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ON THE ZAGREB INDEX OF TOURNAMENTS

TARIQ AHMAD NAIKOO1, BILAL AHMAD RATHER2, UMA TUL SAMEE3,
AND SHARIEFUDDIN PIRZADA2

Abstract. A tournament is an orientation of a complete simple graph. The score
of a vertex in a tournament is the out degree of the vertex. The Zagreb index of
a tournament is defined as the sum of the squares of the scores of its vertices. In
this paper, we obtain various lower and upper bounds for the Zagreb index of a
tournament.

1. Introduction

A tournament is an orientation of a complete simple graph. Let T be a tournament
with order n and having vertex set {v1, v2, . . . , vn}. The score of a vertex vi, 1 ≤
i ≤ n, denoted by svi

(or simply by si), is defined as the out degree of vi. Clearly,
0 ≤ si ≤ n − 1 for all i, 1 ≤ i ≤ n. The sequence [s1, s2, . . . , sn] in non-decreasing
order is called the score sequence of the tournament T . A regular tournament on n
(odd) vertices is a tournament in which score of every vertex is n−1

2 . Many of the
important properties of tournaments were first investigated by Landau [5] (1953) in
order to model dominance relations in flocks of chickens. Current applications of
tournaments include the study of voting theory and social choice theory among other
things. Other undefined notations and terminology can be seen in [8].

The following result [5], also called Landau’s theorem, gives a necessary and suffi-
cient conditions for a sequence of non-negative integers to be the score sequence of
some tournament.

Theorem 1.1 (Landau [5]). A sequence [s1, s2, . . . , sn] of non-negative integers in
non-decreasing order is a score sequence of some tournament if and only if
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(1.1)
k∑

i=1
si ≥ k(k − 1)

2 , for 1 ≤ k ≤ n,

with equality when k = n.

Several results for the scores in a tournament can be seen in [3, 6, 7, 9, 13]. Also,
stronger inequalities for scores in tournaments can be found in [2]. Further the
extension of scores to oriented graphs and digraphs can be seen in [10–12].

For any two distinct vertices u and v of a tournament T , we have one of the following
possibilities:

(i) there is an arc directed from u to v which is denoted by u(1 − 0)v;
(ii) there is an arc directed from v to u which is denoted by u(0 − 1)v.
One of the oldest graph invariants is the well-known Zagreb index first introduced

by Gutman and Trinajstić [4], where they examined the dependence of total π-electron
energy on molecular structure. Some recent work can be seen in [1]. The (first) Zagreb
index M1(G) of a graph G is defined as the sum of the squares of the degrees of the
vertices of G and the second Zagreb index M2(G) is equal to the sum of the products
of the degrees of pairs of adjacent vertices. These two topological indices (M1 and M2)
reflect the extent of branching of the molecular carbon-atom skeleton. Determining
the extremal values or bounds of these two topological indices of graphs, as well as
characterizing the corresponding extremal graphs, has attracted the attention of many
researchers. Analogous to this, we define the Zagreb index M(T ) of a tournament T
as the sum of the scores of the vertices of T . That is, M(T ) = ∑n

i=1 s2
i .

The rest of the paper is organized as follows. In Section 2, we obtain the lower
bounds for the Zagreb index M(T ) of a tournament T . In Section 3, we compute the
upper bounds for M(T ).

2. Lower Bounds for the Zagreb Index M(T )

The following result gives the best general lower bound for M(T ).

Theorem 2.1. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

(2.1) M(T ) =
n∑

i=1
si

2 ≥ n

2

{
2m(n − m − 2) + n − 1

}
, where m =

⌊
n − 1

2

⌋
,

with equality if and only if si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n, where ⌊·⌋ denotes the
floor function.

Proof. Let vi and vj be two vertices of the tournament T with their respective scores
as si and sj such that si ≥ sj. Also, assume that M(T ) = ∑n

r=1 sr
2 is minimum.

We claim that si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. To prove the claim, we assume
to the contrary that si − sj > 1 for some i, j, 1 ≤ i, j ≤ n. Then there exists a vertex
vk with score sk such that vi(1 − 0)vk and vk(1 − 0)vj. Now, reversing the orientation
of these arcs to vi(0 − 1)vk and vk(0 − 1)vj respectively, we get a new tournament T1
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with the score sequence [t1, t2, . . . , tn], where ti = si − 1, tj = sj + 1, tr = sr for all r,
1 ≤ r ≤ n with r ̸= i, j.

Thus,
n∑

r=1
tr

2 =
j−1∑
r=1

tr
2 + t2

j +
i−1∑

r=j+1
tr

2 + t2
i +

n∑
r=i+1

tr
2

=
j−1∑
r=1

sr
2 + (sj + 1)2 +

i−1∑
r=j+1

sr
2 + (si − 1)2 +

n∑
r=i+1

sr
2

=
n∑

r=1
sr

2 − 2(si − sj − 1).

As si − sj > 1, so we obtain
n∑

r=1
tr

2 <
n∑

r=1
sr

2,

which is a contradiction, since M(T ) = ∑n
r=1 sr

2 is minimum. Hence, si − sj ≤ 1 for
all i, j, 1 ≤ i, j ≤ n. This means that some of the vertices of T have score m and the
remaining vertices (if any) have score m + 1. If x vertices of T have score m and y
vertices have score m + 1, then

x + y = n(2.2)

and by (1.1), we have

mx + (m + 1)y = n(n − 1)
2 .(2.3)

Solving (2.2) and (2.3), we get x = n
2 (2m − n + 3) and y = n

2 (n − 2m − 1). Therefore,

min M(T ) = min
n∑

i=1
si

2 = min{s2
1 + s2

2 + · · · + s2
n}

= m2 + m2 + · · · + m2︸ ︷︷ ︸
n
2 (2m−n+3)−times

+ (m + 1)2 + (m + 1)2 + · · · + (m + 1)2︸ ︷︷ ︸
n
2 (n−2m−1)−times

= n

2 (2m − n + 3)m2 + n

2 (n − 2m − 1)(m + 1)2

= n

2 {2m(n − m − 2) + n − 1}.

That is,

M(T ) =
n∑

i=1
si

2 ≥ n

2 {2m(n − m − 2) + n − 1}.

Now, assume that equality holds in (2.1). Since M(T ) is minimal, so some of the
vertices of T have score m and the remaining vertices (if any) have score m + 1, where
m = ⌊n−1

2 ⌋. Therefore, si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n.



244 T. A. NAIKOO, B. A. RATHER, U. SAMEE, AND S. PIRZADA

Conversely, assume that si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. Then as above, we
have

M(T ) =
n∑

i=1
si

2 = s2
1 + s2

2 + · · · + s2
n

= m2 + m2 + · · · + m2︸ ︷︷ ︸
n
2 (2m−n+3)−times

+ (m + 1)2 + (m + 1)2 + · · · + (m + 1)2︸ ︷︷ ︸
n
2 (n−2m−1)−times

= n

2 (2m − n + 3)m2 + n

2 (n − 2m − 1)(m + 1)2

= n

2 {2m(n − m − 2) + n − 1}.

Therefore equality holds in (2.1). □

Theorem 2.2. Let [s1, s2, . . . , sn] be the score sequence of a tournament T and m =
⌊n−2

2 ⌋ and x = n−1
2 (n − 2m − 2). Then the following hold.

(i) For sn > x, we have

M(T ) =
n∑

i=1
si

2 ≥ n − 1
2 {(2m + 1)(n − m) − m} + s2

n − x(2m + 1).

(ii) For sn ≤ x, we have

M(T ) =
n∑

i=1
si

2 ≥ n − 1
2 {(2m + 1)(n − m) − m} + s2

n + 2x − sn(2m + 3).

Proof. Let vn be the vertex of the tournament T with score sn. Deleting the vertex
vn, we obtain a new tournament T1 = T − {vn} with score sequence [t1, t2, . . . , tn−1].
By Theorem 2.1, the minimum value of M(T ) is attained in terms of n if and only if
si − sj ≤ 1 for all i, j, 1 ≤ i, j ≤ n. Using this result, we conclude that the value of∑n−1

i=1 ti
2 (in terms of the number of vertices) will be minimum if the value of M(T )

(in terms of n and sn) is minimum. So, we have to find the minimum value of M(T )
in terms of n and sn. For this, first we find the minimum value of ∑n−1

i=1 ti
2 in terms

of the number of vertices.
As the tournament T1 has n − 1 vertices, therefore, by using Theorem 2.1, we have

n−1∑
i=1

ti
2 ≥ n − 1

2 {2m(n − 1 − m − 2) + (n − 1) − 1}

= n − 1
2 {2m(n − m − 3) + (n − 2)},

where m = ⌊ (n−1)−1
2 ⌋ = ⌊n−2

2 ⌋ and ti − tj ≤ 1 for all i, j, 1 ≤ i, j ≤ n − 1.
If x vertices of T1 have score m + 1 and y vertices have score m, then we have

x + y = n − 1.(2.4)
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Also, by (1.1), we have

(m + 1)x + my = (n − 1)(n − 2)
2 .(2.5)

Solving (2.4) and (2.5) for x, we have x = n−1
2 (n − 2m − 2). So, T1 has x =

n−1
2 (n − 2m − 2) vertices of score m + 1 and n − 1 − x vertices of score m.
Now, we add the vertex vn of score sn and join it to the other vertices of the

tournament T1 by arcs, such that M(T ) = ∑n
i=1 si

2 is minimum. This can be done
as follows. Let vn(1 − 0)u to as many vertices u of score m + 1 as possible and then
vn(1 − 0)v to the remaining vertices v of score m till the score sn is exhausted. Note
that other arcs are directed towards vn in order to complete the tournament. Now,
we consider the following two cases.

Case (i). When sn > x, then

min M(T ) = min
n∑

i=1
si

2 = min
n−1∑
i=1

ti
2 + s2

n + (n − 1 − x)(2m + 1),

that is,

M(T ) ≥ n − 1
2 {2m(n − m − 3) + n − 2} + s2

n + (n − 1)(2m + 1) − x(2m + 1)

= n − 1
2 {(2m + 1)(n − m) − m} + s2

n − x(2m + 1),

where m = ⌊n−2
2 ⌋ and x = n−1

2 (n − 2m − 2).
Case (ii). When sn ≤ x, then

min M(T ) = min
n∑

i=1
si

2

= min
n−1∑
i=1

ti
2 + s2

n + (n − 1 − x)(2m + 1) + (x − sn){2(m + 1) + 1},

that is,

M(T ) ≥n − 1
2 {2m(n − m − 3) + n − 2} + s2

n + (n − 1)(2m + 1) − x(2m + 1)

+ (x − sn)(2m + 3)

=n − 1
2 {(2m + 1)(n − m) − m} + s2

n + 2x − sn(2m + 3),

where m = ⌊n−2
2 ⌋ and x = n−1

2 (n − 2m − 2). □

Remark 2.1. The lower bounds given by Theorems 2.1 and 2.2 are best possible,
since these bounds hold for every score sequence [s1, s2, . . . , sn] of a tournament. In
particular, these hold for a regular tournament on n (odd) vertices having score
sequence

[
n−1

2 , n−1
2 , . . . , n−1

2

]
. Clearly ∑n

i=1 s2
i is minimum and so the equality in

Theorems 2.1 and 2.2 hold for regular tournaments.
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Theorem 2.3. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1
si

2 ≥ s2
1 + s2

n + 1
n − 2

{
n(n − 1)

2 − s1 − s2

}2

,

with equality if and only if s2 = s3 = · · · = sn−1.

Proof. Consider s2, s3, . . . , sn−1 as the weights assigned to the scores s2, s3, . . . , sn−1,
respectively. Since the arithmetic mean is greater than or equal to the harmonic mean,
therefore

n−1∑
i=2

sisi

n−1∑
i=2

si

≥

n−1∑
i=2

si

n−1∑
i=2

si

si

,

with equality if and only if s2 = s3 = · · · = sn−1. That is,
n−1∑
i=2

si
2 ≥ 1

n − 2

(
n−1∑
i=2

si

)2

,

with equality if and only if s2 = s3 = · · · = sn−1. After simplification, it is easy to see
that

n∑
i=1

si
2 − s2

1 − s2
n ≥ 1

n − 2

(
n∑

i=1
si − s1 − sn

)2

.

By using (1.1), we have

M(T ) =
n∑

i=1
si

2 ≥ s2
1 + s2

n + 1
n − 2

{
n(n − 1)

2 − s1 − sn

}2

,

equality holds if and only if s2 = s3 = · · · = sn−1. □

Theorem 2.4. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1
si

2 ≥ n

4 (n − 1)2,

with equality if and only if s1 = s2 = · · · = sn.

Proof. Applying the Cauchy-Schwartz inequality, we have
n∑

i=1
si =

n∑
i=1

si · 1 ≤
( n∑

i=1
si

2
) 1

2( n∑
i=1

12
) 1

2

,

with equality if and only if s1 = s2 = · · · = sn. This is equivalent to
n∑

i=1
si ≤

( n∑
i=1

si
2
) 1

2

n
1
2 ,
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which after simplification gives( n∑
i=1

si
2
) 1

2

≥ 1
n

1
2

n∑
i=1

si,

with equality if and only if s1 = s2 = · · · = sn. Now, by using (1.1), we have
n∑

i=1
si

2 ≥ 1
n

{
n(n − 1)

2

}2
= n

4 (n − 1)2,

where equality occurs if and only if s1 = s2 = · · · = sn. Thus,

M(T ) ≥ n

4 (n − 1)2,

with equality if and only if s1 = s2 = · · · = sn. □

3. Upper Bounds for the Zagreb Index M(T )

In this section, we obtain the upper bounds for the Zagreb index M(T ). In a
tournament, we denote with N+

i the out-neighbor set of the vertex vi.

Theorem 3.1. Let [s1, s2, . . . , sn] be the score sequence of a tournament and M(T ) =
n∑

i=1
si

2 be maximum. Then

(a) N+
i − {vj} = N+

j − {vi} if and only if si = sj;
(b) N+

i − {vj} ⊋ N+
j − {vi} if and only if si > sj, and

(c) si < sj if vi ∈ N+
k and vj ∈ (N+

k )c − {vk}, where si and sj are the scores of
the two vertices vi and vj respectively.

Proof. (a) Let si = sj. Assume to the contrary that N+
i − {vj} ̸= N+

j − {vi}. Since
si = sj, therefore there exist at least two vertex vp and vq with their respective scores
sp and sq such that vi(1 − 0)vp, vp(1 − 0)vj, vj(1 − 0)vq and vq(1 − 0)vi. Now, we
consider two cases.

Case (i). When sp ≥ sq. By changing the arcs vi(1 − 0)vp and vq(1 − 0)vi to
vi(0 − 1)vp and vq(0 − 1)vi respectively, we get a new score sequence [t1, t2, . . . , tn],
where tp = sp + 1, tq = sq − 1 and tr = sr for all r, 1 ≤ r ≤ n with r ̸= p, q. Therefore,

n∑
i=1

ti
2 =

n∑
i=1

i ̸=p,q

ti
2 + t2

p + t2
q =

n∑
i=1

i ̸=p,q

si
2 + (sp + 1)2 + (sq − 1)2

=
n∑

i=1
si

2 + 2(sp − sq + 1) >
n∑

i=1
si

2,

since sp ≥ sq, which is a contradiction, since M(T ) = ∑n
i=1 si

2 was assumed to be
maximum.

Case (ii). When sp < sq. By changing the arcs vp(1 − 0)vj and vj(1 − 0)vq to
vp(0 − 1)vj and vj(0 − 1)vq, respectively and proceeding as in case (i), we arrive at a
contradiction. Hence, N+

i − {vj} = N+
j − {vi}.



248 T. A. NAIKOO, B. A. RATHER, U. SAMEE, AND S. PIRZADA

Conversely, if N+
i − {vj} = N+

j − {vi}, then si = sj.
(b) Let si > sj. Assume to the contrary that N+

i − {vj} ⊋ N+
j − {vi} is not true.

Then there exists a vertex vp ∈ N+
j − {vi}, but vp /∈ N+

i − {vj}. This means that
vj(1 − 0)vp and vp(1 − 0)vi, and by changing these arcs to vj(0 − 1)vp and vp(0 − 1)vi

respectively, we get a new score sequence [t1, t2, . . . , tn], where ti = si + 1, tj = sj − 1
and tr = sr for all r, 1 ≤ r ≤ n with r ̸= i, j. Then

n∑
r=1

tr
2 =

n∑
r=1
r ̸=i,j

tr
2 + t2

i + t2
j =

n∑
r=1
r ̸=i,j

sr
2 + (si + 1)2 + (sj − 1)2

=
n∑

r=1
sr

2 + 2(si − sj + 1) >
n∑

r=1
sr

2,

since si > sj, which is a contradiction, since M(T ) was assumed to be maximum.
Hence, N+

i − {vj} ⊋ N+
j − {vi}.

Conversely, if N+
i − {vj} ⊋ N+

j − {vi}, then si > sj.
(c) Assume to the contrary that si ≥ sj. Then, by using parts (a) and (b), we

have N+
i − {vj} ⊇ N+

j − {vi}. Since vi ∈ N+
k and vj ∈ (N+

k )c − {vk}, so vk(1 − 0)vi

and vj(1 − 0)vk. Therefore,

{vk} ⊆ N+
j − {vi} ⊆ N+

i − {vj},

that is, vk ∈ N+
i − {vj}. Thus, we obtain vi(1 − 0)vk, which is a contradiction. Hence,

the result follows. □

Lemma 3.1. Let [s1, s2, . . . , sn] be the score sequence of a tournament and let mi be
the average of the scores of the vertices vj such that vi(1 − 0)vj. Then

M(T ) =
n∑

i=1
si

2 = n(n − 1)2

2 −
n∑

i=1
simi.

Proof. Since

simi = si
1
si

n∑
j=1

{sj : vi(1 − 0)vj} =
n∑

j=1
{sj : vi(1 − 0)vj},

therefore, by using (1.1), we have
n∑

i=1
simi =

n∑
i=1

n∑
j=1

{sj : vi(1 − 0)vj} =
n∑

j=1

n∑
i=1

{sj : vi(1 − 0)vj}

=
n∑

j=1
sj(n − 1 − sj) = (n − 1)

n∑
j=1

sj −
n∑

j=1
s2

j

= (n − 1)n(n − 1)
2 −

n∑
j=1

s2
j .
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Hence,

M(T ) =
n∑

i=1
s2

i = n(n − 1)2

2 −
n∑

i=1
simi.

□

Theorem 3.2. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1
si

2 ≤ n(n − 1)
2 sn,(3.1)

with equality if and only if the tournament is regular.

Proof. Let mi be the average of the scores of the vertices vj such that vi(1 − 0)vj.
Then, by using (1.1), we have

simi =si
1
si

n∑
j=1

{sj : vi(1 − 0)vj} ≥
n∑

j=1
sj − si − (n − 1 − si)sn

=n(n − 1)
2 − si − (n − 1 − si)sn,(3.2)

with equality if and only if si = n−1
2 for all i, 1 ≤ i ≤ n.

Now, by Lemma 3.1, (3.2) and (1.1), we have
n∑

i=1
s2

i = n(n − 1)2

2 −
n∑

i=1
simi ≤ n(n − 1)2

2 −
n∑

i=1

(
n(n − 1)

2 − si − (n − 1 − si)sn

)

= n(n − 1)2

2 − n2(n − 1)
2 +

n∑
i=1

si + n(n − 1)sn − sn

n∑
i=1

si

= n(n − 1)2

2 − n2(n − 1)
2 + n(n − 1)

2 + n(n − 1)sn − sn
n(n − 1)

2

= n(n − 1)
2 sn.

Therefore,

M(T ) ≤ n(n − 1)
2 sn.

Now suppose that equality holds in (3.1). Then, si = n−1
2 for all i, 1 ≤ i ≤ n, that

is, the tournament is regular.
Conversely, suppose that the tournament is regular. Then, it can be easily checked

that equality holds in (3.1). □

Theorem 3.3. Let [s1, s2, . . . , sn] be the score sequence of a tournament with vertex
set V and let mi be the average of the scores of the vertices vj such that vi(1 − 0)vj.
Then

M(T ) =
n∑

j=1
s2

j ≤ n(n − 1)
4

(
n − 1 + max{sj − mj : vj ∈ V }

)
,(3.3)
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with equality if and only if max{sj − mj : vj ∈ V } = n − 1 − 2mi, where 1 ≤ i, j ≤ n,
with i ̸= j.

Proof. Applying Lemma 3.1, we have

2
n∑

j=1
s2

j =
n∑

j=1
s2

j +
n∑

j=1
s2

j =
n∑

j=1
s2

j + n(n − 1)2

2 −
n∑

j=1
sjmj

= n(n − 1)2

2 +
n∑

j=1
sj(sj − mj) ≤ n(n − 1)2

2 + max{sj − mj : vj ∈ V }
n∑

j=1
sj

= n(n − 1)
2

(
n − 1 + max{sj − mj : vj ∈ V }

)
.

Therefore,
n∑

j=1
s2

j ≤ n(n − 1)
4

(
n − 1 + max{sj − mj : vj ∈ V }

)
Equality holds in (3.3) if and only if

(3.4)
n∑

j=1
s2

j = n(n − 1)2

4 + n(n − 1)
4 p,

where p = max{sj − mj : vj ∈ V }. By Lemma 3.1, (3.4) is equivalent to

n(n − 1)2

2 −
n∑

j=1
sjmj = n(n − 1)2

4 + n(n − 1)
4 p,

which after simplification gives
n(n − 1)

2

(
p − n + 1

2

)
+

n∑
j=1

sjmj = 0.

By (1.1), this implies that
n∑

j=1
sj

(
p − n + 1

2

)
+

n∑
j=1

sjmj = 0,

that is,
n∑

j=1
sj

(
p − n + 1

2 + mj

)
= 0.

Finally, after simplification, we have

(3.5)
n∑

j=1
sj(p − n + 1 + 2mj) = 0.

Now, assume that equality holds in (3.3). Then (3.5) holds. Since each term in
this summation is non-negative and sum is equal to zero, therefore for each vi either
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si = 0 or max{sj − mj : vj ∈ V } = p = n − 1 − 2mi. But si = 0 is not possible for
each vi in any tournament (except the tournament with only one vertex), therefore

max{sj − mj : vj ∈ V } = n − 1 − 2mi.

Conversely, assume that max{sj − mj : vj ∈ V } = n − 1 − 2mi. Then, by Lemma
3.1, we have
n(n − 1)

4

(
n − 1 + max{sj − mj : vj ∈ V }

)
=n(n − 1)2

4 + n(n − 1)
4 (n − 1 − 2mi)

=n(n − 1)2

4 + n(n − 1)2

4 − n(n − 1)
2 mi

=n(n − 1)2

2 −
n∑

i=1
simi =

n∑
i=1

s2
i .

Therefore, equality holds in (3.3). □

Theorem 3.4. If [s1, s2, . . . , sn] is the score sequence of a tournament T , then

M(T ) =
n∑

i=1
s2

i ≤ n(n − 1)
2 (s1 + sn) − ns1sn,(3.6)

with equality if and only if the tournament has only two types of scores s1 and sn.

Proof. By using (1.1), we have

M(T ) =
n∑

i=1
s2

i =
n∑

i=1
(s2

i − sis1 + sis1) =
n∑

i=1
{si(si − s1) + sis1}

≤
n∑

i=1
{sn(si − s1) + sis1} =

n∑
i=1

(snsi − sns1 + sis1)

=
n∑

i=1
(sn + s1)si −

n∑
i=1

sns1 = n(n − 1)
2 (s1 + sn) − ns1sn.

Equality holds if and only if
n∑

i=1
{si(si − s1)} =

n∑
i=1

{sn(si − s1)}

or
n∑

i=1
{sn(si − 1) − si(si − 1)} = 0

or
n∑

i=1
{(sn − si)(si − s1)} = 0.(3.7)

Now, assume that equality holds in (3.6). Then equality holds in (3.7). Since each
term in this summation is non-negative and sum is equal to zero, therefore either
si = s1 or si = sn for i = 1, 2, . . . , n. So the tournament has only two types of scores
s1 and sn.
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Conversely, suppose that the tournament has only two types of scores s1 and sn.
Then

n∑
i=1

{(sn − si)(si − s1)} = 0. Hence, the equality holds. □
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