frac{s}{4y}\right) - G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y)\overline{\eta}(y)$$

$$= \overline{\eta}(-s)G \overline{G} \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}\left(\frac{\mu^{2} - s\lambda}{s}y\right) - G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \overline{\chi}_{1}(-\lambda y)\overline{\eta}(y)$$

$$= \begin{cases} \overline{\eta}(-s)(p^{e} - 1)G \overline{G}, & \text{if } \lambda = 0 \text{ and } \mu = 0, \\ -\overline{\eta}(-s)G \overline{G}, & \text{if } \lambda = 0 \text{ and } \mu \neq 0, \\ \left((p^{e} - 1)\overline{\eta}(-s) - \overline{\eta}(-\lambda)\right)G \overline{G}, & \text{if } \lambda \neq 0 \text{ and } \mu^{2} - s\lambda = 0, \\ -\left(\overline{\eta}(-s) + \overline{\eta}(-\lambda)\right)G \overline{G}, & \text{if } \lambda \neq 0 \text{ and } \mu^{2} - s\lambda \neq 0. \end{cases}$$

Combining (3.1) and the values of S_1 , S_2 and S_3 , we get the complete proof.

Lemma 3.3. Let the symbols be the same as before, and let

$$\Omega_1 = \sum_{y \in \mathbb{F}_{p^e}^*} \sum_{x \in \mathbb{F}_{p^m}} \zeta_p^{\operatorname{Tr}_e^1(y\operatorname{Tr}_e^m(x^2 + x))}.$$

Then

$$\Omega_1 = \begin{cases} (p^e - 1)G, & \text{if } 2 \mid s \text{ and } p \mid s, \\ -G, & \text{if } 2 \mid s \text{ and } p \nmid s, \\ 0, & \text{if } 2 \nmid s \text{ and } p \mid s, \\ \overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \nmid s. \end{cases}$$

Proof. By Lemmas 2.4 and 2.5, we have

$$\Omega_{1} = \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \sum_{x \in \mathbb{F}_{p^{m}}} \chi_{1}(yx^{2} + yx) = G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \chi_{1}\left(-\frac{y}{4}\right) \eta(y)$$

$$= G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \eta(y) \zeta_{p}^{\operatorname{Tr}_{1}^{m}(-\frac{y}{4})} = G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \eta(y) \zeta_{p}^{\operatorname{Tr}_{1}^{e}(-\frac{y}{4}\operatorname{Tr}_{e}^{m}(1))}$$

$$= \begin{cases}
G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \eta(y), & \text{if } p \mid s, \\
G \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \eta(y) \zeta_{p}^{\operatorname{Tr}_{1}^{e}(-\frac{ys}{4})}, & \text{if } p \nmid s.
\end{cases}$$

$$= \begin{cases} G\sum_{y\in\mathbb{F}_{p^e}^*} 1, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y), & \text{if } 2\nmid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\nmid s \text{ and } p\nmid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e(-\frac{ys}{4})}, & \text{if } 2\mid s \text{ and } p\mid s, \\ G\sum_{y\in\mathbb{F}_{p^e}^*} \overline{\eta}(y)\zeta_p^{\text{Tr}_1^e$$

as required.

Lemma 3.4. For $b \in \mathbb{F}_{p^m}^*$ and $c \in \mathbb{F}_{p^e}^*$, let

$$\Omega_3 = \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \sum_{x \in \mathbb{F}_{p^m}} \chi_1(yx^2 + yx + bzx).$$

Then we have the following statemets.

1. If $\operatorname{Tr}_e^m(b^2) \neq 0$ and $\operatorname{Tr}_e^m(b) \neq 0$, then

$$\Omega_{3} = \begin{cases} \overline{\eta}(-1)G\overline{G}^{2} - G(p^{e} - 1), & \text{if } 2 \mid s \text{ and } p \mid s, \\ G, & \text{if } 2 \mid s, p \nmid s \text{ and } (\operatorname{Tr}_{e}^{m}(b))^{2} = s\operatorname{Tr}_{e}^{m}(b^{2}), \\ \overline{\eta}(s\operatorname{Tr}_{e}^{m}(b^{2}) - (\operatorname{Tr}_{e}^{m}(b) + 2c)^{2})G\overline{G}^{2} + G, & \text{if } 2 \mid s, p \nmid s \text{ and } (\operatorname{Tr}_{e}^{m}(b))^{2} \neq s\operatorname{Tr}_{e}^{m}(b^{2}), \\ -\overline{\eta}(-\operatorname{Tr}_{e}^{m}(b^{2}))G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \mid s, \\ \overline{\eta}(-\operatorname{Tr}_{e}^{m}(b^{2}))G\overline{G}(p^{e} - 1) - \overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s, p \nmid s \text{ and } (\operatorname{Tr}_{e}^{m}(b))^{2} = s\operatorname{Tr}_{e}^{m}(b^{2}), \\ -\overline{\eta}(-\operatorname{Tr}_{e}^{m}(b^{2}))G\overline{G} - \overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s, p \nmid s \text{ and } (\operatorname{Tr}_{e}^{m}(b))^{2} \neq s\operatorname{Tr}_{e}^{m}(b^{2}). \end{cases}$$

2. If $\operatorname{Tr}_e^m(b^2) \neq 0$ and $\operatorname{Tr}_e^m(b) = 0$, then

$$\Omega_{3} = \begin{cases} -(p^{e} - 1)G, & \text{if } 2 \mid s \text{ and } p \mid s, \\ \overline{\eta}(s \operatorname{Tr}_{e}^{m}(b^{2}))G\overline{G}^{2} + G, & \text{if } 2 \mid s \text{ and } p \nmid s, \\ \overline{\eta}(-\operatorname{Tr}_{e}^{m}(b^{2}))(p^{e} - 1)G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \mid s, \\ -(\overline{\eta}(-\operatorname{Tr}_{e}^{m}(b^{2})) + \overline{\eta}(-s))G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \nmid s. \end{cases}$$

3. If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) \neq 0$, then

$$\Omega_3 = \begin{cases} -(p^e - 1)G, & \text{if } 2 \mid s \text{ and } p \mid s, \\ G, & \text{if } 2 \mid s \text{ and } p \nmid s, \\ 0, & \text{if } 2 \nmid s \text{ and } p \mid s, \\ -\overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \nmid s. \end{cases}$$

4. If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) = 0$, then

$$\Omega_{3} = \begin{cases}
(p^{e} - 1)^{2}G, & \text{if } 2 \mid s \text{ and } p \mid s, \\
-(p^{e} - 1)G, & \text{if } 2 \mid s \text{ and } p \nmid s, \\
0, & \text{if } 2 \nmid s \text{ and } p \nmid s, \\
\overline{\eta}(-s)(p^{e} - 1)G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \nmid s.
\end{cases}$$

Proof. By Lemma 2.4, we have

$$\begin{split} &\Omega_3 = \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \sum_{x \in \mathbb{F}_{p^m}} \chi_1(yx^2 + yx + bzx) \\ &= G \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{(y+bz)^2}{4y} \right) \\ &= G \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(\frac{-y^2 - 2byz - b^2z^2}{4y} \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \sum_{z \in \mathbb{F}_{p^e}^*} \chi_1 \left(-\frac{bz}{2} - \frac{b^2z^2}{4y} \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \sum_{z \in \mathbb{F}_{p^e}^*} \zeta_p^{\operatorname{Tr}_1^m(-\frac{bz}{2} - \frac{b^2z^2}{4y})} \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \sum_{z \in \mathbb{F}_{p^e}^*} \zeta_p^{\operatorname{Tr}_1^e\left(-\frac{z}{2}\operatorname{Tr}_e^m(b) - \frac{z^2}{4y}\operatorname{Tr}_e^m(b^2) \right)}. \end{split}$$

Note that, in the first part, $\operatorname{Tr}_e^m(b^2) \neq 0$ and $\operatorname{Tr}_e^m(b) \neq 0$. Therefore,

$$\begin{split} &\Omega_3 = G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1(-\frac{y}{4}) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1 \left(-\frac{z^2}{4y} \mathrm{Tr}_e^m(b^2) - \frac{z}{2} \mathrm{Tr}_e^m(b) \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \left(\sum_{z \in \mathbb{F}_{p^e}} \overline{\chi}_1 \left(-\frac{z^2}{4y} \mathrm{Tr}_e^m(b^2) - \frac{z}{2} \mathrm{Tr}_e^m(b) \right) - 1 \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \sum_{z \in \mathbb{F}_{p^e}} \overline{\chi}_1 \left(-\frac{z^2}{4y} \mathrm{Tr}_e^m(b^2) - \frac{z}{2} \mathrm{Tr}_e^m(b) \right) - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \overline{\chi}_1 \left(\frac{y \left(\mathrm{Tr}_e^m(b) \right)^2}{4 \mathrm{Tr}_e^m(b^2)} \right) \overline{\eta} \left(-y \mathrm{Tr}_e^m(b^2) \right) \overline{G} - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \\ &= \overline{\eta} \left(-\mathrm{Tr}_e^m(b^2) \right) G \overline{G} \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1 \left(\frac{\left(\mathrm{Tr}_e^m(b) \right)^2 - s \mathrm{Tr}_e^m(b^2)}{4 \mathrm{Tr}_e^m(b^2)} y \right) \overline{\eta}(y) - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \chi_1 \left(-\frac{y}{4} \right) \end{split}$$

$$= \begin{cases} \overline{\eta}(-1)G\overline{G}^2 - G(p^e - 1), & \text{if } 2 \mid s \text{ and } p \mid s, \\ G, & \text{if } 2 \mid s, \ p \nmid s \text{ and } (\operatorname{Tr}_e^m(b))^2 = s\operatorname{Tr}_e^m(b^2), \\ \overline{\eta}(s\operatorname{Tr}_e^m(b^2) - (\operatorname{Tr}_e^m(b))^2)G\overline{G}^2 + G, & \text{if } 2 \mid s, p \nmid s \text{ and } (\operatorname{Tr}_e^m(b))^2 \neq s\operatorname{Tr}_e^m(b^2), \\ -\overline{\eta}(-\operatorname{Tr}_e^m(b^2))G\overline{G}, & \text{if } 2 \nmid s \text{ and } p \mid s, \\ \overline{\eta}(-\operatorname{Tr}_e^m(b^2))G\overline{G}(p^e - 1) - \overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s, \ p \nmid s \text{ and } (\operatorname{Tr}_e^m(b))^2 = s\operatorname{Tr}_e^m(b^2), \\ -\overline{\eta}(-\operatorname{Tr}_e^m(b^2))G\overline{G} - \overline{\eta}(-s)G\overline{G}, & \text{if } 2 \nmid s, p \nmid s \text{ and } (\operatorname{Tr}_e^m(b))^2 \neq s\operatorname{Tr}_e^m(b^2). \end{cases}$$

This completes the proof of the first part.

Following the similar arguments used in the first part, one can easily prove the remaining parts. \Box

Lemma 3.5. For $\mu \in \mathbb{F}_{p^e}^*$, let $V = \#\{x \in \mathbb{F}_{p^m} : \operatorname{Tr}_e^m(x) = \mu \text{ and } (\operatorname{Tr}_e^m(x))^2 = s\operatorname{Tr}_e^m(x^2)\}$. Then, for $p \nmid s$, we have

$$V = \begin{cases} p^{m-2e}, & \text{if } 2 \mid s, \\ p^{m-2e} + \overline{\eta}(-s)p^{-2e}(p^e - 1)G\overline{G}, & \text{if } 2 \nmid s. \end{cases}$$

Proof. We can rewrite V as

$$V = \# \left\{ x \in \mathbb{F}_{p^m} : \operatorname{Tr}_e^m(x) = \mu \text{ and } \operatorname{Tr}_e^m(x^2) = \frac{\mu^2}{s} \right\}.$$

Then, by definition, we have

$$V = p^{-2e} \sum_{x \in \mathbb{F}_{p^m}} \left(\sum_{y \in \mathbb{F}_{p^e}} \zeta_p^{\text{Tr}_1^e \left(y(\text{Tr}_e^m(x^2) - \frac{\mu^2}{s}) \right)} \right) \left(\sum_{z \in \mathbb{F}_{p^e}} \zeta_p^{\text{Tr}_1^e \left(z(\text{Tr}_e^m(x) - \mu) \right)} \right)$$

$$= p^{-2e} \sum_{x \in \mathbb{F}_{p^m}} \left(1 + \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e (\text{Tr}_e^m(yx^2) - \frac{y\mu^2}{s})} \right) \left(1 + \sum_{z \in \mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e (\text{Tr}_e^m(zx) - z\mu)} \right)$$

$$= p^{m-2e} + p^{-2e} (N_1 + N_2 + N_3),$$

where

$$N_{1} = \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \sum_{x \in \mathbb{F}_{p^{m}}} \zeta_{p}^{\operatorname{Tr}_{1}^{m}(zx) - \operatorname{Tr}_{1}^{e}(z\mu)} = 0, \quad N_{2} = \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \sum_{x \in \mathbb{F}_{p^{m}}} \zeta_{p}^{\operatorname{Tr}_{1}^{m}(yx^{2}) - \operatorname{Tr}_{1}^{e}\left(\frac{y\mu^{2}}{s}\right)},$$

$$N_{3} = \sum_{y \in \mathbb{F}_{p^{e}}^{*}} \sum_{z \in \mathbb{F}_{p^{e}}^{*}} \sum_{x \in \mathbb{F}_{p^{m}}} \zeta_{p}^{\operatorname{Tr}_{1}^{m}(yx^{2} + zx) - \operatorname{Tr}_{1}^{e}\left(\frac{y\mu^{2}}{s} + z\mu\right)}.$$

Now, by Lemma 2.4, we obtain

$$N_2 = \sum_{y \in \mathbb{F}_{n^e}^*} \zeta_p^{-\operatorname{Tr}_1^e \left(\frac{y\mu^2}{s}\right)} \chi(0) \eta(y) G$$

$$= \begin{cases} G \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{-\operatorname{Tr}_1^e \left(\frac{y\mu^2}{s}\right)}, & \text{if } 2 \mid s, \\ \overline{\eta}(-s) G \sum_{y \in \mathbb{F}_{p^e}^*} \overline{\eta} \left(-\frac{y\mu^2}{s}\right) \overline{\chi}_1 \left(-\frac{y\mu^2}{s}\right), & \text{if } 2 \nmid s, \end{cases}$$

$$= \begin{cases} -G, & \text{if } 2 \mid s, \\ \overline{\eta}(-s) G \overline{G}, & \text{if } 2 \nmid s, \end{cases}$$

and

$$\begin{split} N_3 &= \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{-\operatorname{Tr}_1^e\left(\frac{y\mu^2}{s} + z\mu\right)} \sum_{x \in \mathbb{F}_{p^m}} \chi_1(yx^2 + zx) \\ &= \sum_{z \in \mathbb{F}_{p^e}^*} \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{-\operatorname{Tr}_1^e\left(\frac{y\mu^2}{s} + z\mu\right)} \chi_1\left(-\frac{z^2}{4y}\right) \eta(y) G \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1\left(-\frac{sz^2}{4y} - z\mu\right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \sum_{z \in \mathbb{F}_{p^e}^*} \overline{\chi}_1\left(-\frac{sz^2}{4y} - z\mu\right) - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \\ &= G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \overline{\chi}_1\left(\frac{\mu^2}{s}y\right) \overline{\eta}\left(-\frac{s}{4y}\right) \overline{G} - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \\ &= \overline{\eta}(-s) G \overline{G} \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\eta}(y) - G \sum_{y \in \mathbb{F}_{p^e}^*} \eta(y) \overline{\chi}_1\left(-\frac{y\mu^2}{s}\right) \\ &= \begin{cases} G, & \text{if } 2 \mid s, \\ \overline{\eta}(-s)(p^e - 1) G \overline{G} - \overline{\eta}(-s) G \overline{G}, & \text{if } 2 \nmid s. \end{cases} \end{split}$$

Also

$$V = p^{m-2e} + p^{-2e}(N_1 + N_2 + N_3).$$

Thus, we get the desired result.

Lemma 3.6. Suppose that $\lambda, \mu \in \mathbb{F}_{p^e}^*$. For $i \in \{1, -1\}$, let K_i denote the number of pairs (λ, μ) such that $\overline{\eta}(\mu^2 - s\lambda) = i$. Then we have

$$K_1 = \frac{1}{2}(p^e - 1)(p^e - 3), \quad K_{-1} = \frac{1}{2}(p^e - 1)^2.$$

Proof. We can rewrite $\mu^2 - s\lambda \neq 0$ as

$$\frac{s\lambda}{\mu^2 - s\lambda} + 1 = \frac{\mu^2}{\mu^2 - s\lambda}.$$

Set $p^e = 2h + 1$. Now, for any fixed $\overline{\mu}^2 - s\overline{\lambda}$ such that $\overline{\eta}(\overline{\mu}^2 - s\overline{\lambda}) = 1$, the number of the pairs (λ, μ^2) satisfying (3.2) is equal to

$$(0,0)^{(2,p^e)} + (1,0)^{(2,p^e)} = h - 1$$
 (by Lemma 2.2).

Similarly, for a fixed $\overline{\mu}^2 - s\overline{\lambda}$ such that $\overline{\eta}(\overline{\mu}^2 - s\overline{\lambda}) = -1$, the number of pairs (λ, μ^2) satisfying (4.1) is equal to

$$(0,1)^{(2,p^e)} + (1,1)^{(2,p^e)} = h$$
 (from Lemma 2.2).

Consequently, the number of the pairs (λ, μ) such that $\overline{\eta}(\overline{\mu}^2 - s\overline{\lambda}) = 1$ (resp. $\overline{\eta}(\overline{\mu}^2 - s\overline{\lambda}) = -1$) is 2(h-1) (resp. 2h). We conclude that $K_1 = (p^e-1)(h-1)$ (resp. $K_{-1} = (p^e-1)h$), and hence the result follows.

Lemma 3.7. Suppose that $\lambda, \mu \in \mathbb{F}_{p^e}^*$ and $\mu^2 - s\lambda \neq 0$. For $i \in \{1, -1\}$, let ψ_i denote the number of the pairs (λ, μ) such that $\overline{\eta}(-\lambda) = i$. Then we have

$$\psi_1 = \begin{cases} \frac{1}{2}(p^e - 1)(p^e - 3), & \text{if } \overline{\eta}(-s) = 1, \\ \frac{1}{2}(p^e - 1)^2, & \text{if } \overline{\eta}(-s) = -1, \end{cases}$$

and

$$\psi_{-1} = \begin{cases} \frac{1}{2}(p^e - 1)^2, & \text{if } \overline{\eta}(-s) = 1, \\ \frac{1}{2}(p^e - 1)(p^e - 3), & \text{if } \overline{\eta}(-s) = -1. \end{cases}$$

Proof. The proof of the lemma is similar to the proof of Lemma 3.6 and is omitted here. \Box

4. Main Results

Our task in this section is to prove some lemmas needed to obtain a class of 3-weight and 5-weight linear codes over \mathbb{F}_{p^e} .

Now, let D be the defining set defined by

$$D = \{ x \in \mathbb{F}_{p^m}^* : \operatorname{Tr}_e^m(x^2 + x) = 0 \}.$$

Assume that $l_0 = |D| + 1$. Then

$$l_0 = \frac{1}{p^e} \sum_{x \in \mathbb{F}_{p^m}} \sum_{y \in \mathbb{F}_{p^e}} \zeta_p^{\text{Tr}_1^e(y\text{Tr}_e^m(x^2 + x))} = p^{m-e} + \frac{1}{p^e} \sum_{x \in \mathbb{F}_{p^m}} \sum_{y \in \mathbb{F}_{p^e}^*} \zeta_p^{\text{Tr}_1^e(y\text{Tr}_e^m(x^2 + x))}.$$

Define $N_b = \#\{x \in \mathbb{F}_{p^m} : \operatorname{Tr}_e^m(x^2 + x) = 0 \text{ and } \operatorname{Tr}_e^m(bx) = 0\}$. Let $\operatorname{wt}(c_b)$ denote the Hamming-weight of the codeword c_b of the code \mathcal{C}_D . It is easy to verify that

$$(4.1) wt(c_b) = l_0 - N_b.$$

For $b \in \mathbb{F}_{p^m}^*$, we have

$$N_b = p^{-2e} \sum_{x \in \mathbb{F}_{p^m}} \left(\sum_{y \in \mathbb{F}_{p^e}} \zeta_p^{\operatorname{Tr}_1^e(y \operatorname{Tr}_e^m(x^2 + x))} \right) \left(\sum_{z \in \mathbb{F}_{p^e}} \zeta_p^{\operatorname{Tr}_1^e(z \operatorname{Tr}_e^m(bx))} \right)$$

$$\begin{split} &=p^{-2e}\sum_{x\in\mathbb{F}_{p^m}}\left(1+\sum_{y\in\mathbb{F}_{p^e}^*}\zeta_p^{\mathrm{Tr}_1^e(y\mathrm{Tr}_e^m(x^2+x))}\right)\left(1+\sum_{z\in\mathbb{F}_{p^e}^*}\zeta_p^{\mathrm{Tr}_1^e(z\mathrm{Tr}_e^m(bx))}\right)\\ &=p^{m-2e}+p^{-2e}\sum_{y\in\mathbb{F}_{p^e}^*}\sum_{x\in\mathbb{F}_{p^m}}\zeta_p^{\mathrm{Tr}_1^e(\mathrm{Tr}_e^m(yx^2+yx))}+p^{-2e}\sum_{y\in\mathbb{F}_{p^e}^*}\sum_{x\in\mathbb{F}_{p^m}}\zeta_p^{\mathrm{Tr}_1^e(\mathrm{Tr}_e^m(zbx))}\\ &+p^{-2e}\sum_{y\in\mathbb{F}_{p^e}^*}\sum_{z\in\mathbb{F}_{p^e}^*}\sum_{x\in\mathbb{F}_{p^m}}\zeta_p^{\mathrm{Tr}_1^e(\mathrm{Tr}_e^m(yx^2+yx+bzx))}\\ (4.2) &=p^{m-2e}+p^{-2e}\sum_{y\in\mathbb{F}_{p^e}^*}\sum_{x\in\mathbb{F}_{p^m}}\zeta_p^{\mathrm{Tr}_1^m(yx^2+yx)}+p^{-2e}\sum_{y\in\mathbb{F}_{p^e}^*}\sum_{z\in\mathbb{F}_{p^e}^*}\sum_{x\in\mathbb{F}_{p^m}}\zeta_p^{\mathrm{Tr}_1^m(yx^2+yx+bzx)}. \end{split}$$

In this section, we calculate l_0 , N_b and give the proofs of the main results.

4.1. The first case of three-weight linear codes. In this subsection, we consider that $2 \mid s$ and $p \mid s$. In order to determine the weight distribution of \mathcal{C}_D of (1.1), we need the following lemma.

Lemma 4.1. Let $b \in \mathbb{F}_{p^m}^*$ and the symbols be the same as before. Then

$$N_{b} = \begin{cases} p^{m-2e}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) \neq 0, \\ & \text{or } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e} + p^{-e}(p^{e} - 1)G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e} + p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) \neq 0. \end{cases}$$

Proof. The proof of the lemma directly follows from (4.2), Lemmas 3.3 and 3.4.

Theorem 4.1. Let s be even and $p \mid s$. Then the code \mathfrak{C}_D of (1.1) is a $[p^{m-e} - 1 + p^{-e}(p^e - 1)G, s]$ linear code with the weight distribution given in Table 1, where $G = -(-1)^{\frac{m(p-1)^2}{8}} p^{\frac{m}{2}}$.

Table 1. The weight distribution of the codes in Theorem 4.1

Weight w	Frequency A_w
0	1
$(p^e - 1)p^{m-2e}$	$p^{m-2e} - 1 + p^{-e}(p^e - 1)G$
$(p^e - 1)p^{m-2e} + p^{-e}(p^e - 1)G$	$2(p^e - 1)p^{m-2e} - p^{-e}(p^e - 1)G$
$(p^e - 1)p^{m-2e} + p^{-e}(p^e - 2)G$	$(p^e - 1)^2 p^{m-2e}$

Proof. By Lemma 3.3, we have

$$l_0 = p^{m-e} + p^{-e}(p^e - 1)G.$$

Combining (4.1) and Lemma 4.1, we have the following distinct cases.

Case I. If $\operatorname{Tr}_e^m(b^2)=0$ and $\operatorname{Tr}_e^m(b)\neq 0$ or $\operatorname{Tr}_e^m(b^2)\neq 0$ and $\operatorname{Tr}_e^m(b)=0$, then we obtain

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-e}(p^e - 1)G.$$

By Lemma 3.2, wt $(c_b) = (p^e - 1)p^{m-2e} + p^{-e}(p^e - 1)G$ occurs $2(p^e - 1)p^{m-2e} - p^{-e}(p^e - 1)G$ times.

Case II. If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) = 0$, then we have $\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e}$. By Lemma 3.2, the frequency is $p^{m-2e} - 1 + p^{-e}(p^e - 1)G$.

Case III. If $\operatorname{Tr}_e^m(b^2) \neq 0$ and $\operatorname{Tr}_e^m(b) \neq 0$, then we have

$$\operatorname{wt}(c_b) = (p^e - 1)p^{m-2e} + p^{-e}(p^e - 2)G.$$

From Lemma 3.2, the frequency is $(p^e-1)^2p^{m-2e}$. Hence, the result is established. \square

Example 4.1. Let (p, m, s, e) = (3, 12, 6, 2). Then the corresponding code \mathcal{C}_D has parameters [58400, 6, 51840] and the weight enumerator $1 + 105624z^{51840} + 419904z^{51921} + 5912z^{52488}$.

4.2. The second case of three-weight linear codes. In this subsection, suppose $2 \mid s$ and $p \nmid s$. By (4.2), Lemmas 3.3 and 3.4, it is easy to get the following lemma.

Lemma 4.2. Let $b \in \mathbb{F}_{p^m}^*$. Then

$$N_{b} = \begin{cases} p^{m-2e}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) \neq 0, \\ p^{m-2e} + \overline{\eta}(-s\operatorname{Tr}_{e}^{m}(b^{2}))p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e} - p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0 \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \\ p^{m-2e} + \overline{\eta}\Big((\operatorname{Tr}_{e}^{m}(b))^{2} - s\operatorname{Tr}_{e}^{m}(b^{2})\Big)p^{-e}G, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \end{cases}$$

Theorem 4.2. Let $2 \mid s$ and $p \nmid s$. Then the code \mathfrak{C}_D of (1.1) is a $[p^{m-e} - p^{-e}G - 1, s]$ linear code with the weight distribution given in Table 2, where $G = -(-1)^{\frac{m(p-1)^2}{8}} p^{\frac{m}{2}}$.

Table 2. The weight distribution for the codes in Theorem 4.2

Weight w	Frequency A_w
0	1
$(p^e - 1)p^{m-2e} - p^{-e}G$	$(p^e - 1)(2p^{m-2e} + p^{-e}G)$
$(p^e - 1)p^{m-2e}$	$\frac{1}{2}(p^e-1)(p^{m-e}-G)+p^{m-2e}-1$
$(p^e - 1)p^{m-2e} - 2p^{-e}G$	$\frac{1}{2}(p^e - 1)(p^e - 2)(p^{m-2e} + p^{-e}G)$

Proof. If $2 \mid s$ and $p \nmid s$, then by Lemma 3.3, we have

$$l_0 = p^{m-e} - p^{-e}G.$$

By (4.2) and Lemma 4.2, we have following distinct cases to consider.

Case I. If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) \neq 0$ or $\operatorname{Tr}_e^m(b^2) \neq 0$ and $\left(\operatorname{Tr}_e^m(b)\right)^2 = s\operatorname{Tr}_e^m(b^2)$, then we can acquire

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} - p^{-e}G.$$

By Lemmas 3.2 and 3.5, the frequency is $(p^{e} - 1)(2p^{m-2e} + p^{-e}G)$.

Case II. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) = 0$ and $\overline{\eta}(-s\operatorname{Tr}_e^m(b^2)) = 1$ or $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$, $\left(\operatorname{Tr}_e^m(b)\right)^2 \neq s\operatorname{Tr}_e^m(b^2)$ and $\overline{\eta}\left((\operatorname{Tr}_e^m(b))^2 - s\operatorname{Tr}_e^m(b^2)\right) = 1$, then we have

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} - 2p^{-e}G.$$

From Lemmas 3.2 and 3.5, the frequency is $\frac{1}{2}(p^e - 1)(p^e - 2)(p^{m-2e} + p^{-e}G)$.

Case III. If $\text{Tr}_{e}^{m}(b^{2}) = 0$ and $\text{Tr}_{e}^{m}(b) = 0$ or $\text{Tr}_{e}^{m}(b^{2}) \neq 0$, $\text{Tr}_{e}^{m}(b) = 0$ and $\overline{\eta}(-s\text{Tr}_{e}^{m}(b^{2})) = -1$ or $\text{Tr}_{e}^{m}(b^{2}) \neq 0$, $\left(\text{Tr}_{e}^{m}(b)\right)^{2} \neq s\text{Tr}_{e}^{m}(b^{2})$ and $\overline{\eta}\left((\text{Tr}_{e}^{m}(b))^{2} - s\text{Tr}_{e}^{m}(b^{2})\right) = -1$, then

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e}.$$

It follows from Lemmas 3.2 and 3.5 that $\operatorname{wt}(c_b) = (p^e - 1)p^{m-2e} - 2p^{-e}G$ occurs $\frac{1}{2}(p^e - 1)(p^{m-e} - G) + p^{m-2e} - 1$ times. Thus, the proof is completed.

Example 4.2. Let (p, m, s, e) = (3, 8, 4, 2). Then the corresponding code \mathcal{C}_D has parameters [737, 4, 648] and the weight enumerator $1 + 3320z^{648} + 1224z^{657} + 2016z^{666}$.

4.3. The first case of 5-weight linear codes. In this subsection, we assume that $2 \nmid s$ and $p \mid s$. By (4.2), Lemma 3.3 and Lemma 3.4, we get the following lemma.

Lemma 4.3. For $b \in \mathbb{F}_{p^m}^*$ and $\operatorname{Tr}_e^m(b^2) \neq 0$, we have

$$N_{b} = \begin{cases} p^{m-2e} - p^{-2e}\overline{\eta}(-1)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b) \neq 0 \text{ and } \overline{\eta}\left(\operatorname{Tr}_{e}^{m}(b^{2})\right) = 1, \\ p^{m-2e} + p^{-2e}\overline{\eta}(-1)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b) \neq 0 \text{ and } \overline{\eta}\left(\operatorname{Tr}_{e}^{m}(b^{2})\right) = -1, \\ p^{m-2e} + p^{-2e}\overline{\eta}(-1)(p^{e} - 1)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b) = 0 \text{ and } \overline{\eta}\left(\operatorname{Tr}_{e}^{m}(b^{2})\right) = 1, \\ p^{m-2e} - p^{-2e}\overline{\eta}(-1)(p^{e} - 1)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b) = 0 \text{ and } \overline{\eta}\left(\operatorname{Tr}_{e}^{m}(b^{2})\right) = -1. \end{cases}$$

Moreover, if $\operatorname{Tr}_e^m(b^2) = 0$, then $N_b = p^{m-2e}$.

Theorem 4.3. Let $2 \nmid s$ and $p \mid s$. Then the linear code \mathfrak{C}_D of (1.1) has parameters $[p^{m-e}-1,s]$ and weight distribution in Table 3, where $G\overline{G}=(-1)^{m+e-2}(-1)^{\frac{(p-1)^2(m+e)}{8}}p^{\frac{(m+e)}{2}}$.

Proof. Note that $2 \nmid s$ and $p \mid s$. By Lemma 3.3, we have $l_0 = p^{m-e}$, which gives the length of the code \mathcal{C}_D . It follows from (4.1) and Lemma 4.3 that $\operatorname{wt}(c_b)$ has five distinct values under following cases.

Case I. If $\operatorname{Tr}_e^m(b^2) = 0$, then we have $\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e}$. By Lemma 3.1, the frequency of such codewords is $p^{m-e} - 1$.

Case II. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$ and $\overline{\eta}(\operatorname{Tr}_e^m(b^2)) = 1$, then we can acquire $\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-2e}\overline{\eta}(-1)G\overline{G}$.

From Lemma 3.2, the frequency is $\frac{1}{2}(p^e-1)^2p^{m-2e}$.

Case III. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$ and $\overline{\eta}(\operatorname{Tr}_e^m(b^2)) = -1$, then we can obtain

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} - p^{-2e}\overline{\eta}(-1)G\overline{G}.$$

It follows from Lemma 3.2 that the frequency is $\frac{1}{2}(p^e-1)^2p^{m-2e}$.

Case IV. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) = 0$ and $\overline{\eta}(\operatorname{Tr}_e^m(b^2)) = 1$, then we can obtain

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} - p^{-2e}\overline{\eta}(-1)(p^e - 1)G\overline{G}.$$

By Lemma 3.2, the frequency is $\frac{1}{2}(p^e-1)(p^{m-2e}+p^{-e}\overline{\eta}(-1)G\overline{G})$. Case V. If $\operatorname{Tr}_e^m(b^2)\neq 0$, $\operatorname{Tr}_e^m(b)=0$ and $\overline{\eta}(\operatorname{Tr}_e^m(b^2))=-1$, then we have

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-2e}\overline{\eta}(-1)(p^e - 1)G\overline{G}.$$

From Lemma 3.2, the frequency is $\frac{1}{2}(p^e-1)(p^{m-2e}-p^{-e}\overline{\eta}(-1)G\overline{G})$. Hence, the result is established.

Example 4.3. Let (p, m, s, e) = (3, 6, 3, 2). Then the corresponding code \mathcal{C}_D has parameters [80, 3, 64] and the weight enumerator $1 + 72z^{64} + 288z^{71} + 80z^{72} + 288z^{73}$. By Table 3, \mathcal{C}_D in Theorem 4.3 is a four-weight linear code if and only if p = s = 3.

Table 3. The weight distribution of the codes in Theorem 4.3

Weight w	Frequency A_w
0	1
$(p^e - 1)p^{m-2e}$	$p^{m-e} - 1$
$(p^e - 1)p^{m-2e} + p^{-2e}\overline{\eta}(-1)G\overline{G}$	$\frac{1}{2}(p^e-1)^2p^{m-2e}$
$(p^e - 1)p^{m-2e} - p^{-2e}\overline{\eta}(-1)G\overline{G}$	$\frac{1}{2}(p^e-1)^2p^{m-2e}$
$(p^{e}-1)p^{m-2e} - p^{-2e}\overline{\eta}(-1)(p^{e}-1)G\overline{G}$	$\frac{1}{2}(p^{e}-1)(p^{m-2e}+p^{-e}\overline{\eta}(-1)G\overline{G})$
$(p^e - 1)p^{m-2e} + p^{-2e}\overline{\eta}(-1)(p^e - 1)G\overline{G}$	$\frac{1}{2}(p^e - 1)(p^{m-2e} - p^{-e}\overline{\eta}(-1)G\overline{G})$

Example 4.4. Let (p, m, s, e) = (5, 10, 5, 2). Then the corresponding code \mathcal{C}_D has parameters $[5^8-1, 5, 24 \times 5^6-600]$ and the weight enumerator $1+A_{w_1}z^{w_1}+A_{w_2}z^{w_2}+$ $A_{w_3}z^{w_3} + A_{w_4}z^{w_4} + A_{w_5}z^{w_5}$, where the values of A_{w_i} and w_i for $1 \leq i \leq 5$, are given in Table 4.

The weight distribution of the code in Theorem 4.3 for (p, m, s, e) = (5, 10, 5, 2)

Weight	Frequency
$w_1 = 24 \times 5^6 - 600$	$A_{w_1} = 12(5^6 + 5^4)$
$w_2 = 24 \times 5^6 - 25$	$A_{w_2} = 12 \times 24 \times 5^6$
$w_3 = 24 \times 5^6$	$A_{w_3} = 5^8 - 1$
$w_4 = 24 \times 5^6 + 25$	$A_{w_4} = 12 \times 24 \times 5^6$
$w_5 = 24 \times 5^6 + 600$	$A_{w_5} = 12(5^6 - 5^4)$

4.4. The second case of five-weight linear codes. In this subsection, suppose $2 \nmid s$ and $p \nmid s$. The auxiliary result that we need is the following.

Lemma 4.4. Let $b \in \mathbb{F}_{p^m}^*$ and the symbols be the same as before. Then

$$N_{b} = \begin{cases} p^{m-2e}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) \neq 0, \\ p^{m-2e} + p^{-e}\overline{\eta}(-s)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) = 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e} - p^{-2e}\overline{\eta}\Big(-\operatorname{Tr}_{e}^{m}(b^{2})\Big)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0 \text{ and } \operatorname{Tr}_{e}^{m}(b) = 0, \\ p^{m-2e} + p^{-2e}\overline{\eta}(-s)(p^{e} - 1)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \text{ and } \\ \Big(\operatorname{Tr}_{e}^{m}(b)\Big)^{2} = s\operatorname{Tr}_{e}^{m}(b^{2}), \\ p^{m-2e} - p^{-2e}\overline{\eta}\Big(-\operatorname{Tr}_{e}^{m}(b^{2})\Big)G\overline{G}, & \text{if } \operatorname{Tr}_{e}^{m}(b^{2}) \neq 0, \operatorname{Tr}_{e}^{m}(b) \neq 0 \text{ and } \\ \Big(\operatorname{Tr}_{e}^{m}(b)\Big)^{2} \neq s\operatorname{Tr}_{e}^{m}(b^{2}). \end{cases}$$

Proof. The proof of the lemma follows from (4.2), Lemmas 3.3 and 3.4.

Theorem 4.4. Let s be odd with $p \nmid s$. Then the linear code C_D of (1.1) has parameters $[p^{m-e} + p^{-e}\overline{\eta}(-s)G\overline{G} - 1, s]$ and weight distribution in Tables 5 and 6, where $G\overline{G} = (-1)^{m+e-2}(-1)^{\frac{(p-1)^2(m+e)}{8}}p^{\frac{(m+e)}{2}}$.

Proof. Firstly, we assume that $\overline{\eta}(-s) = 1$. For $2 \nmid s$ and $p \nmid s$, by Lemma 3.3, we have $l_0 = p^{m-e} + p^{-e}G\overline{G}.$

It follows from (4.1) and Lemma 4.4 that $wt(c_b)$ has five distinct values under following cases.

Case I. If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) \neq 0$, then we have

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-e}G\overline{G}.$$

By Lemma 3.2, the frequency is $(p^e - 1)(p^{m-2e} - p^{-2e}G\overline{G})$. **Case II.** If $\operatorname{Tr}_e^m(b^2) = 0$ and $\operatorname{Tr}_e^m(b) = 0$, then $\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e}$. From Lemma 3.2, the frequency is $p^{m-2e} + p^{-2e}(p^e - 1)G\overline{G} - 1$.

Case III. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$ and $\left(\operatorname{Tr}_e^m(b)\right)^2 = s\operatorname{Tr}_e^m(b^2)$, then we can obtain

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-2e}G\overline{G}.$$

It follows from Lemmas 3.2 and 3.5 that the frequency of such codewords is $(p^e 1)p^{m-2e} + p^{-2e}(p^e - 1)^2 G\overline{G}.$

Case IV. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) = 0$ and $\overline{\eta}(-\operatorname{Tr}_e^m(b^2)) = 1$ or $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$, $\left(\operatorname{Tr}_e^m(b)\right)^2 \neq s\operatorname{Tr}_e^m(b^2)$ and $\overline{\eta}(-\operatorname{Tr}_e^m(b^2)) = 1$, then we can obtain

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-2e}(p^e + 1)G\overline{G}.$$

By Lemmas 3.2 and 3.7, the frequency is $\frac{1}{2}(p^e-1)(p^{m-e}-p^{-e}G\overline{G})$.

Case V. If $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) = 0$ and $\overline{\eta}(-\operatorname{Tr}_e^m(b^2)) = -1$ or $\operatorname{Tr}_e^m(b^2) \neq 0$, $\operatorname{Tr}_e^m(b) \neq 0$, $\left(\operatorname{Tr}_e^m(b)\right)^2 \neq s\operatorname{Tr}_e^m(b^2)$ and $\overline{\eta}(-\operatorname{Tr}_e^m(b^2)) = -1$, then we have

$$\operatorname{wt}(c_b) = l_0 - N_b = (p^e - 1)p^{m-2e} + p^{-2e}(p^e - 1)G\overline{G}.$$

From Lemmas 3.2 and 3.7, the frequency is $\frac{1}{2}(p^e-1)(p^e-2)(p^{m-2e}-p^{-2e}G\overline{G})$, which completes the Table 5. Similarly, we can complete the Table 6 by taking $\overline{\eta}(-s)=-1$.

Table 5. The weight distribution of the codes in Theorem 4.4 with $\overline{\eta}(-s)=1$

Weight w	Frequency A_w
0	1
$(p^e - 1)p^{m-2e} + p^{-e}G\overline{G}$	$(p^e - 1)(p^{m-2e} - p^{-2e}G\overline{G})$
$(p^e - 1)p^{m-2e}$	$p^{m-2e} + p^{-2e}(p^e - 1)G\overline{G} - 1$
$(p^e - 1)p^{m-2e} + p^{-2e}G\overline{G}$	$(p^e - 1)p^{m-2e} + p^{-2e}(p^e - 1)^2G\overline{G}$
$(p^e - 1)p^{m-2e} + p^{-2e}(p^e + 1)G\overline{G}$	$\frac{1}{2}(p^e - 1)(p^{m-e} - p^{-e}G\overline{G})$
$(p^e - 1)p^{m-2e} + p^{-2e}(p^e - 1)G\overline{G}$	$\frac{1}{2}(p^e-1)(p^e-2)(p^{m-2e}-p^{-2e}G\overline{G})$

Table 6. The weight distribution of the codes in Theorem 4.4 with $\overline{\eta}(-s)=-1$

Weight w	Frequency A_w
0	1
$(p^e - 1)p^{m-2e} - p^{-e}G\overline{G}$	$(p^e - 1)(p^{m-2e} + p^{-2e}G\overline{G})$
$(p^e - 1)p^{m-2e}$	$p^{m-2e} - p^{-2e}(p^e - 1)G\overline{G} - 1$
$(p^e - 1)p^{m-2e} - p^{-2e}G\overline{G}$	$(p^e - 1)p^{m-2e} - p^{-2e}(p^e - 1)^2G\overline{G}$
$(p^e - 1)p^{m-2e} - p^{-2e}(p^e - 1)G\overline{G}$	$\frac{1}{2}(p^e - 1)(p^{m-e} + p^{-e}G\overline{G})$
$(p^e - 1)p^{m-2e} - p^{-2e}(p^e + 1)G\overline{G}$	$\frac{1}{2}(p^e-1)(p^e-2)(p^{m-2e}+p^{-2e}G\overline{G})$

Example 4.5. Let (p, m, s, e) = (5, 6, 3, 2). Then the corresponding code \mathcal{C}_D has parameters [649, 3, 600] and the weight enumerator as $1 + 48z^{600} + 1176z^{601} + 6624z^{624} + 576z^{625} + 7200z^{626}$.

5. Concluding Remarks

In this paper, we have presented a class of three-weight and five-weight linear codes. A number of three-weight and five-weight codes were discussed in [1,3,4,6,9,14,19,20]. Let w_0 and w_∞ denote the minimum and maximum non-zero weight of a linear code \mathcal{C}_D , respectively. The linear code \mathcal{C}_D with $\frac{w_0}{w_\infty} > \frac{(p^e-1)}{p^e}$ can be used to construct a secret sharing scheme with interesting access structures (see [18]).

For the linear code \mathcal{C}_D in Theorem 4.1, we have

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m - 2e} - (p^e - 1)p^{\frac{m - 2e}{2}}}{(p^e - 1)p^{m - 2e}} \quad \text{or} \quad \frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m - 2e}}{(p^e - 1)p^{m - 2e} + (p^e - 1)p^{\frac{m - 2e}{2}}}.$$

Let $\frac{m}{e} > 4$. Then by simple computation, we have

$$\frac{w_0}{w_\infty} = \frac{(p^e-1)p^{m-2e}}{(p^e-1)p^{m-2e} + (p^e-1)p^{\frac{m-2e}{2}}} > \frac{(p^e-1)p^{m-2e} - (p^e-1)p^{\frac{m-2e}{2}}}{(p^e-1)p^{m-2e}} > \frac{(p^e-1)}{p^e}.$$

For the linear code \mathcal{C}_D of Theorem 4.2, we have

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m - 2e} - 2p^{\frac{m - 2e}{2}}}{(p^e - 1)p^{m - 2e}} \quad \text{or} \quad \frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m - 2e}}{(p^e - 1)p^{m - 2e} + 2p^{\frac{m - 2e}{2}}}.$$

Then it can easily be checked that

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m-2e}}{(p^e - 1)p^{m-2e} + 2p^{\frac{m-2e}{2}}} > \frac{(p^e - 1)p^{m-2e} - 2p^{\frac{m-2e}{2}}}{(p^e - 1)p^{m-2e}} > \frac{(p^e - 1)}{p^e}, \quad \text{for } \frac{m}{e} > 4.$$

For the linear code \mathcal{C}_D of Theorem 4.3, we have

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m-2e} - (p^e - 1)p^{\frac{m-3e}{2}}}{(p^e - 1)p^{m-2e} + (p^e - 1)p^{\frac{m-3e}{2}}} > \frac{(p^e - 1)}{p^e}, \quad \text{for } \frac{m}{e} \ge 5.$$

For the linear code \mathcal{C}_D of Theorem 4.4, we have

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m-2e} - (p^e + 1)p^{\frac{m-3e}{2}}}{(p^e - 1)p^{m-2e}} \quad \text{or} \quad \frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m-2e}}{(p^e - 1)p^{m-2e} + (p^e + 1)p^{\frac{m-3e}{2}}}.$$

Let $\frac{m}{e} \geq 5$. Then by simple calculation, we can show that

$$\frac{w_0}{w_\infty} = \frac{(p^e - 1)p^{m - 2e}}{(p^e - 1)p^{m - 2e} + (p^e + 1)p^{\frac{m - 3e}{2}}} > \frac{(p^e - 1)p^{m - 2e} - (p^e + 1)p^{\frac{m - 3e}{2}}}{(p^e - 1)p^{m - 2e}} > \frac{(p^e - 1)p^{m - 2e}}{p^e}.$$

Consequently, one can easily see that the codewords of the linear code \mathcal{C}_D are minimal for $\frac{m}{e} \geq 5$. These linear codes can be used in secret sharing schemes.

Acknowledgements. The present research is supported by University Grants Commission, New Delhi, India, under JRF in Science, Humanities & Social Sciences scheme, with Grant number 11-04-2016-413564.

REFERENCES

- [1] S. T. Choi, J. S. No and J. Y. Kim, Weight distribution of some cyclic codes, in: 2012 IEEE International Symposium on Information Theory Proceedings IEEE, Cambridge, MA, USA, 2012, 2911–2913. https://doi.org/10.1109/ISIT.2012.6284056
- [2] C. Ding, T. Kløve and F. Sica, Two classes of ternary codes and their weight distributions, Discrete Appl. Math. $\mathbf{111}(1-2)$ (2001), 37–53. https://doi.org/10.1016/S0166-218X(00)00343-7

- [3] C. Ding, A class of three-weight and four-weight codes, in: Y. M. Chee, C. Li, S. Ling, H. Wang and C. Xing (Eds), Proceedings of Second International Workshop on Coding Theory and Cryptography, Lecture Notes in Computer Science 5557, Springer-Verlag, Berlin, Heidelberg, 2009, 34–42. https://doi.org/10.1007/978-3-642-01877-0_4
- [4] C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inform. Theory **59**(12) (2013), 7940–7946. https://doi.org/10.1109/TIT.2013. 2281205
- [5] C. Ding and J. Yang, *Hamming weights in irreducible cyclic codes*, Discrete Math. **313**(4) (2013), 434–446. https://doi.org/10.1016/j.disc.2012.11.009
- [6] K. Ding and C. Ding, Binary linear codes with three weights, IEEE Communications Letters 18(11) (2014), 1879–1882. https://doi.org/10.1109/LCOMM.2014.2361516
- [7] C. Ding, Linear codes from some 2—designs, IEEE Trans. Inform. Theory **61**(6) (2015), 3265–3275. https://doi.org/10.1109/TIT.2015.2420118
- [8] K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inform. Theory 61(11) (2015), 5828-5842. https://doi.org/10.1109/ TIT.2015.2473861
- [9] C. Ding, C. Li, N. Li and Z. Zhou, Three-weight cyclic codes and their weight distributions, Discrete Math. 339(2) (2016), 415–427. https://doi.org/10.1016/j.disc.2015.09.001
- [10] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
- [11] F. Li, Q. Wang and D. Lin, A class of three-weight and five-weight linear codes, Discrete Appl. Math. 241 (2018), 25–38. https://doi.org/10.1016/j.dam.2016.11.005
- [12] R. Lidl. and H. Niederreiter, Finite Fields, Cambridge University Press, New York, 1997.
- [13] Y. Liu and Z. Liu, Complete weight enumerators of a new class of linear codes, Discrete Math. 341(7) (2018), 1959–1972. https://doi.org/10.1016/j.disc.2018.03.025
- [14] G. Luo, X. Cao, S. Xu and J. Mi, Binary linear codes with two or three weights from niho exponents, Cryptogr. Commun. 10(2) (2018), 301–318. https://doi.org/10.1007/s12095-017-0220-2
- [15] A. Sharma and G. K. Bakshi, The weight distribution of some irreducible cyclic codes, Finite Fields Appl. 18(1) (2012), 144–159. https://doi.org/10.1016/j.ffa.2011.07.002
- [16] T. Storer, Cyclotomy and Difference Sets, Markham Publishing Company, Markham, Chicago, 1967.
- [17] Q. Wang, K. Ding and R. Xue, Binary linear codes with two-weights, IEEE Communications Letters 19(7) (2015), 1097–1100. https://doi.org/10.1109/LCOMM.2015.2431253
- [18] J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inform. Theory 52(1) (2006), 206–212. https://doi.org/10.1109/TIT.2005.860412
- [19] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields App. 25 (2014), 79–93. https://doi.org/10.1016/j.ffa.2013.08.005
- [20] Z. Zhou, N. Li, C. Fan and T. Helleseth, Linear codes with two or three weights from quadratic bent functions, Des. Codes Cryptogr. 81(2) (2016), 283-295. https://link.springer.com/ article/10.1007/s10623-015-0144-9

¹DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALIGARH-202002, INDIA *Email address*: pavan4957@gmail.com *Email address*: nm_khan123@yahoo.co.in