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A NEW INERTIAL-PROJECTION METHOD FOR SOLVING SPLIT
GENERALIZED MIXED EQUILIBRIUM AND HIERARCHICAL
FIXED POINT PROBLEMS

OLAWALE KAZEEM OYEWOLE!2 AND OLUWATOSIN TEMITOPE MEWOMO!

ABSTRACT. In this paper, we introduce a new iterative algorithm of inertial form
for approximating the common solution of Split Generalized Mixed Equilibrium
Problem (SGMEP) and Hierarchical Fixed Point Problem (HFPP) in real Hilbert
spaces. Motivated by the subgradient extragradient method, we incorporate the
inertial technique to accelerate the convergence of the proposed method. Under
standard and mild assumption of monotonicity and lower semicontinuity of the
SGMEP and HFPP associated mappings, we establish the strong convergence of
the iterative algorithm. Some numerical experiments are presented to illustrate the
performance and behaviour of our method as well as comparing it with some related
methods in the literature.

1. INTRODUCTION
Let C be a nonempty, closed and convex subset of a real Hilbert space H and
T : C' — C be a nonlinear mapping. 7" is said to be:
(i) firmly nonexpansive, if for each z,y € C
1Tz — Tyl* < (Tw — Ty, x - y);
(ii) a contraction, if for every z,y € C' and ¢ € (0, 1)
[Tz =Ty < clle —yll

If ¢ =1, then T is called nonexpansive.
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We denote by Fiz(T), the set of fixed points of the mapping T, that is Fiz(T) =
{r € C: 2 =Tz} The mapping T is called quasi nonexpansive if Fiz(T) # () and

|Tx —p|| < ||z —p||, forall pe Fiz(T), z € C.

It is known that if 7" is quasinonexpansive, then Fiz(T') is closed and convex (see
[45]).

Let F': C' x C'— R be a bifunction. The Equilibrium Problem (EP) in the sense
of Blum and Oetlli [9], is to find a point * € C' such that

(1.1) F(z*,y) >0, forallyeC.

We denote by EP(F,C), the set of solutions of EP (1.1). The EP unifies many
important mathematical problems, such as optimization problems, complementary
problems, fixed point problems, variational inequality problems, see [4,6,9,25,36,37].
Let B : C'— H be a nonlinear mapping. The Variational Inequality Problem (VIP)
is to obtain a point x* € C' such that

(1.2) (Bx*,y —a*) >0, forallyeC.

The set of solutions of the VIP is denoted VIP(B,C'). Solution to these class of prob-
lems, fixed point problems and related optimization problems have been investigated
and iterative algorithm for approximating them have been proposed and studied by
several authors, see [2,5,10,14,15,17,19,20,27,28,32,35]. Let ¢ : C' — R be a real
valued function, then the Minimization Problem (MP), consists of finding a point
x* € C such that

(1.3) o(z*) < o(y), forallyeC.

The set of solutions of MP (1.3) will be denoted by M P(¢,C). For more on MP (see
[1,8,23,42]) and the references therein.

Let ' : C x C — R be a bifunction, B : ¢ — H a nonlinear mapping and
¢ : C — R a proper, convex and lower semicontinuous function. The Generalized
Mixed Equilibrium Problem (GMEP) [10,24, 26,33, 38,48] is the problem of finding a
point z* € C' such that

(1.4) F(z*,y)+ (Bz*,y — ") + ¢(y) — ¢(z*) > 0, forallyeC.

We use GM EP(F, B, ¢) to denote the set of solutions of GMEP (1.4). The GMEP
includes several optimization problems as special cases. The relationship with the
VIP and MP are easily observed by setting some maps to the zero map in inequality
(1.4). Numerous problems in economics, science and engineering can be reduced to
the problem of finding a solution to the GMEP (see [26,34,37]).

Let C and () be nonempty, closed and convex subsets of real Hilbert spaces H; and
Hj respectively and L : Hy — H, a bounded linear operator. In 1994, Censor and
Elfving [12] introduced the notion of Split Feasibility Problem (SFP), which is defined
as follows: find a point

(1.5) x* € C such that Lz* € Q.
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The SFP is a special case of the Split Inverse Problem (SIP) first studied by Censor
et al. [13]. In SIP, there are two given vector spaces X and Y and a linear operator
L : X — Y. The first Inverse Problem, I Py say, is formulated in space X and the
second one [ Py formulated in space Y. Given this information, the SIP is formulated
as follows: find x* € X that solves I Px, such that y* = Lx* € Y solves I Py. The
SIP is used as a model for sensor networks, radiation therapy treatment planning,
color imaging and other image restoration problems, see [11].

Furthermore, SFP over EP have been studied by some authors in the literature. For
example, Moudafi [30] considered a SFP over EP and called this the Split Equilibrium
Problem (SEP), see [22]. Let F': C x C — R and G : @ x @@ — R be two bifunctions
and L : Hy — H, be a bounded linear operator. The SEP is given as follows: find
x* € C such that

F(z*,2) >0, forallzeC,
and such that
y* = Lx" € Q solves G(y*,y) >0, forallye Q.

For more, see [37,46] and the references therein.

Since then, there have been several research in this direction where both bifunctions
have same mononotonicity property and others with different monotonicity properties.
Dinh et al. [16], studied the SEP involving pseudomonotone and monotone bifunctions.
Also, in 2017 Rattanaseeha et al. [40], studied a split generalized equilibrium problem
which involves both pseudomonotone bifunction and a monotone bifunction. For more
literature on this class of problems (see [16,40,43]) and the references therein.

Moudafi and Mainge [31] introduced and studied the following Hierarchical Fixed
Point Problem (HFPP) for a nonexpansive mapping S with respect to another non-
expansive mapping 7" on C. The HFPP consists of finding a point z* € Fiz(S) such
that

(1.6) (I =T)x*,y —x*)y >0, forallye Fizx(S).

It is easy to see that the HFPP is equivalent to the problem of finding the fixed point
of a map A = Ppyy(s) 0 T. Let Q denote the solution set of the HFPP (1.6). Note
that if 2 # (), then € is closed and convex. The HFPP is general in the sense that it
includes as special case the monotone VIP on fixed point sets, MP over equilibrium
constraints, hierarchical MP... Very recently, Alansari et al. [7], studied an hybrid
iterative scheme for approximating a common solution of a split EP involving both
monotone and pseudomonotone bifiunction and a HFPP for a nonexpansive and quasi
nonexpansive mappings. They proved a weak convergence theorem for their proposed
algorithm.

Inspired by the works above and current research interest in this direction, in
particular, in order to provide a partial answer to the future research posed by Alansari
et al. [7] in conclusion of their work. We propose an iterative algorithm which combines
the inertial technique, projection method, diagonal subgradient method and viscosity
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approach [8,24], see Section 3. We prove a strong convergence theorem using the
proposed algorithm to a solution of a SGMEP involving a pseudomonotone bifunction
and a monotone bifunction which is also a solution of a HFPP. In our proposed method,
the inertial extrapolation step was included to accelerate the rate of convergence of
the algorithm, (see [1,3,25,39]) for more literature on inertial algorithms. We present
some numerical examples to illustrate the behaviour and performance of our method
as well as comparing it with some related methods in the literature.

2. PRELIMINARIES

We denote by z,, — v and x,, — v the weak and strong convergence respectively of
a sequence {x,} in H to a point v € H.
For each = € H, there exists a unique nearest point y = Pox € C such that

|z =yl <|lz— 2|, forallzeC.

The mapping Po : H — C' is called the metric projection from H onto C. It is well
known that Pp satisfies the following conditions.

(i) [Pz — Poyl* < (Pex — Poy,x —y) for all v,y € H.

(ii) For x € H and y € C, y = Pcx if and only if
(2.1) (x —y,y—2) >0, forall zeC.

Definition 2.1. A mapping 7" : C' — C is said to be demiclosed at 0, if for any
sequence {z,} C C which converges weakly to x € C with ||z, — Tx,|| = 0, then
Ty =ux.

It is well known (see [21]) that the nonexpansive mapping is demiclosed.
Definition 2.2. A bifunction f : C' x C' — R is said to be
(a) strongly monotone on C, if there exists a constant v > 0 such that
flay) + fly,2) < —vlle —yl?, forallz,y € C;

(b) monotone on C, if f(z,y)+ f(y,z) <0 for all z,y € C;
(c) pseudomonotone on C, if f(x,y) > 0 implies f(y,x) <0 for all z,y € C.

It is obvious from above that a strongly pseudomonotone bifunction is contained
in the class of monotone bifunctions and a monotone bifunction is pseudomonotone.

Definition 2.3 ([18]). Let f : C'x C' — R be a bifunction, where f(z,-) is convex
for each x € C. Then for € > 0 the e-subdifferential (e-diagonal subdifferential) of f
at x, denoted by 0. f(x,-)(x) is given by

Ocf(x,-)(x) ={z € Hi: f(a,y) +e> f(x,2) + (2,y — ) for all y € C}.
For solving the GMEP, we assume ¢ : () — R is proper, convex and lower semicon-

tinuous, the nonlinear mapping, B : () — H, is continuous and monotone and the
bifunction F': Q) x () — R satisfies the following restrictions:
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) F(z,z) =0 for all z € Q;
) F'is monotone, i.e., F'(z,y) + F(y,z) <0 for all z,y € Q;
)hmth(a;+t(z—x) y) < F(x,y) for all z,y, 2 € Q;

(R1
(R2
(R3
(R4) for each x € @, the function y — F(x,y) is convex and lower semicontinuous.

The following lemmas are used in the sequel.

Lemma 2.1 ([44]). In a real Hilbert space H, the following hold:

() [z =yl = |zl = 2z, y) + lyl|* for all x,y € H;

(i) = +yll* < [|2]* + 2(y. 2z +y) for all z,y € H;

(ii) [tz + (1 —t)yl|* = tllz]* + (1 = Ollyl* — t(1 = t)llx — y||* for all 2,y € H and

€ (0,1).

Lemma 2.2 ([48]). Let B : Q — Hjy be a continuous and monotone mapping, ¢ :
Q — R be a proper, lower semicontinuous and convex function, and F : QQ X Q — R
be a bifunction satisfying the conditions (R1)-(R4). Let r > 0 be any given number
and x € Hy be any given point. Then, the following hold.

(i) There exists w € Q such that
1
F(w,y)+ (B(w),y — w) + ¢(y) — ¢(w) + ;(y —w,w—1x) >0, forallyéeQqQ.
(ii) Define a mapping KFP¢ . Q — Q by KFB9(z) = {w € Q : Flwy) +

1
(Bw),y = w) + 6 — o) + -y —ww =) 2 0,y €Q}, v € Q.
The mapping KF"B® satisfies the following characteristics:
(a) KB s single valued;
(b) KEB2 is fimrly nonexpansive, i.e., for all z,y € H
K750 — KPPoy|? < (KPP%% — KPP0y, 2 —y);
(¢) Fia(KFP#) = GMEP(F, B, 0);
(d) GMEP(F, B, ) is a closed and convex subset of Q.
The following restrictions are assumed to be satisfied by the pseudomonotone
bifunction f: C x C — R :
(F1) f(xz,z) =0 for all x € C;
(F2) f is pseudomonotone on C with respect x € EP(f,C), that is, for z €
EP(f,C), f(z,y) > 0 implies f(y,z) <0 for all y € C;
(F3) f is strict paramonotone, that is the following holds
v € BEP(f,C), yeC, f(yz) <0 impliesy € EP(f,C);

(F4) f is jointly weakly upper semicontinuous on C' x C' in the sense that, if z,y € C
and {2, }, {y.} C C converges weakly to x and y, respectively, then f(z,,y,) —
f(z,y) as n — 4o0.

The following lemmas are very useful in obtaining the strong convergence of the
sequence considered in this work.
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Lemma 2.3 ([47]). Let {a,} be a sequence of nonnegative real numbers satisfying the
following inequality
An1 S (1_an>an+@nﬁn+7na TLGN,
where {a,} C (0,1), {B.} and {v.} satisfy the restrictions:
(i) 3725 ay, = +o0, limy, 540 i = 0;

(i) Hmsup,, . Bn < 0;

(i) 7o > 0, 3% 7 < 400,
Then lim,_, a, = 0.

Lemma 2.4 ([29,41]). Let {a,} be a sequence of real numbers such that there exists
a subsequence {n;} of {n} with a,; < an,41 for all j € N. Consider the integer
{T7(n)}n>n, defined by

7(n) :=max{j <n:a; <aj}.

Then {1(n) }n>n, @S a non-decreasing sequence satisfying lim,,, 1o 7(n) = +00 and for
all n > nyg, the following estimates hold:

Ur(n) < Ar(nyp1 ANd Gn < Arm)1-
3. MAIN RESULT

In this section, we state and prove our main result. First, we give an explicit statement
of the proposed problem in this study. Let C' and ) be nonempty, closed and convex
subsets of real Hilbert spaces H; and H, respectively and L : H; — Hs be a bounded
linear operator. Let f : C' x C — R and F : @ x Q — R be pseudomonotone
and monotone bifunctions respectively satisfying restrictions (F1)-(F4) and (R1)-
(R4). Let B : C — Hj be a nonlinear mapping and ¢ : () — R a proper, convex
and lower semicontinuous function. Let S be a nonexpansive mapping and 7" a
quasinonexpansive mapping such that I — 7" is monotone. We consider the problem
of finding a point z* € C such that

and such that
(3.2) y* = La* € Q solves GMEP(F, B, ¢).

We assume that the solution set of Problem (3.1)—(3.2) denoted by I' is nonempty.

Remark 3.1 ([18]). If f is pseudomonotone on C' with respect to EP(f,C'), then by
restrictions (F1) and (F4), EP(f,C) is closed and convex. From Lemma 2.2 (d), we
have that GMEP(F, B, ¢) is closed and convex. Also, if Fix(Ppiys) 0 T) # 0, then
the solution set of the HFPP is closed and convex see [31]. We assume I' # (), hence
I' is well defined.

Algorithm 3.1. Initialization. Choose xg, x, € C. Take the sequence of real numbers

{un}, 18a}, {ra}s {00}, {1}, {00}, {en}, {an} and {\,} satisfying



HIERARCHICAL FIXED POINT PROBLEMS 205

(i)0<r<rn,0<a<an<b<1,0<d<>\n<6<1,0<a<an<5<1,
Bn >0, v, € (0,2/|L||*) and €, — 0 as n — +oc;
(i) D252 p < +00;
(iv) {6,} C [0,0], where 6 € [0,1) and > 0,z — 21| < +00;
(v) lim,, 1o g—z =0.
[Step 1. Given x,_; and x,, n > 1, compute
(3.3) Wy, = Tp + Op (T — Tpq).
Step 2. Take g(w,) € 0., (f(wy,-))(w,), n > 1. Calculate 7, = max{1, ||g(w,)] },

A, = 2 and
Mn

(3.4) zn = Po(w, — A\ug(wy)).
Step 3. If w, = z, (w, € EP(f,C)), then stop. Otherwise, evaluate
th =1 =0Tz, + 0nzn Yn = (1 — ay)w, + @, St,,
(3.5) u, = K"PLy,,
U = Yn + YL (Un, — Lyn).
Step 4. Compute

where h is a contraction.
Step 5. Set n:=n+ 1 and go to step 1.

Lemma 3.1. Let {x,} be the sequence given by Algorithm 3.1, then {x,} is bounded.
Consequently, the sequences {y,}, {z}, {vn} and {u,} are bounded.

Proof. Let u € T', then from Lemma 2.1 (i) and (3.3), we have
(3.7) lwn = ull* =[lzn + On(zn — 201) — ul|?
=z, — u||2 + 205 (Tn — U, Ty — Tp1) + H?szn - xn—1||2
<||z, — UH2 + 20, )| — ul|[|xn — 2na || + 93||93n - xn—1H2
=llzn = ull® + Onllzn — 2na|2llzn — ll + Onllzn — p-al])-
It also follows from Lemma 2.1 (iii), that
[t = ull® = (1 = 00) (T2 — u) + (20 — u)|”
= (1= o) T2 — ul® + onllza — ull* = 00 (1 — 0) | T2 — 2a1?
<z = ull? = 0a(1 = 00)[I T2 — za®
(3.8) < 1z —ul®
Next,
= ull® = (1 = ) (wn — 1) + @ (Stn — w)|*
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(1 —ap)|lw, — u||2 + an||Stn — u||2 — an(l —ay)|St, — wn”2
(1 —an)l|w, — uH2 + an||tn — UH2 —an(l — o) ||St, — wn”2
(

1 —ay)|w, — uH2 + anllzn — uH2 —an(l —ay)||St, — wnH2

INIA IA TN

(3.9)

but from the definition of z,, we get

1wy — ul]* + 200 (Wn — 2, U — 25) — an(1 — @) || St — wyl?,

<wn — Zn, U — Zn) S )\n<g(wn)7 U — Zn>
Using this in (3.9), we obtain
Hyn - u||2 SHMn - u||2 + 2 (g(wn), u — 2,) — an(1 — ay)||St, — wn”2
:Hwn - U||2 + 2>\nan[<g(wn)v U — wn> + <g(wn)a Wy — zn)]
—an(l —ay)|St, — wn”2
<lwn = ull® + 22X (g(wa), u — wa) + 2Xnanl|g(wn) [ lwn — 2u||
(3.10) — an(1 — ) |ISt, — wa|*.
Note that by the definition of z, and w, € C, we have
||wn - Zn”Z < An(Q(wn)7wn - Zn> < /\an(wn)H”wn - an,
thus ||w, — z,] < Anllg(w,)|| and
A llg(wi) llwn — 2|l <N g(wn)|1?

_ (g) o)l = 122 (max|<|f,( mn>u>>2

(3.11) <py,

which implies

(3.12) lwn = zal* < gy

Since 329 2 < +00, we obtain from above inequality, that
(3.13) |wn — 2zp]] = 0 as n — +oo.
Using (3.11) in (3.10), we have

(3.14)

g = ull® <llwn — wll* + 2An0m (g(wn), v = wn) + 20npt, — (1 = )| St — wal*
By using Lemma 2.2, we have
i = Lad? < KEP9 Ly, — LulP = | KEP2 Ly, — KEP2 Lu?
<(KPP?Ly, — KFP?Lu, Ly, — Lu)
:<K£L’B’¢Lyn — Lu, Ly, — Lu)

1
=5 (1520 Lyn = Lull® + || Ly, — Lull* — | K559 Ly, — Lya|?)
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Hence, |lu, — Lu||* < || Ly, — Lul|* — ||un, — Ly,||?, which implies
(3.15) 2(Ly, — Lu,u, — Ly,) < —2||u, — Ly,||*.
Now, from (3.5) and (3.15), we have
v — ull* =[1yn + L™ (un — Lyn) — ull?
=llyn = ull* + 270 (v — w, L (un — Lyn)) + 3L (n — Ly |
=llyn — ull® + 29 (Lyn — L, wn — Lyn) + 32| L7 (wn — Ly ||
(3.16) Ly = ull* =¥ (2 = Yl LIP)[lun — Lynll?,
which implies
lvn = ull® <[lwn = ull® + 2Xnn(g(wa), u — wn) + 200415
(3.17) — (1 — ) [ISty — wall* = (2 = Yl LI*) e — Lya|*.
Since w,, € C' and g(wy,) € O, f(wy, *)(w,), we obtain
fwn,u) + €, = fwy,u) = f(wn, w,) + €, > (g(wy), u — wy,).
Using this in (3.17), we get
lvn = ull® <llwn = ull* + 2Xn0 (f (wn, u) + €0) + 20415
— (1 — )18ty — wall* = (2 = Yl LI*) e — Lya|*.
From the definition of A\, and 7,,, we obtain

)\n: - Sﬂn
Tin

Therefore, we get from above, that
lvn = ull® <llwn = ull® + 2Xn00 f(wn, u) + 200 (knen + 1)
(3.18) — (1 = a)[[Stn — wall* = % (2 = Wl LI lun — Lyal.

Since u € I and w,, € C, we have f(u,w,) > 0, then it follows from the monotonicity
of f that f(w,,u) <0 and

[on — ull? <[lwp — ul® + 205 (pnen + p17) — (1 = o) |[St, — w,|1?
— (2 = Yl LIl — Lynll?
(3.19) Lwn = ul® + 205 (pnen + p13),
which implies that
(3.20) lon = wll < lwn = ull + /(2o (nen + 122).
Furthermore, we have from (3.6) and some M;, M, > 0, that
||$n+1 - u” :Hﬁnh(xn) + (1 - Bn)vn - UH
<Bullh(zn) = ull + (1 = Bu)llva — ul
<Bullh(zn) = h(u)[| + Bullh(u) — ull + (1 = Bo)l|vn — ul|
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<cBulln — ull + Ball () — ull + (1 = Ba) (||wn — u]
+ /200 (Hnen + 12))
<cBulln — ull + (1 = Ba) (Ilwn = ull + Ol — 20s |
20 (pmen + 1)) + Bullh(u) = u]
<[1 = Ba(1 = O)lln — ull + 00 (1 = Bl — s | + Bullla(w) — u]
+ \/Qan(,unen + p2)
=[1= Ba(1 = )]l = ull + On(1 = Ba) | 2n = 201 |
+ P D)l e+ 12)

1
< max {Hxn — ul], Hh((lu)__c;LH

+ /200 (ptnen + 12)

<o {ma {1 - 0L
+ 0”_1(1 - Bn—l)”xn—l — CUn_QH

+ 2001 (1601 + 12_1) + On(1 = Bo)|[@n — 20|
+ /200 (pnen + 12)

}+%u—ﬁmmn—%4H

h(u) —u
SmaX{||x1—UII,H(1)_C“}+M1+M2

<+ 00,

where
29 — Bi)llzi — w51 || < +o0,
by condition (iv) and
20 (pui€; + 1),

Hence, {z,} is bounded. Consequently, all other sequences in Algorithm 3.1 are
bounded. 0J

Lemma 3.2. The following inequality is satisfied from (3.6) and all u € T
26,(1 —¢)
—ull2 <1 =22 —ull?
[Zni1 —ul® < ( 1—cB, ) |27 — ull
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L 280 -0 <<h(U) — U T =) BnM3>

1—0571 ]_—C ]_—C
" f—cﬁ)(Hxn — T |)(Ma + [l = 2nal]) + 20 (nen + 7).

for some Ms, M, > 0.

Proof. Let u € ', then from Lemma 2.1 (ii), (3.4) and some M3, My > 0, we have
1 = wll® =[1Bn(hlzn) — u) + (1 = Bn) (v — w)||*

<1 = Ba)*llon — ull® + 2Ba(h(@n) — v, Tns1 — u)
<1 = Ba)*llyn — ull® + 2B (h(
+ 260 (h(u) = 1, Tni1 — u)

<(1 = Ba)?lwn — ull* + 2Bl () — (W) | |2041 = ul]
+ 2B, (h(w) =, pgr — u) + (1= Ba)* 0 (pinen + 417))

<(1 - B,)? (Hxn = ul* + Onllwn — 2| 2ll2n — ull + Onllzs — xnfl”))
+ 2B, (h(u) = u, Ty — ) + 200 (Hnen + 117,)
+ cBulllzn — ull® + llzner — ul®)

=[1 =26, + cBalllzn — ull® + Bullwnir — ull* + Brllzn — ull*
+ 26, (h(w) =, g1 — ) + 200 (e + p1y)
+0n(1 = Bo)?[l2n — o] (QHxn —ull + b |zn — fb’n—1||)a

Tn) = W), Tp1 — )

which implies
(1= cBu)llznsr — ull® <(1 =280 + o) lzn — ull* + Byllzn — ul
+ 2B, (h(w) =, 21 — ) + 200 (pnen + 1)
+0n(1 = Bp)llzn — 201l <2||xn —ull + b |zn — mn—IH)

and

B21) e~ ul? <

L2 ) g,
1—cB, "

Gn(l —Bn)
+ 1_75””3371 - l’n—lu <2H£Un - UH -+ QnH:L'n — xnflu)
2
20,
b 2o =l + 2 ) = s — )
+ 20 e+ 2)
1 _ /Bn /’LTLETL /’LTL

23, (1 —
< (1= 202D ho -
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2671(1 B C) <h(u) — Uy Tpt1 — U> 5nM3
+ 1—cB, < 1—c +1—c>
0.(1— 05,
+ PP i, — ) (01 + O — )
+ 20, (Mnen + Mi) : 0

Theorem 3.2. Let {x,} be given by Algortihm 3.1, then {x,} converges strongly to
u = Prh(u), where Pr is the metric projection of Hy onto T'.

Proof. We consider the following two possible cases for the sequence {|x,, —ul}.
Case 1. Suppose there exists n € N such that {||z,, — u||?} is nonincreasing. Then
{l|xn — u||?} converges and

|zn — ul|® = [|2p1 —ul|* =0 as n — +oo.
From (3.3) and condition (iv), we get
(3.22)
lwn — zu|| =||Tn + On(Tn — T01) — 20| < Opllxn — zpa|| = 0 as n— +o0.
Observe from (3.7) and (3.18), that
[on = ull® <llwn = ull® + 200 (knen + p17)
— (1 = ) [t — wal* = 302 = Ball LI 10n — Ly
<l = ull? + Onllwn — 2o || (2llzn — ull + Oullzn — 01
— (1 = ay)|[ Sty — wy®
=% (2 = Wl LI lwn — Lyal® + 200 (pnen + 17),
using this in (3.21), we get
i1 — ull® <(1 = Bo) (Ilwn = ull® + Onllen — 2n1|2llen — ull + Oall2n — 2aa])
200 12)) + 250 ha) — () 711 )
— (1 = )18t — wall? = (2 = | I — L
This implies
(1= ) (1= B) | Sta — wal|* <(1 = Bo) (Ol — 2 al| 2|20 — ul

o Oalln — 2o l) + 200 (ptnen + 117))

+ 2B (h(wn) — h(u), Ty — u)

+ e = ull® = llzaer = ull® = Ballen — ul®
Using conditions (i)-(iv), we get

(3.23) lim ||St, —w,| = 0.

n—-+0o00



HIERARCHICAL FIXED POINT PROBLEMS 211

Similarly, one gets,
02 = Al LI = Lyall? <(1 = ) B0 — 20 il (2l —
t Onlln — Tnall) + 200 (pmen + 412)]
+ 2B (h(x) — h(u), Tpy1 — u) + ||z — ul)?
— a1 — ull® = Bullzn — ull.

Since v, € (0, HL2||2> , we have

(3.24) |tun — Lyn|| =0 as n — +oo.
Recall from (3.18) that
[on = ull? <llwn — ull* + 2Xn00n f (wn, w) + 200 (pnen + p17)
— an(1 = an)[|Sty — wall* = 7u(2 = Wl LIP)[Jun — Ly,
using this in (3.21), we obtain
2(1 = Ba) M (f(=wn, w) <z — ull® = l|lzper — ull®
+ (1= Bu)0nllwn = zn || (2llzn — ull + Onllzn — 201 )
= Bullwn = ull® + 28, (W(xn) — w, 2pi1 — u)
+ 200, (pn€n + 112).
Taking limit as n — 400 and using (iv), we get

QnErfoo(l — Bn) Anain(— f(wy, w)) = 0.

Since0<d<)\n<6<1,0<a<an<b<1and —f(wp,u) > 0, we have that
(3.25) lim sup f(wy,u) = 0.

n—-+o0o

Next we show ||T'z, — z,|| — 0 as n — +00. Observe that
20 — ull® = |20 — W + w, — ul)® < |Jw, — ul|® + 2(2, — u, 2 — wy).
It follows from this, (3.8), (3.9) and (3.16), that
vn — ul]? <||wp — ul|® + 2000 (20 — 1, 2, — W)
— o (1 — o) T 20 — 2a||* — an(1 — )| Stn — w, |2
(3.26) = (2 = Yl LIt — Lyl |*.
Substituting (3.26) into (3.21), we get
non(1 = Ba)(1 = an)[| Tz — 2all* <llwn — ull® = ll2ns — ul?
+ (1= Ba)bullzn — 2o || (2l — ul
+ Onlln = 20 a ) = Ballen — ull
+ 26, (M) — U, Tpg1 — w)
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+ 20 ||z — ul|||zn — wh]|-
Again, since 0 < a < a, <b<1,0<a<o,<b<1,it follows that
(3.27) ngrfoo | Tz, — zn|| = 0.
Observe that
1St — zn||* <||Stn — wa|* + 2(wn — 2, Sty — 2,)
<[t — wall® + 2flwn — zallll St — zall,
which implies by condition, (3.13) and (3.23), that

(3.28) Jim[|St, — z||? = 0.

The following holds by triangular inequality, (3.27) and (3.28)

(3.29) Tz, — Stol| <||T2n — 2zl + |20 — Stn]] =0 as n — +o0.
Also,

(3.30) nEIEOO Itn — zu|| = nEIPoo(l —0on)|lzn — Tz,|| = 0.

It follows again by triangular inequality, that
(3.31)

limy, o0 [[tn — W] <My, oo([[tn — 20l + |20 — wal]) =0,

iy, o0 [|Stn = tall < Hmp oo ([[Stn — 2all + |20 — tall) =0,

Hmy, s oo ||Yn — o] < 1y, o0 (1 — @) ||wn — || + limy, 4 o0 @ || St — ta]] = 0,
My oo [|Yn — wall < lmp oo ([[yn — tall + [[tn — wall) =0,

Again,
152, — zn|* =||S2n — St + Sty — 2,]|?
<||Szn — Stull* + 2(St, — 2n, Szn — 2,)
<llzn = tall® + 2(1Stn = 2all X |S20 — zal)),
we obtain by (3.28) and (3.30), that
(3.32) 1Sz, — zn|> = 0 as n — +oo.

Finally, we show that ||x,11 — x,| — 0 as n — 4o00. Indeed, we have from (3.5) and
(3.24), that
nginoo v — | :nggloo 19 + YL (un — Lyn) — |

(3.33) < lim || L||||wn — Lyn|| =0

n—-+oo

and

12011 = ol =[15nh(zn) + (1= Ba)on = vall < Ballh(zn) = onll;
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which by condition (iii), implies that
(3.34) |Zpe1 —onl] =0 as n — 4o0.
Hence, by (3.22), (3.31), (3.33) and (3.34), we obtain

dim s = 2ol € Um (s = vall 4 [on = gall 4 g = wall + [[wn = za]]) = 0.

Since {z,} is bounded, then there exists a subsequence {z,,} such that z,, — v
and limsup,, ,, o, f(2n,u) = lim;_ o f(zn;, u). It follows from (3.13), (3.23), (3.30)
and (3.31), that the sequences {w,}, {t,.}, {z.} and {y,} all converge weakly to v.
Consequently, Lz,, — Lv and Ly,, — Lv. It follows from the demiclosedness of I — S
and (3.32), that v € Fiz(S). Next we show that v = (Ppis) 0 T)v. It follows from
(3.5), that

tn, — Stp, =0,(I —T)zp + (T2, — Sty),

which implies

(3.35) Lt = St) = (I = Tz + (T — St,),

On On
thus for all w € Fiz(S), the monotonicity of (I — 7') and (3.35), we have
t, — St,
<, Zn — w> =((I -T)zy— (I —Tw, z, — w)
On

1
+ (I —Tw,z, —w)y+ —(Tz, — Sty, 2z, — w)

On
1
(3.36) >((I —Tw, z, — w) + —(T'z, — St,,, z, — w).
o
Since {z,} and {z, — w} are bounded, it follows from (3.29), (3.31) and (3.36), that
(3.37) lim sup((I — T)w, z, —w) <0, for all w e Fiz(9).

n—-+o0o

Replacing n with n; and letting j — +o00 in (3.37), we obtain
(I -T)w,v—w) <0, forallwe Fiz(5).
Note that tw + (1 — t)v € F(S) for t € (0,1), since Fiz(S) is convex. Hence,
(I-T)tw+ (1 —t)v),v —w) <0, forall we Fiz(S).
Setting t — 0, and using the continuity of (I — T), we obtain
(I -T)v,v—w) <0, forallwe Fiz(5).

Thus v € F(Ppiys) o T). Next, we show that v € EP(f,C). Since z,, — v,
|wn; =2, || — 0and limsup,, , ., f(wn, u) = lim;_ 4 f(wy,,u), by the upper weakly
continuity of f(-,u) and (3.25), we have

f(v,u) > lmsup f(wn,,u) = lim f(w,;,u) = limsup f(w,,u) = 0.

j—+oo J—oo n—+o00
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Since u € I and v € C, we have f(u,v) > 0. By the pseudomonotone property of f,

we have f(v,u) < 0. Consequently, we obtain f(v,u) = 0, and by restriction F'3, we

get v € EP(f,C). Furthermore, we show that Lv € Fiz(K}%?) = GMEP(F, B, ).

Since limy,—, oo ||Yn — 24l = 0 and x,,, — v, it is easy to see that y,, — v. It therefore

follows from the continuity of L, that Ly,, — Lv and by (3.24), we get u,, — Lv.
Now since u,, = KfrzB’quyn, we have

F(un,w)—l—(B(un),w—un>+¢(w)—¢(un)+:<w—un,un—Lyn> >0, forallweQ@.

n

It follows from the monotonicity of F', that

d(w) — d(up) + (B(up), w — up) + rl(w — Up, Up — Lyn) > F(w,uy,), forallwe Q,

n

and
(338) o) = olun,) + (Blun, =)+ (10w, W) > ),

for all w € Q. This implies
<B(Lyn])7 w — unj> 2¢(unj> - ¢(w> + <B(Lyn])7 w— unj> - <B<un])7 w — unj>

Uy, — L,
—<w—unj, ? ]>+F(w,unj)
r

nj

:¢(unj> - ¢(’LU> + <B(Lyn]) - B(unj)7 w — unj>
(3.39) - <’w—unj,unj;%> + F(w, ;).

Since B is continuous and lim,, 4 o || Ly, —uy || = 0, it follows that lim,,, ;o || B(Ly,)—
B(uy)|| = 0. From the monotonicity of B, the weakly lower semicontinuity of ¢ and
U, — Lo, it follows from (3.39), that

(3.40) (B(Lv),w — Lv) > ¢(Lv) — ¢(w) + F(w, Lv), for all w € Q.
For any ¢t € (0,1] and w € @, set z; = tw+ (1 —t) Lv we have z; € () and thus satisfies
(3.40). Using assumptions (R1) and (R4), we get
0 =F(z, ) + d(21) — p(z1)

<tF(z,w) + (1 —t)F (2, Lv) + tp(w) + (1 — t)o(Lv) — ¢(2)

=t[F (2, w) + o(w) — ¢(z0)] + (1 = 1)[F (2, Lv) + ¢(Lv) — ¢(2)]

<tHF (2, w) + o(w) — ¢(z0)] + (1 = )H(B(Lv), w — Lv).
This implies

F(zy,w) + ¢(w) — ¢(z) + (1 — t)(B(Lv),w — Lv) > 0.
Letting t — 04, we get
F(Lv,w) 4+ ¢(w) — ¢(Lv) + (B(Lv),w — Lv) >0, for all w € C,
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which implies Lv € GMEP(F, B, ¢).
To end Case 1, we show that {z,} converges strongly to u = Prh(u). To do this,
it suffices to show that limsup,,_,, (h(u) — u, 2,41 —u) < 0 and apply Lemma 2.3.
Indeed, choose a subsequence {x,,} of {z,} such that z,, —v € H; and
lim sup(h(u) — u, Tp1 —u) = lim (h(u) — u, Tn; 11 — u).
n—+o00 J—r+too
We have that x,,1 — v since ||z,41 — .|| — 0 as n — +o00. By applying (2.1), we
have
limsup(h(u) — u, Tp1 —u) = lim (h(u) — u, 2p; 41 —u) = (h(u) —u,v —u) <0.
n—-4o00 J—+too
Using (2.1), (3.21) and Lemma 2.3, we conclude that ||z, —u|| — 0 as n — +o0.
Case 2. Assume that {||z, — u||} is non monotone. For some n, large enough, let
7 : N — N be a mapping defined for all n > nq by

r(n) = max{j € N: j < n, a; — ul| < [lzjo1 — ull}.

By Lemma 2.4, 7(n) is nondecreasing sequence such that 7(n) — 400 as n — +00
and 0 < ||z-(n) — u|| < || @741 — ul| for all n > ng. Just by using similar argument
as in Case 1, we have

Jm [ Wer(n) = Tr(ml = lim | 2r(n) — Wrm)|| = o Yr(n) — Wr(m |
= sy = Lzl = Hm (T2 ) = 22|
= m {[S2r) = 2| = M (|2r )11 = T || = 0
and

lim (h(u) — u, ()11 — u) < 0.

n—-+o0o

Since {(,)} is bounded, there exists a subsequence of {2} still denoted by {z,@,)}
such that z,) — v € C. Following similar argument as in Case 1, we obtain v € I'.
From (3.21), we get

2ﬁ'rn (1 _C>
Hmmﬂ—qu(r—1>)nmm—uw

1 Cﬁ’r(n)
+ 26"'(")<1 — C) <h(u) — U Tr(n)+1 — u> + BT(H)MEI
1—057_(”) 1—c 1—c
07’ n (1 - 57’ n )
+ (1)_ 7 )( ) <||$T(n) - xT(n)—1||) <M4 + Oy ||Trn) — xT(n)_1||)

207y (HrmyErn) + Homy)

Since ||2-(n) — u|| < ||Trm)+1 — ul| and By > 0, we have

2/87(71)(1 - C) 2 <267(n)(1 - C) <h(U) — U, xT(n)+1 - U) + 5T(n)M3
1 —cBrm) T 1B 1—c 1—c

27y — u
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07(n)<1 - 57—(71))
1 - Cﬂ‘r(n)

X (lrmy = Zrmy-1ll) (Ma + Or |27 = Try-1l)

+ 200 () (uT(mET(n) + Miw) +

Hence,

< 2(1—c¢) (h(u) — u, Tr(n)+1 — u) 5T(n)M3
+
_1_Cﬁr(n) l—c lL—c

20 (n) 2
+ (,U’T(n)ET(n) + Ui )
/67'(71) )

This implies that limsup,, , o [|Z-xn) — ul/* < 0 and

(3.41) lim ||z, —ul =0.

n—-4o00

From (3.34) and (3.41), we obtain
||$T(n)+1 — UH < ||I7(n) — UH + ||IT(n) — IT(n)_HH —+0 as n — 4o0.

Furthermore, for n > ny, it is obvious that ||z, — u|| < [|#-(n) — u||. Consequently, we
get for all n > ng, that

0 < o — ] < mac{ 7oy =l I uysr = ull} = 2oy — .
Therefore, ||z, —u| — 0 as n — 400, that is z,, — u. Thus completing the proof. [

If we set B = ¢ = 0 in (3.1)-(3.2), we obtain the following method for obtaining a
common solution of split EP and HFPP considered in [7].

Algorithm 3.3. Initialization. Choose xg, x; € C. Take the sequence of real numbers

{unt, {Bu}, {ra}, {0n}s {m} {on}, {&}, {an} and {A,} satisfying
HO0<r<r,0<a<a,<b<l,0<da<l<b<l, 0<a<o,<b<l,
Bn >0, v, € (0,2/||L]]*) and €, — 0 as n — +00;

(i) 2025 pp < +00;

(111) Z;rgi Bn = 400, limn—H-OO Bn = 0;

(iv) {6,} C [0,0], where 6 € [0,1) and > 0, ||z, — 21| < +00;

(v) limy, 100 g—z =0.

Step 1. Given z,_; and z,, n > 1, compute

(3.42) Wy = Ty + Op (T — Tp1).

Step 2. Take g(w,) € O, (f(wn,))(w,), n > 1. Calculate n, = max{1, ||g(w,)||},
)\n - ;7;7: and Zn = PC(wn - Ang(wn))



HIERARCHICAL FIXED POINT PROBLEMS 217

Step 3. If w, = z, (w, € EP(f,C)), then go to step 3. Otherwise, evaluate

tn =1 —=0,)Tz, + 0p2n,
Yn = (1 — a)wy, + a, Stn,
Uy = Kf:LLyn,

Un = Yn + Yo L™ (un — Lyy).

Step 4. Compute z,,,1 = Bph(x,) + (1 — B,)v,, where h is a contraction.
Step 5. Set n:=n+ 1 and go to step 1.

We therefore give the following result as a consequence of our main theorem.

Corollary 3.4. Let C and ) be nonempty, closed and convex subsets of real Hilbert
spaces Hy and Hy respectively. Let L : Hy — Hy be a bounded linear operator.
Let f : CxC — Rand F : Q x Q — R be bifunctions satisfying restrictions
F1-F4 and R1-R4 respectively. Let S : C' — C' be a nonexpansive mapping and
T : C — C be a quasinonexpansive mapping such that I — 7" is monotone. Assume
that T = EP(f,C)NEP(F,Q)NQ # (. Then the sequence {z,} given by Algorithm
3.3 converges strongly to u = Prh(u), where Pr is the metric projection of H; onto T'.

4. NUMERICAL EXAMPLES

We give some numerical examples to illustrate the behaviour and performance of
our method as well as comparing it with some related methods in the literature.

Ezample 4.1. Let Hy = Hy = C = @ = R with inner product (z,y) = zy for
all z,y € R and the induced usual norm |- |. Let f : C' x C' — R be defined by
f(z,y) = 2zy(y—x)+xyly—x|, for all x,y € H;. Define the bifunction F': @ xQ — R
by F(u,v) = —u®+v? for all u,v € Q, B : Q — Hy by B(u) = ¥ for all u € Q
and ¢ : @ — R by ¢(u) = 0 for all u € Q. For each x € Hj, define the mapping
L: Hy — Hy by Lx = x for all x € H;. Also define the mappings S and T respectively
by Sz = 5 and Twx = x. It is easy to see that f, F,S and T satisfy the conditions
of Theorem 3.2 and that I' = {0}. From Theorem 3.2, we can conclude that the
sequences {z,}, {y,} and {z,} converge to 0. Let r, = 1, for all n > 1, it is easy to

find that the resolvent K[> Ly, = 5%?
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F1GURE 1. Numerical results for Example 4.1. Left: xq = 0.8, 1 = 0.5;
right: zg = —1, 1 = —3.

Set 0, = n§+3,an: n21+5’€” 0, Yo = 3, A = 3. Also, let p,, = +, anni+1
and 6,

4n2 —7- Then, after simplification Algorithm 3 1, becomes
Given xg and x; € Hy,

Wy, = Tp + Op (0 — Tpq),

w, € Hy such that g(w,) € O, f(wn, ) (w,) = [w?, 3w?],
zn = Po(wn, — Ang(wn)),

th =1 —0,)Tz, + 0pn2n,

Yn = (1 — ap)w, + @, Sty,

5Yn
16

Up = %(Sun + 2y’n),
Tpy1 = Bnh($n> + (1 - ﬁn)vn

We test our algorithm with varying values of initial terms xy and x, see Figure 1.

Up =

In this example, we set B = ¢ = 0.

Example 4.2. Let Hy = Hy = Q = /5(R) be the linear spaces whose elements are all
2-summable sequences {z;};2% of scalars in R, that is

+oo
6H(R) = {x: (x1,29...,2;...), ©; € Rand Z]xl|2 < +oo},

i=1
with an inner product (-,-) : £y x f5 — R defined by (z,y) := Y1 zy;, Where
= {z}%, y = {y;}+% and the norm || - || : £y — R by |z]ly = (S5 |ai?)2,
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where z = {z;};X. Let C = {z € £,(R) : (a,2) < b}, where 0 # a € {; and
beR Let f:C xC — R be defined by f(x,y) = 2zy(y — x) + xy|ly — z|| for all
v = {x;}; %,y = {y;} 5 € ;. Define the bifunction F': Q x Q — R by F(u,v) =
u(v —u) for all u = {u;}15,v = {v;}/ 5 € ly. For each © € {5, define the mapping
L:ly — by by Ly = (1, 29,...,24...) for all x = {x;} % € {5. Let r, = 0.5 for
all n > 1, then it is easy to see that Kf; Ly, = M% Also, define the mappings
S and T respectively by Sz = (%,%2,...,%,...) for all x = {2;};F7 € {, and
Tx = (21COSx1,T3COS8 Ty, ..., T;CO8T;,...) for all z = {x; Lof € ly. It is easy to see
that f, F', S and T satisfy the conditions of Corollary 3.4 and that ' = {0}. We define
the control parameters as in Example 4.1 above and obtain the figures for varying
initial values. Using ||z,11 — Zu||¢, < 1073 as the stopping criterion, we compare our
Algorithm 3.3 with Algorithm Theorem 3.1 in [7], see Figure 2.

Case (i) 71 = (3.568,—5.8091,0,...,0,...)T, 2o = (1.521, —7.5647,0,...,0,...)T.
Case (ii) x; = (1.7601,—2.1594,0,...,0,...)T, zg = (0.3456,—4.1031,0,...,
I

Case (iii) z; = (10.5613,7.2610,0,...,0,...)T, 2o = (5.1063,2.1687,0,...,0,...)T.
We then plot the graphs of error ||z,4+1 — %, ||s, against the number of iteration in each
case.
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FIGURE 2. Numerical results for Example 4.2. Top left: Case (i); top
right: Case (ii); bottom: Case (iii).
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