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ON THE LIMITS OF PROXIMATE SEQUENCES

ABDULLA BUKLLA1

Abstract. We investigate the continuity of the pointwise limits of proximate se-
quences. Both general proximate sequences and a subclass are considered. We
obtain some results related to the fixed points of the limit functions and fixed point
like properties of the proximate sequences.

1. Introduction

Theory of shape is shown to be a good alternative to homotopy theory for locally
complicated spaces.

The first definitions of shape theory are mainly using external spaces, first in
Borsuk’s approach the spaces are embedded in the Hilbert cube and after in the
categorical approach pioneered by Mardesic and Segal we see the use of inverse
systems of polyhedra-again external spaces.

Recently, in the last decades some intrinsic descriptions of shape emerged. In
the latter approach, functions between original spaces are investigated. From [2],
in compact metric spaces there exists a cofinal sequence V1 ≻ V2 ≻ · · · of finite
coverings.

The morphisms in the intrinsic approach, as described in [3], are characterized by
sequences of functions (fn) that map objects in the category to one another. In the
case of compact metric spaces, these functions are continuous over the members of
a cofinal sequence of coverings for the space. As the index of the function in the
sequence increases, its level of continuity improves, moving closer and closer to a
state of being completely continuous. This idea is intuitive and straightforward to
understand.
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Usually while investigating natural processes we can observe them only approxi-
mately. If the resolution of the observation becomes higher we get higher approxima-
tion - by the same analogy in the proximate approach increasing the index of covering
means increasing the precision. The advantage here is that we can compute those
processes because there are only finite many members of each covering.

Considering the intrinsic approach allows us to look at the limit of these functions.
In this paper we investigate a special class of proximate sequences and we obtain some
relations between proximate sequences and their limit functions.

2. Definition of Proximate Sequences

Along this paper by a covering we mean an open covering of the space.
For arbitrary space W by Cov(W ) we denote the set of all open coverings of W .
In this chapter we will introduce the intrinsic definition for shape. For more detailed

explanations about intrinsic approach of shape we suggest [3].
If U,V are two coverings of the space X, then V is refinement of U if for every

V ∈ V there exists U ∈ U such that V ⊆ U . We write V ≺ U.
If U ∈ U, then the star of U is the set St(U,U) = ∪{W ∈ U | W ∩ U ≠ ∅} and by

StU will be denoted the collection of all St(U,U), U ∈ U.
Let f : X → Y be a function and let V be a covering of Y . We say that g : X → Y

is V - near to f if for every x ∈ X, f(x) and g(x) lie in the same member of V. It is
denoted by f =V g.

Let f : X → X be a function and let U be a covering of X. We say that the point
x ∈ X is U - invariant for f if there exists U ∈ U such that x, f(x) ∈ U .

Definition 2.1. Let V be a covering of Y . A function f : X → Y is V - continuous
at the point x ∈ X if there exists a neighborhood Ux of x and V ∈ V such that
f(Ux) ⊆ V . A function f : X → Y is V-continuous on X if it is V - continuous at
every point x ∈ X.

(The family of all such Ux forms a covering U of X. Shortly, we say that f : X → Y
is V - continuous, if there exists U such that f(U) ≺ V.)

Definition 2.2. For arbitrary covering V of the space Y , we say that two functions
f, g : X → Y are V - homotopic, if there exists a function F : X × I → Y such that:

1) F : X × I → Y is stV - continuous;
2) F : X × I → Y is V - continuous at all points of X × ∂I;
3) F (x, 0) = f(x), F (x, 1) = g(x).
We denote this by f

V∼ g.

Proposition 2.1. The relation “ V∼ ” is an equivalence relation.

Proof. See [2, 4]. □

Further on we will work only with compact metric spaces. In this case it is enough
to work with finite coverings.
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Definition 2.3 ([3]). The sequence (fn) of functions fn : X → Y is a proximate
sequence from X to Y , if there exists a cofinal sequence of finite coverings of Y ,
V1 ≻ V2 ≻ · · · and for all indices m ≥ n, fn and fm are Vn - homotopic. In this case
we say that (fn) is a proximate sequence over (Vn).

Definition 2.4 ([3]). If (fn) and (f ′
n) are proximate sequences from X to Y , then

there exists a cofinal sequence of finite coverings V1 ≻ V2 ≻ · · · such that (fn) and
(f ′

n) are proximate sequences over (Vn).
Two proximate sequences (fn) and (f ′

n) : X → Y are homotopic if for some cofinal
sequence of finite coverings V1 ≻ V2 ≻ · · · , (fn) and (f ′

n) are proximate sequences
over (Vn), and for all integers fn and f ′

n are Vn - homotopic.

Now we will define the composition of proximate sequences.

Definition 2.5. If (fn) : X → Y is a proximate sequence over (Vn) and (gk) : Y → Z
is a proximate sequence over (Wk), for a covering Wk of Z, there exists a covering
Vnk

of Y such that gk(Vnk
) ≺ Wk. Then, the composition is the proximate sequence

(hk) = (gk ◦ fnk
) : X → Z.

Compact metric spaces and homotopy classes of proximate sequences form the
shape category, i.e., isomorphic spaces in this category have the same shape. See [4].

Now we will define regular coverings from [4].

Definition 2.6. Let X be a set and V = {Vi | i = 1, 2, . . . , n} be a finite set of
subsets of X. If V ∈ V, we define depth of V in V, to be the biggest number k ∈ N
such that there exists sequence of elements of V such that V ⊂ V2 ⊂ V3 ⊂ · · · ⊂ Vk.
(If V is not a proper subset of any element in V, then depth of V is 1). It will be
denoted by depth(V ).

Definition 2.7. A covering V of the topological space Y is regular if it satisfies the
following conditions.

1) If V ∈ V, then V ∩ Y ̸= ∅.
2) If U, V ∈ V and U ∩ V ̸= ∅, then U ∩ V ∈ V.

Since for every finite covering of the space there are finitely many nonempty inter-
sections of the elements we have the following property. If Y is compact metric space,
then there exists a cofinal sequence V1 ≻ V2 ≻ · · · of regular coverings.

Definition 2.8. Let (fn) : X → Y be a proximate sequence over the coverings (Vn).
We will call (fn) super proximate sequence if for m ≥ n, it follows fm =Vn fn.

It is clear that if a sequence of functions (fn) : X → Y fulfills the property for
m ≥ n, fm =Vn fn than it will be proximate sequence. This follows from the fact that
every V - near functions are V - homotopic [4].
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3. Limits of Proximate Sequences

Since, in the intrinsic shape - proximate sequences from X to Y consist of functions
with codomain Y , we can investigate the limit

lim
n→+∞

fn(x).

For the general situation the limit function is not even Darboux even if the component
functions are continuous surjections.
Example 3.1. The pointwise limit of proximate sequences is not continuous in general.
Take X = Y = I with Euclidean topology and let fn(x) = xn. It is clear that the
sequence (fn) is proximate sequence, but the limit function is:

f(x) =

0, if x < 1,

1, if x = 1,

which, clearly is not Darboux hence not almost continuous. (Every almost continuous
function on the closed unit interval is Darboux, see [5]).

Remark. Let (Vn) be a cofinal sequence of (regular) coverings for the space Y .
Lets define e sequence (Wn) of coverings of the space Y by Wn = st(Vn). From
V1 ≻ V2 ≻ · · · , it follows that st(V1) ≻ st(V2) ≻ · · · . At the other side, if W is
an open covering of Y , from the fact that in compact (paracompact) space for every
cover has an open star refinement there exists an open covering K of Y such that
st(K) ≺ W. From cofinality of (Vn) there exists a member Vn0 such that Vn0 ≺ K.
Hence, we have st(Vn0) ≺ st(K) ≺ W, i.e., (st(Vn)) is also cofinal sequence.
Theorem 3.1. The pointwise limit of every super proximate sequence is a continuous
function.
Proof. Let (fn) : X → Y be a super proximate sequence and let limn→+∞ fn(x) = f(x).
Let V be arbitrary finite covering of Y . From the fact that Y is compact and from the
Remark we can choose a covering Vn′ such that st(Vn′) ≺ V. Now, let’s take arbitrary
x ∈ X and let V be an element from Vn′ such that f(x) ∈ V . Now, there exists n′′ > n′

such that fn′′(x) ∈ V . On the other hand, from fn′ =Vn′ fn′′ , there exists V ′ ∈ V

with property fn′(x), fn′′(x) ∈ V ′. Finally we have that f(x), fn′(x) ∈ st(V,Vn′) and
we can write f =st(Vn′ ) fn′ . Using the fact st(Vn′) ≺ V we can say the function f is
V-near to the V-continuous function fn′ . From [6, Lemma 4.3.] it follows that f is
continuous. □

The following example ensures us that in general super proximate sequences need
not to have continuous component functions.
Example 3.2. Take the space I and the proximate sequence (fn(x)) : I → I defined
by:

fn(x) =

x, if x > 0,

1/n, if x = 0.
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We define a sequence (Vn) of coverings of Y in the following way.
Let V1 = {[0, 1/2)} ∪ {B1

i | i ∈ 1, 2, . . . , m1} where B1
i are balls with radius smaller

than 1/2 such that 0 /∈ B1
i .

Now, by Lebesgue lemma choose V2 = {[0, 1/3)} ∪ {B2
i | i ∈ 1, 2, . . . , m2} such that

V2 ≺ V1, B2
i have radius smaller than 1/3 and the only element of V2 that contains

zero is [0, 1/3).
Inductively, define Vn = {[0, 1/(n+1))}∪{Bn

i |i ∈ 1, 2, . . . , mn} where Vn ≺ Vn−1 ≺
· · · ≺ V2 ≺ V1 and Bn

i are balls with radius smaller than 1/(n + 1) such that 0 /∈ Bn
i .

We can see that (fn(x)) is a super proximate sequence over (Vn) with noncontinuous
components.

We will show now that for every continuous function can be expressed as limit of a
nontrivial super proximate sequence.
Theorem 3.2. Let f : X → Y be a continuous function where X, Y are compact,
Haussdorf spaces. There exists a cofinal sequence (Wn) of Y and a super proximate
sequence over (Wn) such that fn → f , n → +∞.
Proof. Let’s define the super proximate sequence (fn) : X → Y in the following way.

Lets fix n ∈ N and take x ∈ X. Choose Wx a member of Vn with the maximal
depth that is contained in st(f(x),Vn). We define fn(x) to be one fixed selected
element from Wx.

1) fn is st(Vn) - continuous.
Let x ∈ X, take V ∈ Vn be the element of Vn such that f(x) ∈ V , from the

continuity of f we can choose an open set U ⊂ X such that f(U) ⊂ V . We have
fn(U) ⊂ st(V,Vn), so fn is st(Vn) - continuous.

2) If m > n, then fm =st(Vn) fn. This follows from the fact that st(f(x),Vm) ⊂
st(f(x),Vn).

3) limn→+∞ fn(x) = f(x). For this part let O be open neighborhood of f(x) in Y .
Take the covering O = {O, Y \ f(x)} of Y . There exists n0 such that st2(Vn0) ≺ O

and there exists V ∈ Vn0 such that f(x) ∈ V . Now, let m > n0. From fm =st(Vn0 ) fn0

and from the fact that st(V,Vn0) is an element of st(Vn0) that contains f(x) we have
fm(x) ∈ st2(V,Vn0) ⊂ O. □

In the proof we can ommit the requirement the covering to be regular, but in this
way if a neighborhood Ux of some point x has the property st(u,Vn) = st(x,Vn) for
all u ∈ Ux then function fn will be constant at that neighborhood.

4. Fixed Point Property of Limits

In this section we will establish a connection between fixed points of the limit
function and some properties of the corresponding super proximate sequence.
Theorem 4.1. Let (fn) : X → X be a super proximate sequence over the cofinal
sequence (Vn), where X is compact metric space and let limn→+∞ fn(x) = f(x). The
following statements are equivalent.
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1) f has fixed point.
2) For every n ∈ N there exists Vn ∈ Vn and xn ∈ X such that fn(xn), xn lie in the

same set of st(Vn).

Proof. 1) ⇒ 2) Let f : X → X be the limit of super proximate sequence (fn) : X → X
and f(x′) = x′ for a point x′ ∈ X. Lets assume the opposite, that there exists n0 ∈ N
such that x′, fn0(x′) /∈ st(V,Vn0) for all V ∈ Vn0 . There exists n1 > n0 such that
f(x′) = x′, fn1(x′) ∈ Vn0 for some Vn0 ∈ Vn0 . But, fn1 =Vn0

fn0 , so there exists
element V ′

n0 in Vn0 such that fn1(x′), fn0(x′) ∈ V ′
n0 so fn0(x′), x′ ∈ st(Vn0 ,Vn0), which

is contradiction.
2) ⇒ 1) From compactness of X the sequence (xn) has a convergent sub-sequence

(xnk
) in X. Let’s assume that limk→+∞ xnk

= x′. We claim that f(x′) = x′. If we
suppose the contrary, i.e., f(x′) ̸= x′, then from the fact that X is Hausdorff there
exist open sets U ′ and U ′′ such that f(x′) ∈ U ′, x′ ∈ U ′′, f(U ′′) ⊂ U ′ and U ′ ∩ U ′′ = ∅.
Take the covering O = {X \ {f(x′)}, U ′} of X. There exists n0 ∈ N such that:

st(Vn0) ≺ O, xn0 ∈ U ′′ and f(xn0) ∈ U ′.

From the fact that fn0 is Vn0 - continuous it follows that there exist a neighborhood
Ux′ of x′ and an element Vn0 from Vn0 that contains fn0(x′) such that fn0(Ux′) ⊂ Vn0 .
Now, choose n1 > n0 to be large enough such that fn1(x′), f(x′) lie in same element
of Vn0 and xn1 ∈ Ux′ it follows that fn0(xn1) ∈ Vn0 . From fn1 =Vn0

fn0 we have that
fn1(xn1), fn0(xn1) lie in the same element of Vn0 , i.e., fn1(xn1) ∈ st(Vn0 ,Vn0).

Considering the fact that f(x′) ∈ st(Vn0 ,Vn0), we have fn1(xn1), xn1 must lie in
different elements of st(Vn0), which is contradiction. □
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