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THE GROWTH OF GRADIENTS OF QC-MAPPINGS IN
n-DIMENSIONAL EUCLIDEAN SPACE WITH BOUNDED LAPLACIAN

NIKOLA MUTAVDŽIĆ1

Abstract. Here we review M. Mateljević’s article [9], with some novelities. We focus on
mappings between smooth domains which have bounded Laplacian. As an application, if
these mappings are quasiconformal, we obtain some results on the behavior of their partial
derivatives on the boundary. In the last part of this article, we announce one new result
of the author of [9], which has been recently presented on Belgrade Seminary of Complex
Analysis.

1. Introduction

In this article, we study quasiconformal mappings in the plane and space, which have
a bounded Laplacian. As an application, we get some results which we can consider as
spatial versions of Kellogg’s theorem. This article is presentation of the part of the article
[9]. The author of [9] pointed out that the ideas in that manuscript have been indicated in
[6] in planar case and communicated at Workshop on Harmonic Mappings and Hyperbolic
Metrics, Chennai, India, December 10–19, 2009 [16], see also paper cited here (in particular
[15]) and the literature cited there. In [9], the author developed and proved some results
announced and outlined in this communication. The main idea of this article is to present
method of, so called, Flattening the boundary.

Also, in this article will be stated one new result of the author of [9], which can be
regarded as a generalisation of series of previous results in this area. Namely, this result
gives positive answer to the question weather qusaiconformal mapping between two C1,α

domains, which satisfies so called Laplacian-gradient inequality, is Lipshitz continuous. This
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was subject of interest on Belgrade Seminary of Complex analysis, where M. Mateljević
proposed one proof of one more general statement, where answer to above question arises
as a corollary.

We write x = (x1, x2, . . . , xn) ∈ Rn, and by |x| we denote Euclidean norm of vector x.
For R > 0, by B(a,R) and S(a,R) we denote the ball and the sphere in Rn with center

in a of radius R. By B(R) and S(R) we denote B(0, R) and S(0, R). We use Bn and Sn−1

for B(1) and S(1).
Let Ω ⊂ Rn, R+ = [0,+∞) and f, g : Ω → R+. If there is a positive constant c such

that f(x) ⩽ cg(x), x ∈ Ω, we write f ⪯ g on Ω. If there is a positive constant c such that
1
c
g(x) ⩽ f(x) ⩽ cg(x), x ∈ Ω, we write f ≈ g (or f ≍ g) on Ω.
Let Ω be a domain in Rn and u a C2(Ω) function. The Laplacian (linear) partial

differential operator, denoted by ∆, is defined with

(1.1) ∆ =
n∑

i=1

∂2

∂x2
i

.

We say that function u is (Euclidean) harmonic in Ω if it satisfies Laplace’s equation
∆u = 0.

Inhomogeneous form of Laplace’s equation is called Poisson’s equation. In this paper we
will investigate the following Dirichlet’s boundary value problem:

(1.2)

∆u = f, in Ω,
u = φ, on ∂Ω.

Laplace’s equation has a radially symmetric solution r2−n for n > 2 and log r for n = 2,
r being the radial distance from some fixed point. Let us fix a point y in Ω and introduce
the normalized fundamental solution for Laplace’s equation:

(1.3) Γ(x− y) = Γ(|x− y|) =


1

n(2−n)ωn
· 1

|x−y|n−2 , for n > 2,
1

2π
log |x− y|, for n = 2,

where ωn is the volume of the unit ball in Rn. By simple computation we have that, for
every 1 ⩽ i ⩽ n

∂

∂xi

Γ(x− y) = 1
nωn

· xi − yi

|x− y|n
,(1.4) ∣∣∣∣∣ ∂∂xi

Γ(x− y)
∣∣∣∣∣ ⩽ 1

nωn

· 1
|x− y|n−1 .

It is convenient to introduce the inversion with respect to the sphere S(R) of the point
y ̸= 0 as
(1.5) JR(y) = R2

|y|2
y.

Sometimes we write y∗ instead JR(y). It is important to notice that J−1
R = JR. Set
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G1,R(x, ξ) := Γ(|x− ξ|) and G2,R(x, ξ) := −
(

|ξ|
R

)2−n

Γ(|x− JR(ξ)|).

We define the Green function for Dirichlet’s problem on the ball B(R) as
gR(x, ξ) := G1,R(x, ξ) +G2,R(x, ξ).

The Green function GΩ for the Dirichlet’s problem on the domain Ω in Rn is chosen to
satisfy

GΩ(x, y) = 0, for x ∈ ∂Ω.
For more information about Green functions, see Section 5. The Poisson kernel for the

ball BR is defined by

PR(x, ξ) = R2 − |x|2

nωnR|x− ξ|n
.

When R = 1, we omit R from the notation. Let us introduce the Poisson’s integral

P [φ](x) :=
∫
Sn−1

PR(x, y)φ(y) dσ(y),

and the Green potential
G[f ](x) :=

∫
Bn
gR(x, y)f(y) dν(y).

2. Gradient Estimate of the Green Potential

We will give a short proof of an important result from [3].

Theorem 2.1. Assume u : B(R) → R is continuous, belongs to C2(B(R)), u = φ on S(R)
and f = ∆u is bounded and locally Hölder continuous on B(R). Then
(2.1) u(x) = PR[φ](x) +GR[f ](x).

Lemma 2.1 ([9]). If f is a bounded function on Bn, then the partial derivatives of G[f ]
are continuous on Bn.

Proof. Let us define u(x) =
∫
Bn g(x, y)f(y) dν(y). Then, for every 1 ⩽ i ⩽ n, we have that

∂

∂xi

u(x) =
∫
Bn

∂

∂xi

g(x, y)f(y) dν(y)

=
∫
Bn

∂

∂xi

G1(x, y)f(y) dν(y) +
∫
Bn

∂

∂xi

G2(x, y)f(y) dν(y).

If we define

Ii,1(x) :=
∫
Bn

∂

∂xi

G1(x, y)f(y) dν(y) and Ii,2(x) :=
∫
Bn

∂

∂xi

G2(x, y)f(y) dν(y),

we have that, for k = 1, 2,

Ii,k(x) =
∫

|y|⩽1/2

∂

∂xi

Gk(x, y)f(y) dν(y) +
∫

1/2<|y|⩽1

∂

∂xi

Gk(x, y)f(y) dν(y).
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Finally, let us introduce the notation

Ii,k,1(x) =
∫

|y|⩽1/2

∂

∂xi

Gk(x, y)f(y) dν(y) and Ii,k,2(x) =
∫

1/2<|y|⩽1

∂

∂xi

Gk(x, y)f(y) dν(y).

Let us prove that Ii,2 is continuous on the Bn. The proof that Ii,2 is continuous on the
closed unit ball is analogous. It will be suffice to prove that Ii,2,k is continuous for k = 1, 2.

Let us consider the function Ii,2,1 and assume that |y| < 1/2. Then for all x ∈ Bn, we
have that |x− y∗| ⩾ 1. Now, using (1.4) we can check that∣∣∣∣∣ ∂∂xi

G2(x, y)f(y)
∣∣∣∣∣ ⪯ 1

|y|n−2 · 1
|x− y∗|n−1 ⪯ 1

|y|n−2 .

This means that, for every x0 ∈ Bn,

lim
x→x0

∫
|y|⩽1/2

∂

∂xi

G2(x, y)f(y) dν(y) =
∫

|y|⩽1/2

∂

∂xi

G2(x0, y)f(y) dν(y),

by Lebesgue dominance convergence theorem. This precisely means that function Ii,2,1 is
continuous at the point x0.

Now, we need to investigate continuity of the function Ii,2,2 on the closed unit ball. After
introduction change of variable y = J(z), where JJ(z) denotes Jacobian determinant of the
mapping J defined as in (1.5) we get

(2.2) Ii,2,2(x) =
∫

1<|z|<2

∂

∂xi

G2(x, z∗)f(z∗)JJ(z) dν(z).

After introducing change of variables x− z = u in the integral on the right side of (2.2)
we get

Ii,2,2(x) =
∫

1<|u−x|<2

∂

∂xi

G2(x, (u− x)∗)f((u− x)∗)JJ(u− x) dν(u).

Again, after using formula (1.4) we get∣∣∣∣∣ ∂∂xi

G2(x, (u− x)∗)f((u− x)∗)JJ(u− x)
∣∣∣∣∣ ⪯ K2(u) := |u−x|n−2f((u−x)∗)JJ(u−x) 1

|u|n−1 .

Since the function C defined as C(z) := |z|n−2f(z∗)JJ(z) is bounded for 1 < |z| < 2, we
have that the function C1, C1(u) := C(u− x) is bounded on 1 < |u− x| < 2 and

(2.3) |K2(x, u)| ⪯ 1
|u|n−1 , for 1 < |u− x| < 2.

If we define the function

H(x, u) =


∂

∂xi
G2(x, (u− x)∗)f((u− x)∗)JJ(u− x), 1 < |x− u| < 2,

0, |u| < 3, |x− u| < 1, |x− u| > 2,



GRADIENTS FOR LAPLACIAN-GRADIENT INEQUALITIES AND POISSON’S EQUATIONS 1033

we have that Ii,2,2(x) =
∫

|u|<3
H(x, u) dν(u). Using (2.3) we get that

lim
x→x0

∫
|u|<3

H(x, u) dν(u) =
∫

|u|<3

H(x0, u) dν(u), for every |x0| ⩽ 1,

by Lebesgue dominance convergence theorem, q.e.d. □

3. Local C2-coordinate Method Flattening the Boundary

Let Ω be open subset of Rn and Ck(Ω) the set of functions having all derivatives of order
less then or equal to k continuous in Ω. Next, let Ck(Ω) be the set of functions in Ck(Ω)
all of whose derivatives of order less than or equal to k have continuous extensions to Ω.

Let x0 ∈ D, where D is bounded subset of Rn and f is function defined on D. For
0 < α < 1, we say that f is Hölder continuous with exponent α at x0, if

sup
x∈D

|f(x) − f(x0)|
|x− x0|α

< +∞.

When α = 1, we say that f is Lipschitz-continuous at x0.
Suppose that D is not necessarily bounded. We say that f is uniformly Hölder continuous

with exponent α in D if

sup
x,y∈D,

x ̸=y

|f(x) − f(y)|
|x− y|α

< +∞, 0 < α < 1.

Let Ω be an open set in Rn and k a non-negative integer. The Hölder spaces Ck,α(Ω) and
Ck,α(Ω) are defined as the subspaces of Ck(Ω), resp. Ck(Ω), consisting of functions whose
k-th order partial derivatives are locally Hölder continuous (uniformly Hölder continuous)
with exponent α in Ω. By Lip(Ω) we denote class of function which are Lipshitz continuous
on the set Ω.

Definition 3.1. We say that a bounded domain Ω ⊂ Rn belongs to the class Ck,α, where
0⩽α⩽1, k∈N, if its boundary belongs to the class Ck,α, i.e., if for every point x0 ∈ ∂Ω
there exists a ball B = B(x0, r0) and a mapping ψ : B → D such that (cf. [3, page 95])

(a) ψ(B ∩ Ω) ⊂ Rn
+;

(b) ψ(B ∩ ∂Ω) ⊂ ∂Rn
+;

(c) ψ ∈ Ck,α(B), ψ−1 ∈ Ck,α(D).

We refer to ψ as a local coordinate diffeomorphism flattening the boundary in a neigh-
borhood of x0.

Proposition 3.1. ψ is bi-Lipshitz on B1 ⊂ B if k ⩾ 1. Also,
∣∣∣ ∂2

∂xi∂xj
ψ
∣∣∣, 1⩽i, j⩽n, are

bounded for k⩾2.

In [9] the following lemma is proved. This lemma is an improvement of a similar result
from [5], where only boundedness of the first partial derivatives on Bn is concluded.
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Lemma 3.1. ([9, Claim 6]) Let u : Bn → R be a solution to the following Dirichlet’s
problem

(3.1)
{

∆u = f, in Bn,

u = φ, on Sn−1,

where f ∈ L∞(Bn) and φ ∈ C1,α(Sn−1), 0 < α < 1. Then u ∈ C1(Bn).

Lemma 3.2. ([9, Local Gradient Lemma Version 1, Lemma 2.2]) For x0 ∈ Sn−1 and
0 < r0 < 2 let V0 = Bn ∩ B(x0, r0), V (r) = Bn ∩ B(x0, r) for 0 < r < r0 and T0 =
Sn−1 ∩ B(x0, r0). If u ∈ C2(V0) ∩ C(V0 ∪ T0) is such that ∆u ∈ L∞(V0) and u ∈ C1,α(T0),
then

∇u ∈ L∞(V (r)), for all 0 < r < r0.

Lemma 3.2 can be regarded as a local version of Lemma 3.1.

4. Quasiconformal and Quasiregular Mappings

LetD, D′ and Ω be a domains in Rn. If f : D → D′ and y=f(x) we write yi=fi(x), 1⩽i⩽n.

Definition 4.1. (1) Suppose that f : D → D′ is a differentiable mapping at point x ∈ D.
By f ′(x) : TxRn → Tf(x)Rn we denote the differential of the mapping f at point x, which
can be identified with the matrix

(
∂

∂xj
fi(x)

)
, and by TxRn we denote the tangent space at

point x. We define
|f ′(x)| = max

|h|=1
|f ′(x)h| and l(f ′(x)) = min

|h|=1
|f ′(x)h|.

(N) A homeormophism f : D → D′ satisfies the condition (N) if m(A) = 0 implies
m(f(A)) = 0. Here, by f(A) we denote direct image of the set A by function f .

(2) A homeormophism f : D → D′ is a K-quasiconformal (in the analytic sense) if f is
absolutely continuous on lines, f is differentable a.e. in D and |f ′(x)|n ⩽ K|J(x, f)| a.e. on
D.

(3) Let f : Ω → Rn be continuous. We say that f is quasiregular if
(a) f belongs to Sobolev space W n

1,loc(Ω);
(b) there exists K, 1 ⩽ K < +∞, such that

(4.1) |f ′(x)|n ⩽ KJf (x) a.e.
The smallest K in (4.1) is called the outer dilatation KO(f).

If f is quasiregular, then
(4.2) Jf (x) ⩽ K ′l(f ′(x))n a.e. for some K ′, 1 ⩽ K ′ < +∞.

The smallestK ′ in (4.2) is called the inner dilatation KI(f) andK(f) = max(KO(f), KI(f))
is called the maximal diletation of f . If K(f) ⩽ K, then f is called K-quasiregular. Here,
we will only state a few basic results.

(i1) If mapping f : D → D′ is a qc, then mapping f−1 is a qc and both satisfies the (N)
condition.
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(i2) (Change of variables) If mapping f : D → D′ is a qc, and A is a measurable subset
of D, then the set f(A) is a measurable, and

m(f(A)) =
∫

A
|Jf (x)| dν(x).

Furthermore, Jf (x) ̸= 0 almost everywhere in D.
(i3) (Reshetnyak’s main theorem) Every non-constant quasiregular map is discrete and

open.

In [21], it can be seen that, when qc mapping f is differentiable at point x, only two
possibilities can emerge. Either Jf(x) ̸= 0 either f ′(x) = 0. It can be checked in, for
example [20], that, in case Jf(x) ̸= 0, |f ′(x)| and l(f ′(x)) can be regarded as the greatest
and the least singular values of non-singular matrix f ′(x).
Proposition 4.1. If f : D → D′ is a quasiconformal mapping, we have that

l(f ′(x)) ⩽ |∇fi(x)| ⩽ |f ′(x)|.
Proof. Let x ∈ D and ∇fi(x) ̸= 0. Then we have that ∇fi(x) = f ′(x)T ei, where f ′(x)T is
(Euclidean) tanspose of matrix f ′(x) and ei = (0 . . . , 0, 1, 0, . . . , 0) is i-th coordinate vector,
1 ⩽ i ⩽ n. Since, both non-singular matrix and it’s transpose have the same singular values,
we conclude that l(f ′(x)) ⩽ |∇f(x)| ⩽ |f ′(x)|. □

Theorem 4.1. ([9, Theorem 2.1]) Let D ⊂ Rn be a C2 domain and f : Bn → D a C2

K-qc mapping. If ∆f ∈ L∞(Bn), then f ∈ Lip(Bn).

Proof. Let D, D′ be domains in Rn and f : D → D′ and h : D′ → R be C2 functions and
set ĥ = h ◦ f . If y = f(x) and fk(x) := yk, 1 ⩽ k ⩽ n, the following formulas hold:

(4.3) ∂

∂xk

ĥ =
n∑

i=1

∂h

∂yi

∂fi

∂xk

,

and
(4.4) ∆ĥ =

n∑
i=1

∂2h

∂x2
i

|∇fi|2 + 2
∑

1⩽i<j⩽n

∂2h

∂xi∂xj

⟨∇fi,∇fj⟩ +
n∑

i=1

∂h

∂xi

∆fi.

Using Lemma 3.2, we get that f̃n is Lipshitz continuous in some neighbourhood V0 of the
point x0. Next, Proposition 4.1 gives us that the whole function f̃ is Lipshitz continuous on
V0. Now, using Proposition 3.1 we get that function ψ is locally bi-Lipshitz, so f = ψ−1 ◦ f
is Lipshitz continuous on V0. From this we easily conclude that the function f is Lipshitz
continuous on entire ball Bn. See Figure 1. □

5. Further Results

Let D be a domain in Rn and s : D → R. If
|∆s| ⩽ a|∇s|2 + b, on D,

then we say that s satisfies a, b - Laplacian-gradient inequality on D.
In [9] the author also studied the growth of gradient of mappings which satisfy certain

PDE equations (or inequalities) using the Green-Laplacian formula for functions and their
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Figure 1. Flattening the boundary

derivatives. If in addition the considered mappings are quasiconformal (qc) between C2

domains, M. Mateljević showed that they are Lipschitz. Some of the obtained results can
be considered as versions of Kellogg-Warshawski type theorem for qc mappings. More
precisely, developing further methods from Heinz paper [4]. See also Kalaj [5].
Theorem 5.1 ([9], Theorem D.). Hypothesis:

(1) Let Ω be a domain in Rn with C2 boundary and f : Bn onto−−→ Ω be a C2 mapping,
which has continuous extension on Bn.

(2) Suppose that f satisfy the Laplacian-gradient inequality on B0 = B(z0, r0) ∩ Bn,
where x0 ∈ Sn−1 and r0 > 0 and f maps B0 ∩ Sn−1 into ∂Ω.

Conclusion (VIII) (a) There is 0 < r1 < r0, c > 0 and a unit vector fields X on V1 =
B(x0, r1) ∩ Bn (i.e., to each x we associate a unit vector h = h(x) with initial point at x)
such that | df(x)h(x)| ⩽ c for every x ∈ V1.

(b) If in addition f is qc in B0, then f is Lipschitz continuous on V1.

It is also important to note following theorem, proved in [9]. The proof of this theorem
is based on, so called ”bootstrap“ argument, which simplifies method used in [4]. For more
about this, see [7–9].

Theorem 5.2 ([9] Theorem 3.2.). Suppose the hypothesis (1) of the previous theorem holds,
f is open and

(3) ∆f is in Lp(B0) for some p > n and
(4) f maps B0 ∩ Sn−1 into ∂Ω.

Then Conclusion (VIII) (a) holds.
(c) If in addition f is qr in B0, then f is Lipschitz continuous on V1.

In [9] the author stated the following conjecture.
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Proposition 5.1 ([9], Conjecture A.). Let D and D0 be C1,α, 0 < α < 1, domains (bounded)
in Rn and f : D onto−−→ D0 a C2 K − qc. If f satisfies the Laplacian-gradient inequality on
D (in particular ∆f is bounded), then f is Lip on D.

It seems that local special C2-coordinate method which works for C2 domains needs to
be modified. Namely if we work with C1,α, 0 < α < 1, domains the local coordinate ψ
is C1,α, where 0 < α < 1, and therefore in general f̃ does not satisfy Laplacian-gradient
inequality.

In the recent article [2] D. Kalaj and A. Gjokaj proved that
(i) if there is a C1,α diffeomorphism ϕ : Bn → D and
(ii) f is a harmonic quasiconformal mapping between the unit ball in Rn and D,
then f is Lipschitz continuous in Bn.
This generalizes some known results for n = 2 and improves some others in high dimen-

sional case. Here we note that condition (i) is stronger than C1,α condition on the domain
D.

In the article in preparation [10] the author (of [10]) proposed proves of Theorem 5.3.
This shows that conjecture proposed in Proposition 5.1 is true, under additional condition
on the domain D.

Definition 5.1.
1. A function gD(x, ξ) defined on D ×D with the following properties:

(1) gD is harmonic in x in D except for x = ξ,
(2) gD is continuous in D except for x = ξ and g = 0 on ∂D,
(3) gD − |x− ξ|2−n is harmonic for x = ξ,
is called Green’s function for D.

2. In mathematics, a function between topological spaces is called proper if inverse
images of compact subsets are compact.

3. We say that D is good Green-ian domain if
∣∣∣ ∂

∂xk
gD(x, y)

∣∣∣ ⩽ c 1
|x−y|n−1 , x, y ∈ D,

k = 1, . . . , n, for some c > 0 and locally good Green-ian domain at x0 ∈ ∂D if for
every δ > 0 there is a C1+ domain W = Wx0 ⊂ D ∩ B(x0, δ) such that x0 ∈ ∂W
and ∂W is an open set in ∂D.

4. Domain D has a C1+ boundary if there exists α ∈ (0, 1) such that D has C1,α

boundary.
5. D is a locally good Green-ian domain, if it is a locally good Green-ian domain at

every x0 ∈ ∂D.
6. Let SC1(G) be the class of functions f ∈ C1(G) such that |f ′(x)| ⩽ ar−1ωf(x, r)

for all B(x, r) ⊂ G, where ωf (x, r) = sup{|f(y) − f(x)| : y ∈ B(x, r)}.

It seems that K. Widman proved that C1,α domains are examples of good Green-ian
domains. For more details see [22].

Let d(x) = dD(x), x ∈ D, be the distance of point x to the boundary of D.
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Question 1. If D and G are domains with C1+ boundary, f : D onto−−→ G a C2 and K − qc
and fi, i = 1, 2, . . . , n, satisfes Laplacian-gradient inequality (in particular f is harmonic)
on D. Whether f is Lip on D?

Here, we state the following theorem, which proof will be omitted at this point.
Set γ = 1 − α, A = Aγ := d(z)−γ, B = Bγ := |f ′(z)|−γ and M = Mγ := AB.

Theorem 5.3 ([10]). Suppose that:
(1) D and G are domains with C1+ boundary, D is locally good Green-ian domain,

f : D onto−−→ G proper and there is p such that |∇f | ∈ Lp, p > n,
(2) f ∈ SC1(D).
(3) Suppose in addition that G is C1,α domain, f is a C2 vector valued function, fi,

satisfy Laplacian-gradient inequality on D for i = 1, 2, . . . , n.
(4) f is K − qc on D.

Conclusions:
(a) If (1) holds, then Mγ ∈ Ll, for l < l0 = p

2−γ+pγ
.

(b) If (1)–(4) hold, then f is Lipschitz continuous on D.

In the paper [17] is proved that harmonic quasi-regularity of function f implies condition
(2) of the previous theorem. It is important to note that condition (2) is equivalent with
Lipshitz continuty of function f wrt to quasi-hyperbolic metric.

6. Appendix

6.1. Belgrade Seminary of Complex Analysis. For detailed presentation of the eari-
est hystory of analysis school in Serbia, see article [13]. At this point, it is important
to mention prof. Dajović, as the initiator of today Seminary. After the retirement of
Professor Dajović, the group for complex analysis (M. Mateljević, M. Pavlović, M. Jevtić,
M. Obradović) considered problems related to the spaces of analytic functions and slowly
achieved international reputation. After returning from the USA in 1990, prof. Mateljević
started working with N. Lakić in the field of quasiconformal mappings. Lakić soon left for
the USA and obtained significant results in the field of Teichmüller spaces. The Seminary
for Complex Analysis gains an international reputation, and there is talk of the Belgrade
School (On conferences: Reich, Krushkal, Cazacu, Stanojević and others, especially Olli
Martio during a visit to Belgrade in 2009.). It seemed that complex analysis had reached
its highest point in Belgrade. But the surprises continue. V. Marković and V. Božin appear
at the seminar. Together with Mateljević and Lakić, they solve Teichmüller’s problem of
extremal dilations. Today, V. Marković (In 2014, he was elected a member of the British
Royal Society.) is a world leader in qc mapping theory and 3-dimensional topology and
geometry and a proffessor at Univercity of Oxford. D. Kalaj and D. Šarić become interna-
tionaly recognized. D. Vukotić and N. Šešum also started at the seminar. Currently, M.
Marković, M. Knežević, M. Svetlik, N. Mutavdžić, B. Karapetrović, P. Melentijević are
actively participating in the seminar. For the seminary (or for the complex analysis group)



GRADIENTS FOR LAPLACIAN-GRADIENT INEQUALITIES AND POISSON’S EQUATIONS 1039

are also connected M. Jevtić, M. Pavlović, M. Arsenović, S. Stević, I. Anić, M. Laudanović,
O. Mihić, V. Manojlović, N. Babačev, A. Abaob, A. Shkheam, D. Ðurčić, A. Bulatović, I.
Petrović, S. Nikčević, V. Grujić as well as the students who presented on optional courses: J.
Gajić, I. Savković, A. Savić, D. Fatić, M. Milović, N. Lelas, M. Lazarević, V. Stojisavljević,
S. Gajović, F. Živanović, D. Kosanović, D. Špadijer, Z. Golubović and S. Radović. D.
Kečkić, R. Živaljević, D. Milinković, D. Jocić, Ð. Milićević, D. Damjanović, D. Ranković,
V. Baltić, N. Jozić (Baranović) and M. Albianić.

We briefly mention some facts related to the beginning of work on hqc mapping in
Belgrade. During the visiting position at Wayne State University, Detroit, 1988/89, the
author (of the revised article [9]) started considering hqc mappings. In particular, the
author of [9] observed that the following results hold (see Proposition 6.1 and 6.2 below)
and, when returned to Belgrade, used to talk on the seminary permanently and asked
several open questions related to the subject. Many research papers are based on these
communications.

Since not all of these researches have been published, it happens that some researchers
discovered them later. Here we only discuss a few results from Revue Roum. Math. Pures
Appl. 51(5–6) (2006), 711–722.

Proposition 6.1 (Proposition 5 [11]). If h is a harmonic univalent orientation preserving
K-qc mapping of domain D onto D′, then

(6.1) d(z)Λh(z) ⩽ 16K dh(z) and d(z)λh(z) ⩾ 1 − k

4 dh(z) .

Proposition 6.2 (Corollary 1, Proposition 5 [11]). Every e-harmonic quasi-conformal
mapping of the unit disc (more generally of a strongly hyperbolic domain) is a quasi-isometry
with respect to hyperbolic distances.

The next theorem concerns harmonic maps onto a convex domain. For the planar version
of Theorem 6.1 cf. [11,12], also [18, pp. 152-153]. The space version was communicated on
International Conference on Complex Analysis and Related Topics (Xth Romanian-Finnish
Seminar, August 14-19, 2005, Cluj-Napoca, Romania), by Mateljević and stated in [11],
also [14].

Theorem 6.1 (Theorem 1.3, [11]). Suppose that h is an Euclidean harmonic mapping
from the unit ball Bn onto a bounded convex domain D = h(Bn), which contains the ball
h(0) +R0Bn. Then for any x ∈ Bn

d(h(x), ∂D) ⩾ (1 − ∥x∥)R0/2n−1.

For further results of this type, see [14,17], and the literature cited there.
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