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ORBITAL CONTINUITY AND COMMON FIXED POINTS IN
MENGER PM-SPACES

RALE M. NIKOLIĆ1, VLADIMIR T. RISTIĆ2, JASMINA FIJULJANIN1,
AND ALEKSANDAR ŠEBEKOVIĆ3

Abstract. In this paper, we prove that if a pair of semi R-commuting self-mappings
defined on Menger PM-spaces with a nonlinear contractive condition posses a unique
common fixed point, then these mappings are orbitally continuous. Also, we investi-
gate whether this assertion and it converse holds if we replace semi R-commutativity
with some other concept of commutativity in the weaker sense.

1. Introduction

The notion of orbital continuity was defined by Ćirić [4]. Shastri et al. [25] intro-
duced the notion of orbital continuity for a pair of self-mappings.
Definition 1.1 ([25]). Let f and g be two self-mappings of a metric space (X, d)
and let {xn}n∈N∪{0} be a sequence in X such that gxn = fxn+1, n = 0, 1, 2, . . . Then
the set O(x0, g, f) = {gxn | n = 0, 1, 2, . . .} is called the (g, f)-orbit at x0 and f (or
g) is called (g, f)-orbitally continuous if gxn → u implies xn → fu, as n → +∞ (or
gxn → u implies ggxn → gu, as n → +∞).

Following the results obtained by Machuca [13] and Goebel [6], Jungck [9] gen-
eralized Banach contraction principle [1] by proving common fixed theorem for a
pair of commutative self-mappings. Since then many common fixed point theo-
rems have been obtained using various generalizations of commutativity (see e.g.
[7, 10–12,17–19,21, 24]). Overview of weaker forms of commuting mappings and their
systematic comparison can be found in [26].

Key words and phrases. Orbital continuity, probabilistic metric spaces, common fixed point,
nonlinear contractive condition.

2020 Mathematics Subject Classification. Primary: 47H10. Secondary: 54H25, 54E70.
DOI 10.46793/KgJMat2307.1011N
Received: September 29, 2022.
Accepted: December 14, 2022.

1011



1012 R. M. NIKOLIĆ, V. T. RISTIĆ, J. FIJULJANIN, AND A. ŠEBEKOVIĆ

Pant [19] introduced the notion of semi R-commutativity. Ješić et al. [8] extended
this notion to Menger PM-spaces and obtained common fixed point theorem for two
semi R-commuting self-mappings (Theorem 3.3. in [8]).

Patak et al. [20] defined the notion of R-weak commutativity of type Af and of
type Ag. Using the probabilistic version of this notion, Nikolić et al. [16] proved that
orbital continuity for two self-mappings is a necessary and sufficient condition for the
existence of a unique common fixed point for these mappings if they are R-weakly
commuting of type Af (or of type Ag) with nonlinear contractive condition in the
sense of Boyd and Wong [2], for Menger PM-spaces.

In this paper we prove that converse of a slight modification of Theorem 3.3.
in [8] (see Theorem 3.1. given below) holds under additional condition. Also, we
investigate whether this theorem and it converse remain true if we replace a pair of
semi R-commuting mappings with mappings that satisfy some other weaker form of
commutativity. Nikolić et al. [16] gave a positive answer in this sense for a pair of
R-weakly commutative mappings of type Af (or of type Ag).

2. Preliminaries

In 1906, Fréchet introduced the concept of distance on an arbitrary set, described the
properties of the distance function and thus founded the axiomatics of metric spaces.
This abstractly introduced mathematical object found great applications in the study
of not only mathematical objects in which the concept of distance appears. However,
in many cases where metric spaces are used, assigning a unique real non-negative
number to each pair of elements of a set is not sufficient to describe the observed
phenomenon or problem. Namely, in many situations the concept of distance is more
suitable to be viewed probabilistically, than as a quantity determined by a real number.
In this way, in 1942, Menger [14] gave the definition of the statistical metric space using
the notion of distribution function (in 1964, in the name of this spaces the adjective
“statistical” was changed to “probabilistic”). Continuing the study of probabilistic
metric spaces Schweizer and Sklar [22, 23] introduced some topological notions for
this space and gave some properties devoted to the axiomatics of probabilistic metric
spaces (in particular for triangle inequality).

Some function F : R → [0, 1] is a distribution function if F is a left-continuous and
non-decreasing mapping, which satisfies F (0) = 0 and supx∈R F (x) = 1. With ε0 we
will denote the distribution function given by

ε0(t) =
{

0, t ≤ 0,
1, t > 0.

Definition 2.1 ([23]). A mapping T : [0, 1]2 7→ [0, 1] is continuous t-norm if T satisfies
the following conditions:

a) T is commutative and associative;
b) T is continuous;
c) T (a, 1) = a, for any a ∈ [0, 1];



ORBITAL CONTINUITY AND COMMON FIXED POINTS. . . 1013

d) T (a1, b1) ≤ T (a2, b2) whenever a1 ≤ a2 and b1 ≤ b2, and a1, b1, a2, b2 ∈ [0, 1].

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-space) is
a triple (X,F, T ) where X is a nonempty set, T is a continuous t-norm, and F is a
mapping from X × X into the set of all distribution functions (F(x, y) = Fx,y for any
(x, y) ∈ X × X) if and only if the following conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t + s) ≥ T

(
Fx,y(t), Fy,z(s)

)
, for all x, y, z ∈ X and all s, t ≥ 0.

In 1960, Schweizer and Sklar [22] defined (ε, λ)-topology in a Menger PM-space
(X,F, T ) and proved that this topology is a Hausdorff topology. Since 1960 many
other topics related to PM-spaces have been studied by various authors, such as
convergence of sequences, continuity of mappings, completion, etc. We will only state
the following definition.

Definition 2.3. Let (X,F, T ) be a Menger PM-space.
(1) A sequence {xn}n∈N in X is said to be convergent to x in X if, for any ε > 0 and

λ ∈ (0, 1) there exists positive integer N such that Fxn,x(ε) > 1 − λ whenever
n ≥ N.

(2) A sequence {xn}n∈N in X is called Cauchy sequence if, for any ε > 0 and
λ ∈ (0, 1) there exists positive integer N such that Fxn,xm(ε) > 1 − λ whenever
n, m ≥ N.

(3) A Menger PM-space is said to be complete if any Cauchy sequence in X is
convergent to a point in X.

Also, the following two lemmas are stated and proved by Schweizer and Sklar [22].

Lemma 2.1 ([22]). Let {xn}n∈N be a sequence such that limn→+∞ xn = x. Then
Fx,xn(t) → Fx,x(t) = ε0(t), for any t > 0, as n → +∞ and conversely.

Lemma 2.2 ([22]). Let (X,F, T ) be a Menger PM-space and T is continuous. Then
the function F is lower semi-continuous for any fixed t > 0, i.e., for any fixed t > 0
and any two convergent sequences {xn}n∈N, {yn}n∈N such that limn→+∞ xn = x and
limn→+∞ yn = y, it follows that

lim inf
n→+∞

Fxn,yn(t) = Fx,y(t).

Lemma 2.3 ([23]). Let y be a fixed point and suppose that {xn}n∈N is a convergent
sequence such that limn→+∞ xn = x. Then

lim inf
n→+∞

Fxn,y(t) = Fx,y(t).

Remark 2.1. Lemma 2.3 is a corollary of Lemma 2.2.
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3. Main Results

Fang et al. [5] defined the notion of algebraic sum for two distribution functions.
Definition 3.1 ([5]). The algebraic sum of distribution functions F and G, in deno-
tation F ⊕ G, is defined by:
(3.1) (F ⊕ G)(t) = sup

s1+s2=t
min {F (s1), G(s2)} ,

for any t ∈ R.

From the previous definition, it is obvious that the following inequality
(3.2) (F ⊕ G)(t) ≥ min {F (s1), G(s2)}
holds for any t > 0, and arbitrary and fixed s1, s2 > 0, such that s1 + s2 = t.

Ješić et al. [8] extended definition of semi R-commutativity to Menger PM-spaces.
Definition 3.2 ([8]). Let (X,F, T ) be a Menger PM-space and let f and g be two
self-mappings of X. The mappings f and g will be called semi R-commuting if there
exists R > 0 such that:

i) Fffx,gfx(Rt) ≥ Ffx,gx(t) or
ii) Ffgx,gfx(Rt) ≥ Ffx,gx(t) or

iii) Ffgx,ggx(Rt) ≥ Ffx,gx(t) or
iv) Fffx,ggx(Rt) ≥ Ffx,gx(t)

is true for any t > 0, and for any x ∈ X such that fx, gx ∈ f(X) ∩ g(X).
Using this notion Ješić et al. [8] proved the next theorem.

Theorem 3.1 ([8]). Let (X,F, T ) be a complete Menger PM-space, and let f and g
be semi R-commuting mappings, g(X) is a probabilistic bounded set and g(X) ⊆ f(X)
satisfying the condition

(3.3) Fgx,gy

(
φ(t)

)
≥ min

{
Ffx,fy(2t), Ffx,gx(t), Ffy,gy(t),

(
Ffx,gy ⊕ Fgx,fy

)
(αt)

}
,

for all x, y ∈ X, any t > 0 and any α > 3, and for some continuous function
φ : (0, +∞) → (0, +∞) which satisfies condition φ(t) < t, for any t > 0. If (g, f)-
orbitally continuous self-mappings on X, then f and g have a unique common fixed
point.
Remark 3.1. In Theorem 3.3. from [8] the assumption for function φ is more general
than assumption for function φ from assertion of Theorem 3.1 (see condition (1.1),
page 2 in [8]).

For the proof of the main result, we need the following lemmas.
Lemma 3.1 ([16]). Suppose that the function φ : (0, +∞) → (0, +∞) is continuous
and satisfies condition φ(t) < t, for any t > 0 and let (X,F, T ) be a Menger PM-space.
Then the following assertion holds: if for x, y ∈ X we have Fx,y

(
φ(t)

)
≥ Fx,y(t) for

any t > 0, then x = y.
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Lemma 3.2 ([16]). Let (X,F, T ) be a Menger PM-space. If for two convergent se-
quences {xn}n∈N, {yn}n∈N holds that limn→+∞ xn = limn→+∞ yn = p, then Fxn,yn(t) →
1, as n → +∞, for any t > 0.

In the following theorem, we will prove that the converse of Theorem 3.1 holds.

Theorem 3.2. Let the functions f and g satisfy all the assumptions of the Theorem
3.1 and let ggxn converges for any sequence {xn}n∈N in X whenever gxn converges. If
f and g have a unique common fixed point, then mappings f and g are (g, f)-orbitally
continuous.

Proof. Let us suppose that z is a common fixed point for mappings f and g. Since,
(g, f)-orbit of any point x0 defined by gxn = fxn+1, n = 0, 1, 2, . . . converges to z,
it follows that limn→+∞ fxn = limn→+∞ gxn = z. According to the definition of semi
R-commutativity, we can observe next four cases.

Case 1. Firstly, we will suppose that mappings f and g satisfy condition iii) from
Definition 3.2, i.e., we will suppose that there exists R > 0 such that inequality
Ffgx,ggx(Rt) ≥ Ffx,gx(t) holds for any t > 0, and for any x ∈ X such that fx, gx ∈
f(X) ∩ g(X). Then, it follows that there exists R > 0 such that Ffgxn,ggxn(Rt) ≥
Ffxn,gxn(t) holds, for any t > 0. If we apply Lemma 3.2 for such R and any t > 0, it
follows
(3.4) Ffgxn,ggxn(Rt) → 1, as n → +∞.

Now, if we put x = gxn, y = z, and gz = fz in contractive condition (3.3) and if
we apply condition (PM3) from Definition 2.2, then we get that
(3.5)
Fggxn,gz

(
φ(t)

)
≥ min

{
Ffgxn,gz(2t), Ffgxn,ggxn(t), Fgz,gz(t),

(
Ffgxn,gz ⊕ Fggxn,fz

)
(αt)

}
≥ min

{
Ffgxn,gz(2t), Ffgxn,ggxn(t), Fgz,gz(t), Ffgxn,gz(2t), Fgz,ggxn(t)

}
= min

{
Ffgxn,gz(2t), Ffgxn,ggxn(t), Fgz,ggxn(t)

}
≥ min

{
T

(
Ffgxn,ggxn(t), Fggxn,gz(t)

)
, Ffgxn,ggxn(t), Fgz,ggxn(t)

}
holds, for all x, y ∈ X, any t > 0 and any α > 3. Using assumption that ggxn converges,
having in mind condition (3.4) and conditions b), c) and d) from Definition 2.1, if
take lim inf as n → +∞ in inequality (3.5) and apply Lemma 2.3, we get

F lim
n→+∞

ggxn,gz

(
φ(t)

)
≥ F lim

n→+∞
ggxn,gz(t).

Finally, if we apply Lemma 3.1, then we get that limn→+∞ ggxn = gz. Hence, g is
(g, f)-orbitally continuous. Now, we will show that f is (g, f)-orbitally continuous.
Indeed, using condition (PM3) from Definition 2.2 it follows that

Ffgxn,gz(t) ≥ T
(

Ffgxn,ggxn

(
t

2

)
, Fggxn,gz

(
t

2

))
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holds for any t > 0. Letting n → +∞ in previous inequality, from condition (3.4) and
Lemma 2.1 we get that Ffgxn,gz(t) → 1, for any t > 0. Finally, applying Lemma 2.1
we get limn→+∞ fgxn = gz = fz. Hence, f and g are orbitally continuous.

Case 2. Now, we will suppose that mappings f and g satisfy condition i) from
Definition 3.2, i.e., we will suppose that there exists R > 0 such that inequality
Fffx,gfx(Rt) ≥ Ffx,gx(t) holds for any t > 0, and for any x ∈ X such that fx, gx ∈
f(X) ∩ g(X). In this case, for such R > 0, it follows that

(3.6) Fffxn,gfxn(Rt) → 1, as n → +∞

holds for any t > 0. Similarly, as in Case 1, if we put x = fxn, y = z, and gz = fz in
contractive condition (3.3) and if we apply condition (PM3) from Definition 2.2, then
we obtain

(3.7) Fgfxn,gz

(
φ(t)

)
≥ min

{
T

(
Fffxn,gfxn(t), Fgfxn,gz(t)

)
, Fffxn,gfxn(t), Fgz,gfxn(t)

}
,

for all x, y ∈ X, and any t > 0. Having in mind condition (3.6) and conditions b), c)
and d) from Definition 2.1, if taking lim inf as n → +∞ in inequality (3.7) we get

(3.8) lim inf
n→+∞

Fgfxn,gz

(
φ(t)

)
≥ lim inf

n→+∞
Fgfxn,gz(t).

From assumption that ggxn converges, then from gfxn = ggxn−1 we get that gfxn

converges. Now, having in mind Lemma 2.3, and applying Lemma 3.1 for condition
(3.8) we get that limn→+∞ ggxn = gz. The remaining part of the proof is analogous
as in the previous case.

Case 3. We will suppose that mappings f and g satisfy condition ii) from Definition
3.2, i.e., we will suppose that there exists R > 0 such that inequality Ffgx,gfx(Rt) ≥
Ffx,gx(t) holds for any t > 0, and for any x ∈ X such that fx, gx ∈ f(X) ∩ g(X). In
this case, for such R > 0, it follows that

Ffgxn,gfxn(Rt) → 1, as n → +∞,

i.e.,

(3.9) Ffgxn,ggxn−1(Rt) → 1, as n → +∞,

for any t > 0. Applying condition (PM3) from Definition 2.2 it follows that

Ffgxn,ggxn(t) ≥ T
(

Ffgxn,ggxn−1

(
t

2

)
, Fggxn−1,ggxn

(
t

2

))
holds, for any t > 0. Letting n → +∞ in previous inequality, using assumption that
ggxn converges, condition (3.9) and Lemma 3.2, and having in mind conditions b)
and c) from Definition 2.1 we get that Ffgxn,ggxn(t) → 1, for any t > 0, i.e., we obtain
condition (3.4). Therefore, the proof of this case reduces to the proof of Case 1.

Case 4. Finally, in this case we will suppose that mappings f and g satisfy condition
iv) from definition of semi R-commutativity for Menger PM-spaces, i.e., we will
suppose that there exists R > 0 such that inequality Fffx,ggx(Rt) ≥ Ffx,gx(t) holds
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for any t > 0, and for any x ∈ X such that fx, gx ∈ f(X) ∩ g(X). In this case, for
such R > 0, we get that

Fffxn,ggxn(Rt) → 1, as n → +∞,

i.e.,
(3.10) Ffgxn−1,ggxn(Rt) → 1, as n → +∞,

for any t > 0. Now, similarly as in previous case, condition

Ffgxn−1,ggxn−1(t) ≥ T
(

Ffgxn−1,ggxn

(
t

2

)
, Fggxn,ggxn−1

(
t

2

))
is satisfied, for every t > 0. Letting n → +∞ in previous inequality, using assumption
that ggxn converges, condition (3.10) and Lemma 3.2, and having in mind conditions b)
and c) from Definition 2.1 we get that Ffgxn−1,ggxn−1(t) → 1, i.e., we get Ffgxn,ggxn(t) →
1, for any t > 0. The rest of the proof is the same as in the previous cases.

Now, the proof is completed. □

Now, we list some definitions of weaker forms of commuting mappings introduced
for Menger PM-spaces by various authors.

Definition 3.3 ([7]). Let (X,F, T ) be a Menger PM-space and let f and g be self-
mappings of X. The mappings f and g will be called R-weakly commuting if there
exists some positive real number R such that

Ffgx,gfx(Rt) ≥ Ffx,gx(t),
for any t > 0 and any x ∈ X.

Definition 3.4 ([15]). Let (X,F, T ) be a Menger PM-space and let f and g be
self-mappings of X. The mappings f and g will be called compatible if

lim
n→+∞

Ffgxn,gfxn(t) = 1,

for any t > 0, whenever {xn}n∈N is a sequence in X such that limn→+∞ fxn =
limn→+∞ gxn = u, for some u in X.

Definition 3.5 ([3]). Let (X,F, T ) be a Menger PM-space and let f and g be self-
mappings of X. The mappings f and g will be called compatible of type (A) if

lim
n→+∞

Ffgxn,ggxn(t) = 1 and lim
n→+∞

Fgfxn,ffxn(t) = 1,

for any t > 0, whenever {xn}n∈N is a sequence in X such that limn→+∞ fxn =
limn→+∞ gxn = u, for some u in X.

Theorem 3.1 and Theorem 3.2 remain true if we replace assumption that a pair
of mappings is semi R-commutative with assumption that these self-mappings are R-
weakly commuting or compatible or compatible of type (A). These theorems can also
be proved under the assumption that a pair of self-mappings satisfies some other types
of compatibility (for instance type (E) or type (P) (in their probabilistic versions)).
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Also, positive answer for Theorem 3.1 and Theorem 3.2 in this sense was obtained by
Nikolić et al. [16] for a pair of R-weakly commutative mappings of type Af (or type
Ag).
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