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BEST PROXIMITY POINT THEOREMS IN NON-ARCHIMEDEAN
MENGER PROBABILISTIC SPACES

ARIFE AYSUN KARAASLAN1 AND VATAN KARAKAYA2

Abstract. In this work, we prove best proximity point theorems for γ-contractions
with conditions the weak P-property in non-Archimedean Menger probabilistic met-
ric spaces. We give the notion of γ- proximal contractions of first and second type
in non-Archimedean Menger probabilistic metric spaces and also we establish best
proximity point theorems for these proximal contractions. Lastly, we complete our
study by giving examples that support our results.

1. Introduction

The concept of the probabilistic metric spaces were introduced by Menger [15].
When x and y are two elements of a probabilistic metric space, the idea of distance
between these points is changed with function Fx,y(t). Fx,y(t) is a distribution function
that is explained as probability that the distance between x and y is less than t. In
fact, studies in these spaces improved with Schweizer and Sklar’ s leading works [20].
The probabilistic interpretation of Banach contraction principle is demonstrated by
Sehgal and Bharucha-Reid in [22]. Some studies about probabilistic metric spaces are
given in list [7, 8, 12, 16–18].

On the other hand, best proximity point was started by Fan [9]. For more details,
references are listed in [1, 3, 4, 11, 13, 14, 19, 24]. Sezen introduced γ-contraction and
γ-weak contraction in non-Archimedean fuzzy metric spaces [23]. In this paper, we
prove some best proximity point theorems for γ-contractions in a non-Archimedean
Menger probabilistic metric space.
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2. Preliminaries

Definition 2.1 ([20]). A triangular norm (shorter ∆ − norm/ t − norm) is a binary
operation ∆ which is defined on the closed interval [0,1],

∆ : [0, 1] × [0, 1] → [0, 1]
that satisfies the following requirements:

(∆1) ∆(a1, 1) = a1, ∆(0, 0) = 0;
(∆2) ∆(a1, a2) = ∆(a2, a1);
(∆3) ∆(a3, a4) ≥ ∆(a1, a2) for a3 ≥ a1, a4 ≥ a2;
(∆4) for all a1, a2, a3 ∈ [0, 1] , ∆(∆(a1, a2), a3) = ∆(a1, ∆(a2, a3)).
Principal examples of ∆ − norms are:
(i) ∆M(a1, a2) = min(a1, a2);
(ii) ∆P (a1, a2) = a1.a2;
(iii) ∆L(a1, a2) = max(a1 + a2 − 1, 0);

(iv) ∆D(a1, a2) =

min(a1, a2), if max(a1, a2) = 1,

0, otherwise.

Definition 2.2 ([20]). Let F be a function defined from R to R+. If it is nondecreasing,
left-continuous with

inf {F (t) : t ∈ R} = 0 and sup {F (t) : t ∈ R} = 1,

then F is called a distribution function. In addition, if F (0) = 0, then F is called a
distance distribution function. L+ indicate the set of all distance distribution functions
and H is a special example of distance distribution function (also known as Heaviside
function) defined by

H(t) =

0, t ≤ 0,

1, t > 0.

Definition 2.3 ([20]). Let X is a nonempty set and F is a mapping defined from
X × X into L+. The value of F at the point (x, y) is denoted by Fx,y. If the following
conditions hold, (X, F ) ordered pair is called a probabilistic metric space:

(PM-1) Fx,y(t) = H(t) if and only if x = y;
(PM-2) Fx,y(t) = Fy,x(t);
(PM-3) Fx,y(t) = 1, Fy,z(s) = 1, then Fx,z(t + s) = 1 for all x, y, z ∈ X, t, s ≥ 0.
Every metric space (X, d) can always be realized as a probabilistic metric space by
taking into account that F : X × X → L+ defined as

Fx,y(t) = H(t − d(x, y)), for all x, y ∈ X.

Definition 2.4 ([20]). Let (X, F ) be a probabilistic metric space and ∆ is a t − norm
that provides the following inequality,

Fx,z(t + s) ≥ ∆ (Fx,y(t), Fy,z(s)) , for all x, y, z ∈ X and t, s ≥ 0.
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Then, triplet (X, F, ∆) is named as a Menger probabilistic metric space.

Definition 2.5 ([20]). Let (X, F, ∆) be a Menger space.
(i) A sequence (xn) is called a convergent sequence to x ∈ X if for every t > 0 and

0 < ε < 1, there exists n0 = n0(t, ε) ∈ N such that Fxn,x(t) > 1 − λ for all n ≥ N.
(ii) A sequence (xn) in X is called Cauchy sequence if for every t > 0 and 0 < ε < 1,

there exists n0 = n0(t, ε) ∈ N such that Fxn,xm(t) > 1 − ε for each n, m ≥ n0.
(iii) A Menger space is said to be complete , if each Cauchy sequence in X is

convergent to a point in X.

Definition 2.6 ([5]). A probabilistic metric space (X, F ) is called non-Archimedean
probabilistic metric space if Fx,y(t) = 1, Fy,z(s) = 1, then Fx,z(max{t, s}) = 1 for
every x, y, z ∈ X and t, s ≥ 0.

Definition 2.7 ([5, 6]). A Menger probabilistic metric space (X, F, ∆) is called non-
Archimedean if Fx,z(max{t, s}) = ∆ (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and t, s ≥ 0.

Note. We observe that (X, F, ∆) is non-Archimedean if and only if

Fx,z(t) ≥ ∆ (Fx,y(t), Fy,z(t)) , for all x, y, z ∈ X and t ≥ 0.

Definition 2.8 ([19]). Let (X, F, ∆) be a Menger probabilistic metric space and A, B
be two nonempty subsets of this space. A mapping T : A → B satisfies the following
equality

Fx,T x(t) = FA,B(t), for t > 0.

Then x in A is said to be a best proximity point of T .

Definition 2.9 ([3]). Let (X, F, ∆) be a Menger probabilistic metric space and
A, B two nonempty subsets of this space. A set A is said to be approximatively
compact with respect to a set B if every sequence (xn) in A satisfies the condition that
Fy,xn(t) → Fy,A(t) for some y ∈ B and for each t > 0 has a convergent subsequence.

Definition 2.10. Let γ : [0, 1) → R be a function that has the following properties:
(a) strictly increasing;
(b) continuous mapping;
(c) for each sequence (αn) of positive numbers, lim

n→∞
αn = 1 if and only if lim

n→∞
γ(αn) =

+∞.
Also, Γ represents the family of all γ functions.
Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric space. A mapping

T : X → X is said to be a γ-contraction if there exists a δ ∈ (0, 1) such that
for all x, y ∈ X and γ ∈ Γ

(2.1) FT x,T y(t) < 1 ⇒ γ(FT x,T y(t)) ≥ γ(Fx,y(t)) + δ.
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3. Main Results

In this section, we present some definitions and some best proximity point results
in non-Archimedean Menger probabilistic metric spaces. Let A and B two nonempty
subsets of a Menger probabilistic metric space (X, F, ∆). We will use the following
notations:

FA,B(t) = sup{Fx,y(t) : x ∈ A, y ∈ B}.

A0(t) ={x ∈ A : Fx,y(t) = FA,B(t) for some y ∈ B},

B0(t) ={y ∈ B : Fx,y(t) = FA,B(t) for some x ∈ A}.

Now, let us give our main results.

Definition 3.1. Let (A, B) be a pair of nonempty subsets of a non-Archimedean
Menger probabilistic metric space X with A0(t) ̸= 0. Then the pair (A, B) is said to
have the weak P-property if and only if

Fx1,y1(t) = FA,B(t), Fx2,y2(t) = FA,B(t) ⇒ Fx1,x2(t) ≥ Fy1,y2(t),
where x1, x2 ∈ A0 and y1, y2 ∈ B0.

Example 3.1. Let X = R × R and d defined as the standard metric d(x, y) = |x − y|
for all x ∈ X, ∆(a, b) = min(a, b) and the distribution function defined as

Fx,y(t) = t

t + d(x, y) , for all t > 0.

(X, F, ∆) is a non-Archimedean Menger probabilistic metric space. Let A = {(0, 0)},
B = {(1, 0), (−1, 0)}. From here, d(A, B) = 1 and FA,B(t) = t

t+d(A,B) = t
t+1 . Now we

consider
Fx1,y1(t) =FA,B(t), Fx2,y2(t) = FA,B(t).

We get (x1, y1) = ((0, 0), (1, 0)) and (x2, y2) = ((0, 0), (−1, 0)), Fx1,x2(t) =
F(0,0),(0,0)(t) = 1 and Fy1,y2(t) = F(1,0),(−1,0)(t) = t

t+2 implies Fx1,x2(t) > Fy1,y2(t).
Thus, (A, B) is said to have the weak P-property.

Definition 3.2. Let A, B be nonempty subsets of a non-Archimedean Menger proba-
bilisitc metric space (X, F, ∆). The mapping g : A → A is said to be a probabilistic
isometry if

Fgx1,gx2(t) = Fx1,x2(t),
for all x1, x2 ∈ A.

Definition 3.3. Let A, B be nonempty subsets of a non-Archimedean Menger prob-
abilistic metric space (X, F, ∆). Given S : A → B and a probabilistic isometry
g : A → A, the mapping S is said to preserve probabilistic distance with respect to g
if

FSgx1,Sgx2(t) = FSx1,Sx2(t),
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for all x1, x2 ∈ A.

Example 3.2. Let X = [0, 1] ×R and d defined as the standart metric d(x, y) = |x − y|
for all x ∈ X and the distribution function defined as

Fx,y(t) = t

t + d(x, y) , for all t > 0.

Let A = {(0, x) : x ∈ R}. g : A → A is defined as g(0, x) = (0, −x). Fx,y(t) =
t

t+d(x,y) = Fgx,gy(t), where x = (0, x1), y = (0, y1) ∈ A. This indicates that g is a
probabilistic isometry.

Theorem 3.1. A and B be nonempty, closed subsets of a complete non-Archimedean
Menger probabilistic metric space (X, F, ∆) such that A0(t) is nonempty. Let T : A →
B be a γ-contraction such that T (A0(t)) ⊆ B0(t). Suppose that the pair (A, B) has
the weak P-property. Then T has a unique x∗ in A such that Fx∗,T x∗(t) = FA,B(t).

Proof. Let start by choosing an element x0 in A0(t). Since T (A0(t)) ⊆ B0(t), we can
find x1 ∈ A0(t) such that Fx1,T x0(t) = FA,B(t). Further, since T (A0(t)) ⊆ B0(t), it
follows that there is an element x2 in A0(t) such that Fx2,T x1(t) = FA,B(t). Recursively,
we obtain a sequence (xn) ∈ A0(t) satisfying for all n ∈ N,
(3.1) Fxn+1,T xn(t) = FA,B(t).
(A, B) satisfies the weak P-property, from (3.1) we obtain
(3.2) Fxn,xn+1(t) ≥ FT xn−1,T xn(t), for all n ∈ N.

Now we will prove that the sequence (xn) is convergent in A0(t). If there exists n0 ∈ N
such that FT xn0−1,T xn0

(t) = 1, then by (3.2) we get Fxn0 ,xn0+1(t) = 1 which implies
xn0 = xn0+1. Hence, we get
(3.3) Txn0 = Txn0+1 ⇒ FT xn0 ,T xn0+1(t) = 1.

From (3.2) and (3.3), we have that
Fxn0+2,xn0+1(t) ≥ FT xn0+1,T xn0

(t) = 1 ⇒ xn0+2 = xn0+1.

Therefore, for all n ≥ n0, xn = xn0 and (xn) is convergent in A0(t). Also, we get
Fxn0 ,T xn0

(t) = Fxn0+1,T xn0
(t) = FA,B(t).

From this equality we can say that xn0 is a probabilistic best proximity point of T and
the proof is finished. For this reason, we suppose that, for all n ∈ N, FT xn−1,T xn(t) ̸= 1.
From the definition of γ-contraction and (3.2), we have

(3.4)

γ(Fxn,xn+1(t)) ≥γ(Fxn−1,xn(t)) + δ

≥γ(Fxn−2,xn−1(t)) + 2δ

...
≥γ(Fx0,x1(t)) + nδ.
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Letting n → ∞, from (3.4) we have
lim

n→∞
γ(Fxn,xn+1(t)) = +∞.

Using the property of γ function we have,
(3.5) lim

n→∞
Fxn,xn+1(t) = 1.

We shall show that (xn) is a Cauchy sequence. Suppose that (xn) is not a Cauchy
sequence. Then there exist ε ∈ (0, 1) and t0 > 0 and two sequences m(j), n(j) of
positive integers such that m(j) > n(j) + 1 and
(3.6) Fxm(j),xn(j)(t0) < 1 − ε and Fxm(j)−1,xn(j)(t0) ≥ 1 − ε.

So, for all j ∈ N we get

(3.7)
1 − ε >Fxm(j),xn(j)(t0)

≥∆(Fxm(j),xm(j)−1(t0), Fxm(j)−1,xn(j)(t0))
≥∆(Fxm(j),xm(j)−1(t0), (1 − ε)).

By taking j → ∞ in (3.7) and using (3.5) we have,
(3.8) lim

j→∞
Fxm(j),xn(j)(t0) = 1 − ε.

From the property of t-norm
Fxm(j)+1,xn(j)+1(t0) ≥∆(Fxm(j)+1,xm(j)(t0), Fxm(j),xn(j)+1(t0))

≥∆(Fxm(j)+1,xm(j)(t0), ∆(Fxm(j),xn(j)(t0), Fxn(j),xn(j)+1(t0))).
On letting limit as j → ∞ in previous inequality, we obtain
(3.9) lim

j→∞
Fxm(j)+1,xn(j)+1(t0) = 1 − ε.

By applying inequality in (2.1) with x = xm(j) and y = xn(j),
(3.10) γ(Fxm(j)+1,xn(j)+1(t)) ≥ γ(Fxm(j),xn(j)(t)) + δ.

Taking the limit as j → ∞ in (3.10), using definition of γ-contraction, from (3.8) and
(3.9), we obtain

γ(1 − ε) ≥ γ(1 − ε) + δ.

This is a contraction. Therefore, (xn) is a Cauchy sequence in X. We know that
(X, F, ∆) is complete and A0(t) is a closed subset of this space, there exists x∗ ∈ A0(t)
such that

lim
n→∞

xn = x∗.

From the continuity of T , we have Txn → Tx∗ and Fxn+1,T xn(t) = Fx∗,T x∗(t). From
(3.1), Fx∗,T x∗(t) = FA,B(t). This shows that x∗ is a probabilistic best proximity point
of T . Now, we show that uniqueness of the best proximity point of T . Suppose
that x1 and x2 are two best proximity points of T . For x1, x2 ∈ A, x1 ̸= x2 and
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Fx1,T x1(t) = Fx2,T x2(t) = FA,B(t). Since (A, B) has the weak P-property, we can write
Fx1,x2(t) ≥ FT x1,T x2(t). T is a γ-contraction and x1 ̸= x2 implies Fx1,x2(t) ̸= 1,

γ(Fx1,x2(t)) ≥ γ(FT x1,T x2(t)) ≥ γ(Fx1,x2(t)) + δ > γ(Fx1,x2(t)),
which is a contradiction. Hence, T has a unique best proximity point. □

Example 3.3. Let X = R × [0, 1] and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2. Let A = {(x, 0) : for all x ∈ R},
B = {(y, 1) : for all y ∈ R}. Then, here A0(t) = A, B0(t) = B, d(A, B) = 1 and
FA,B(t) = t

t+1 . γ : [0, 1) → R defined as γ = 1
1−x

, for all x ∈ X. Let T : A → B and
T (x, 0) =

(
x
6 , 1

)
. Then, T (A0(t)) = B0(t). Let us consider

Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).

We have (a1, x1) =
((

−b1
6 , 0

)
, (−b1, 0)

)
or (a2, x2) =

((
−b2

6 , 0
)

, (−b2, 0)
)
. Then using

γ-contraction, we have

γ(Fa1,a2(t)) =γ
(

F(− b1
6 ,0),(− b2

6 ,0)(t)
)

= γ

 t

t + |b1−b2|
6

(3.11)

= 1
1 − t

t+ |b1−b2|
6

>
1

1 − t
t+|b1−b2|

= γ

(
t

t + |b1 − b2|

)

=γ(Fx1,x2(t)).
From (3.11), γ(Fa1,a2(t)) > γ(Fx1,x2(t)). So, we can find a δ ∈ (0, 1) such that
γ(Fa1,a2(t)) ≥ Fx1,x2(t)) + δ. Then T is a γ-contraction and (0, 0) is a unique best
proximity point of T .

Corollary 3.1. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric space
and A0(t) is a nonempty closed subset of X. Let T : A → A be a γ-contraction. Then
there exists a unique x∗ in A.

Definition 3.4. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric
space and A, B be two nonempty subsets of this space such that A0(t) is nonempty.
A mapping T : A → B is said to be a γ-proximal contraction of first type if there
exists a δ ∈ (0, 1) for all u1, u2,x1, x2 ∈ X such that

Fu1,T x1(t) = FA,B(t), Fu2,T x2(t) = FA,B(t), Fu1,u2(t), Fx1,x2(t) < 1,(3.12)
⇒γ(Fu1,u2(t)) ≥ γ(Fx1,x2(t)) + δ.

Definition 3.5. Let (X, F, ∆) be a non-Archimedean Menger probabilistic metric
space and A, B be two nonempty subsets of this space such that A0(t) is nonempty.
A mapping T : A → B is said to be a γ-proximal contraction of second type if there
exists a δ ∈ (0, 1) for all u1, u2,x1, x2 ∈ X such that

Fu1,T x1(t) = FA,B(t), Fu2,T x2(t) = FA,B(t), FT u1,T u2(t), FT x1,T x2(t) < 1,(3.13)
⇒γ(FT u1,T u2(t)) ≥ γ(FT x1,T x2(t)) + δ.
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Theorem 3.2. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic
metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Let T : A → B and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of first type;
(3) g is an isometry;
(4) A0(t) ⊆ g(A0(t)).

Then there exist a unique element x ∈ A such that Fgx,T x(t) = FA,B(t).

Proof. We will start the proof by choosing an element x0 in A0(t). Since T (A0(t)) ⊆
B0(t) and A0(t) ⊆ g (A0(t)), we can find x1 ∈ A0(t) such that Fgx1,T x0(t) = FA,B(t).
Since Tx1 ∈ T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), it follows that there is an
element x2 in A0(t) such that Fgx2,T x1(t) = FA,B(t). Recursively, we obtain a sequence
(xn) ∈ A0(t) satisfying for all n ∈ N,

(3.14) Fgxn+1,T xn(t) = FA,B(t).

Now we will prove that the sequence (xn) is convergent in A0(t). If there exists n0 ∈ N
such that Fgxn0 ,gxn0+1(t) = 1, then it is clear that the sequence (xn) is convergent. So,
let for all n ∈ N, Fgxn0 ,gxn0+1(t) ̸= 1. From the hypothesis of the theorem, T is a
γ-proximal contraction of first type

γ(Fgxn,gxn+1(t)) ≥γ(Fxn−1,xn(t)) + δ(3.15)
γ(Fxn,xn+1(t)) ≥γ(Fxn−1,xn(t)) + δ

...
≥γ(Fx0,x1(t)) + nδ.

Letting n → ∞, in previous inequality we have lim
n→∞

γ(Fxn,xn+1(t)) = +∞. If we
continue with the same way that used in proof of Theorem 3.1, we can say (xn) is a
Cauchy sequence. Since complete non-Archimedean Menger probabilistic metric space
(X, F, ∆) has closed subsets, there exist x ∈ A0(t) such that lim

n→∞
xn = x. Applying

limit when n → ∞ in (3.14), we have

Fgx,T x(t) = FA,B(t).

To show the uniqueness, we will suppose the contrary. Let x∗ ∈ A0(t) and it satisfy
the equality Fgx∗,T x∗(t) = FA,B(t) such that x ̸= x∗. Hence, Fx,x∗(t) ̸= 1. Since g is
an isometry and T is a γ-proximal contraction of the first kind, it follows that

γ(Fx,x∗(t)) = γ(Fgx,gx∗(t)) ≥ γ(Fx,x∗(t)) + δ > γ(Fx,x∗(t)),

which is a contradiction. Consequently, x = x∗. □

Example 3.4. Let X = [−2, 2] × R and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2.
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Let A = {(−2, x) : for all x ∈ R}, B = {(2, y) : for all y ∈ R}. Then, here
A0(t) = A, B0(t) = B, d(A, B) = 4 and FA,B(t) = t

t+4 . γ : [0, 1) → R defined
as γ(x) = 1

1−x2 , for all x ∈ X. Let T : A → B and g : A → A, these are defined
as T (−2, x) =

(
2, x

2

)
and g(−2, x) = (−2, −x). Then, T (A0(t)) = B0(t), A0(t) =

g(A0(t)) and g is a isometry. Let us consider
Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).

We have (a1, x1) =
((

−2, b1
2

)
, (−2, b1)

)
or (a2, x2) =

((
−2, b2

2

)
, (−2, b2)

)
. We must

show that, T is a γ-proximal contraction of first type

γ(Fa1,a2(t)) =γ
(

F(−2,
b1
2 ),(−2,

b2
2 )(t)

)
= γ

 t

t + |b1−b2|
2

(3.16)

= 1

1 −
(

t

t+ |b1−b2|
2

)2 >
1

1 −
(

t
t+|b1−b2|

)2 = γ

(
t

t + |b1 − b2|

)

=γ(Fx1,x2(t)).
From (3.16), we have γ(Fa1,a2(t)) > γFx1,x2(t)). So, we can find a δ ∈ (0, 1) such
that γ(Fa1,a2(t)) ≥ Fx1,x2(t)) + δ. Then T is a γ-proximal contraction of first type and
(−2, 0) is a unique best proximity point of T .

If we assume that g is the identity mapping, we can give the following result.

Corollary 3.2. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic
metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Let T : A → B satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of first type.

Then T has a unique best proximity point in A.

Theorem 3.3. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic
metric space and A, B be two nonempty, closed subsets of this space such that A0(t)
is nonempty. Suppose that A is approximatively compact with respect to B. Let
T : A → B and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of second type;
(3) g is an isometry;
(4) A0(t) ⊆ g(A0(t));
(5) T preserves probabilistic distance with respect to g.

Then there exists a unique element x ∈ A such that Fgx,T x(t) = FA,B(t).

Proof. Let start by choosing an element Tx0 in T (A0(t)). Using the hypothesis,
T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), we can find x1 ∈ A0(t) such that Fgx1,T x0(t) =
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FA,B(t). Further, since Tx1 ∈ T (A0(t)) ⊆ B0(t) and A0(t) ⊆ g (A0(t)), it follows that
there is an element x2 in A0(t) such that Fgx2,T x1(t) = FA,B(t). Recursively, we obtain
a sequence (Txn) ∈ B satisfying for all n ∈ N

(3.17) Fgxn+1,T xn(t) = FA,B(t).
Now we will prove that the sequence (Txn) is convergent in B. If there exists n0 ∈ N
such that FT gxn0 ,T gxn0+1(t) = 1, then it is clear that the sequence (Txn) is convergent.
So, let for all n ∈ N, FT gxn0 ,T gxn0+1(t) ̸= 1. From the hypothesis of the theorem, T is
a γ-proximal contraction of second type

γ(FT gxn,T gxn+1(t)) ≥γ(FT xn−1,T xn(t)) + δ(3.18)
γ(FT xn,T xn+1(t)) ≥γ(FT xn−1,T xn(t)) + δ

...
≥γ(FT x0,T x1(t)) + nδ.

Letting n → ∞, in previous inequality we have lim
n→∞

γ(FT xn,T xn+1(t)) = +∞. If we
continue same way that used in proof of Theorem 3.1, we can say that (Txn) is a
Cauchy sequence in B. In theorem hyphothesis, complete non-Archimedean Menger
probabilistic metric space (X, F, ∆) has closed subsets, there exists y ∈ B such that
lim

n→∞
Txn = y. Using the triangle inequality

Fy,A(t) ≥ Fy,gxn(t) ≥∆(Fy,T xn−1(t), FT xn−1,gxn(t))(3.19)
=∆(Fy,T xn−1(t), FA,B(t))
≥∆(Fy,T xn−1(t), Fy,A(t)).

In (3.19), if we take the limit as n → ∞, we have lim
n→∞

Fy,gxn(t) = Fy,A(t). Due to the
fact that A is approximatively compact with respect to B, there exists a subsequence
(gxnk

) of (gxn) such that converges to some w ∈ A.
Hence, Fw,y(t) = lim

k→∞
Fgxnk

,T gxnk−1(t) = Fy,A(t). It implies that w ∈ A0(t). A0(t) ⊆
g(A0(t)), there exists x ∈ A0(t) such that w = gx. As we know, lim

n→∞
gxnk

= gx and g

is an isometry, we have lim
n→∞

xnk
= x. (Txn) converges to y and the continuity of T , we

can write lim
n→∞

Txnk
= Tx = y. As a result that, Fgx,T x(t) = lim

n→∞
Fgxnk

,T gxnk
= FA,B(t).

The uniqueness can be shown using the same way in Theorem 3.1. □

Example 3.5. Let X = R × [0, 1] and (X, F, ∆) be the non-Archimedean Menger
probabilistic metric space given in Example 3.2. Let A = {(x, 0) : for all x ∈ R},
B = {(y, 1) : for all y ∈ R}. Then, here A0(t) = A, B0(t) = B, d(A, B) = 1 and
FA,B(t) = t

t+1 . γ : [0, 1) → R defined as γ(x) = 1√
1−x

, for all x ∈ X. Let T : A → B

and g : A → A, these are defined as T (x, 0) =
(

x
3 , 1

)
and g(x, 0) = (−x, 0). Then,

T (A0(t)) = B0(t), A0(t) = g(A0(t)) and g is an isometry. Let us consider
Fa1,T x1(t) =FA,B(t), Fa2,T x2(t) = FA,B(t).
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Also, FT gx1,T gx2(t) = FT x1,T x2(t) and this says that T preserves isometric distance with
respect to g. We have (a1, x1) =

((
b1
3 , 0

)
, (b1, 0)

)
or (a2, x2) =

((
b2
3 , 0

)
, (b2, 0)

)
. We

must show that, T is a γ-proximal contraction of second type

(3.20)

γ(FT a1,T a2(t)) = γ
(

F( b1
9 ,1),( b2

9 ,1)(t)
)

= γ

 t

t + |b1−b2|
9


= 1√

1 −
(

t

t+ |b1−b2|
9

) >
1√

1 −
(

t

t+ |b1−b2|
3

) = γ

 t

t + |b1−b2|
3


= γ(FT x1,T x2(t)).

From (3.20), we have γ(FT a1,T a2(t)) > γ(FT x1,T x2(t)). So, we can find a δ ∈ (0, 1) such
that γ(FT a1,T a2(t)) ≥ FT x1,T x2(t)) + δ. Then T is a γ-contraction of second type and
(0, 0) is a unique best proximity point of T .

If we assume that g is the identity mapping, we can give the following result.

Corollary 3.3. Let (X, F, ∆) be a complete non-Archimedean Menger probabilistic
metric space and A, B be two nonempty, closed subsets of this space such that A0(t) is
nonempty. Assume that A is approximately compact with respect to B. Let T : A → B
and g : A → A satisfy the following conditions:

(1) T (A0(t)) ⊆ B0(t);
(2) T : A → B is a continuous γ − proximal contraction of second type.

Then, T has a unique probabilistic best proximity point in A.

4. Conclusion

The purpose of this paper is to give best proximity point theorems for γ-contractions
and also γ-proximal contractions of first and second type. These are proved and
supported with examples.
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