ON TWO DIFFERENT CLASSES OF WARPED PRODUCT SUBMANIFOLDS OF KENMOTSU MANIFOLDS

SHYAMAL KUMAR HUI ${ }^{1}$, MD. HASAN SHAHID ${ }^{2}$, TANUMOY PAL ${ }^{3}$, AND JOYDEB ROY ${ }^{1}$

Abstract. Warped product skew CR-submanifold of the form $M=M_{1} \times{ }_{f} M_{\perp}$ of a Kenmotsu manifold \bar{M} (throughout the paper), where $M_{1}=M_{T} \times M_{\theta}$ and $M_{T}, M_{\perp}, M_{\theta}$ represents invariant, anti-invariant and proper slant submanifold of \bar{M}, studied in [28] and another class of warped product skew CR-submanifold of the form $M=M_{2} \times_{f} M_{T}$ of \bar{M}, where $M_{2}=M_{\perp} \times M_{\theta}$ is studied in [19]. Also the warped product submanifold of the form $M=M_{3} \times_{f} M_{\theta}$ of \bar{M}, where $M_{3}=M_{T} \times M_{\perp}$ and $M_{T}, M_{\perp}, M_{\theta}$ represents invariant, anti-invariant and proper point wise slant submanifold of \bar{M}, were studied in [18]. As a generalization of the above mentioned three classes, we consider a class of warped product submanifold of the form $M=M_{4} \times{ }_{f} M_{\theta_{3}}$ of \bar{M}, where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$ in which $M_{\theta_{1}}$ and $M_{\theta_{2}}$ are proper slant submanifolds of \bar{M} and $M_{\theta_{3}}$ represents a proper pointwise slant submanifold of \bar{M}. A characterization is given on the existence of such warped product submanifolds which generalizes the characterization of warped product submanifolds of the form $M=M_{1} \times_{f} M_{\perp}$, studied in [28], the characterization of warped product submanifolds of the form $M=M_{2} \times_{f} M_{T}$, studied in [19], the characterization of warped product submanifolds of the form $M=M_{3} \times{ }_{f} M_{\theta}$, studied in [18] and also the characterization of warped product pointwise bi-slant submanifolds of \bar{M}, studied in [17]. Since warped product bi-slant submanifolds of \bar{M} does not exist (Theorem 4.2 of [17]), the Riemannian product $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$ cannot be a warped product. So, for studying the bi-warped product submanifolds of \bar{M} of the form $M_{\theta_{1}} \times f_{1} M_{\theta_{2}} \times f_{2} M_{\theta_{3}}$, we have taken $M_{\theta_{1}}, M_{\theta_{2}}, M_{\theta_{3}}$ as pointwise slant submanifolds of M of distinct slant functions $\theta_{1}, \theta_{2}, \theta_{3}$ respectively. The existence of such type of bi-warped product submanifolds of \bar{M} is ensured by an example. Finally, a Chen-type inequality on the squared norm of the second fundamental form of such bi-warped product submanifolds of \bar{M} is obtained which also generalizes the inequalities obtained in [33], [18] and [17], respectively.

[^0]
1. Introduction

The warped product [5] between two Riemannian manifolds (N_{1}, g_{1}) and (N_{2}, g_{2}) is the Riemannian manifold $N_{1} \times_{f} N_{2}=\left(N_{1} \times N_{2}, g\right)$, where

$$
g=\pi_{1}^{*}\left(g_{1}\right)+\left(f \circ \pi_{1}\right)^{2} \pi_{2}^{*}\left(g_{2}\right),
$$

where π_{1} and π_{2} are canonical projections of $M_{1} \times M_{2}$ onto M_{1} and M_{2}, respectively and $\pi_{i}^{*}\left(g_{i}\right)$ is the pullback of g_{i} via π_{i} for $i=1,2$ and $f: N_{1} \rightarrow \mathbb{R}^{+}$is a smooth function.

A warped product manifold $N_{1} \times_{f} N_{2}$ is said to be trivial if f is constant. For $M=N_{1} \times_{f} N_{2}$, we have [5]

$$
\begin{equation*}
\nabla_{U} X=\nabla_{X} U=(X \ln f) U \tag{1.1}
\end{equation*}
$$

for any $X \in \Gamma\left(T N_{1}\right)$ and $U \in \Gamma\left(T N_{2}\right)$.
The study of warped product submanifold was initiated in [8-10]. Then many authors have studied warped product submanifolds of different ambient manifolds, see [15-17, 20]. In [31], Tanno classified almost contact metric manifolds in three different classes among which the third class was picked up by Kenmotsu in 1972 and he studied its differential geometric properties [21]. This class later named after him by Kenmotsu manifold which is very important class to study. Warped product submanifolds of Kenmotsu manifolds are also studied in ([1-3], [22], [23], [26], [27], [32]-[38]). Multiply warped products (see [11,12,38]) are generalizations of warped product and Riemannian product manifolds and bi-warped products are special classes of multiply warped products. Bi-warped product submanifolds of different ambient manifolds are studied in [33,35]. For the study of slant immersion and slant submanifolds in contact metric manifolds we refer [6, 7, 24]. In [29] Park studied pointwise slant and pointwise semi slant submanifolds of almost contact Riemannian manifolds.

Recently, Roy et al. studied the characterization theorem on warped product submanifold of Sasakian manifolds in [30]. Motivated by the above studies, in this present paper we have studied warped product submanifolds of \bar{M} of the form $M=M_{4} \times{ }_{f} M_{\theta_{3}}$ of M such that $\xi \in \Gamma\left(T M_{4}\right)$, where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}, M_{\theta_{1}}, M_{\theta_{2}}$ are proper slant submanifolds of \bar{M} and here $M_{\theta_{3}}$ represents a proper pointwise slant submanifold of \bar{M}. Next we have studied bi-warped product submanifolds of \bar{M} of the form $M_{\theta_{1}} \times_{f_{1}} M_{\theta_{2}} \times{f_{2}}_{\theta_{3}}$, where $M_{\theta_{1}}, M_{\theta_{2}}, M_{\theta_{3}}$ are pointwise slant submanifolds of \bar{M} of distinct slant functions θ_{1}, θ_{2} and θ_{3}, respectively.

The paper is organized as follows. Section 2 deals with some preliminary useful results for construction of the paper, Section 3 is concerned with the study of a class of submanifold M of \bar{M} such that $T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}} \oplus\langle\xi\rangle$, where $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ are slant distributions and $\mathcal{D}^{\theta_{3}}$ is pointwise slant distribution. In Section 4, we have studied warped product submanifolds of the form $M=M_{4} \times_{f} M_{\theta_{3}}$ of \bar{M} where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$ such that ξ is orthogonal to $M_{\theta_{3}}$ with an supporting example. In Section 5, a characterization theorem of the mentioned class has been obtained,

Section 6 deals with bi-warped product submanifolds $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ of \bar{M}, where $M_{\theta_{1}},, M_{\theta_{2}}, M_{\theta_{3}}$ are pointwise slant submanifolds of \bar{M} and constructed an example. In Section 7, we have obtained a generalized inequality for such class of bi-warped product submanifolds of \bar{M}. The last section is the conclusion part of the paper where we have shown how the results of this paper generalizes several results of different works.

2. Preliminaries

An odd dimensional smooth manifold $\bar{M}^{2 m+1}$ is said to be an almost contact metric manifold [4] if it admits a $(1,1)$ tensor field ϕ, a vector field ξ, an 1-form η and a Riemannian metric g which satisfy

$$
\begin{align*}
\phi \xi & =0, \quad \eta(\phi X)=0, \quad \phi^{2} X=-X+\eta(X) \xi, \tag{2.1}\\
g(\phi X, Y) & =-g(X, \phi Y), \quad \eta(X)=g(X, \xi), \quad \eta(\xi)=1, \tag{2.2}\\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y) \tag{2.3}
\end{align*}
$$

for all vector fields X, Y on $\bar{M}^{2 m+1}$.
An almost contact metric manifold $\bar{M}^{2 m+1}(\phi, \xi, \eta, g)$ is said to be Kenmotsu manifold if the following conditions hold [21]:

$$
\begin{align*}
\bar{\nabla}_{X} \xi & =X-\eta(X) \xi \tag{2.4}\\
\left(\bar{\nabla}_{X} \phi\right)(Y) & =g(\phi X, Y) \xi-\eta(Y) \phi X \tag{2.5}
\end{align*}
$$

where $\bar{\nabla}$ denotes the Riemannian connection of g.
Let M be an n-dimensional submanifold of a Kenmotsu manifold \bar{M}. Throughout the paper we assume that the submanifold M of \bar{M} is tangent to the structure vector field ξ.

Let ∇ and ∇^{\perp} be the induced connections on the tangent bundle $T M$ and the normal bundle $T^{\perp} M$ of M respectively. Then the Gauss and Weingarten formulae are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.7}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, where h and A_{V} are second fundamental form and the shape operator (corresponding to the normal vector field V) respectively for the immersion of M into \bar{M}. The second fundamental form h and the shape operator A_{V} are related by $g(h(X, Y), V)=g\left(A_{V} X, Y\right)$ for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, where g is the Riemannian metric on \bar{M} as well as on M.

The mean curvature H of M is given by $H=\frac{1}{n}$ trace h. A submanifold of a Kenmotsu manifold \bar{M} is said to be totally umbilical if $h(X, Y)=g(X, Y) H$ for any $X, Y \in \Gamma(T M)$. If $h(X, Y)=0$ for all $X, Y \in \Gamma(T M)$, then M is totally geodesic and if $H=0$, then M is minimal in \bar{M}.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of the tangent bundle $T M$ and $\left\{e_{n+1}, \ldots\right.$, $\left.e_{2 m+1}\right\}$ an orthonormal basis of the normal bundle $T^{\perp} M$. We put

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right) \quad \text { and } \quad\|h\|^{2}=g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right),
$$

for $r \in\{n+1, \ldots, 2 m+1\}, i, j=1,2, \ldots, n$.
For a differentiable function f on M, the gradient ∇f is defined by

$$
g(\nabla f, X)=X f
$$

for any $X \in \Gamma(T M)$. As a consequence, we get

$$
\begin{equation*}
\|\boldsymbol{\nabla} f\|^{2}=\sum_{i=1}^{n}\left(e_{i}(f)\right)^{2} \tag{2.8}
\end{equation*}
$$

For any $X \in \Gamma(T M)$ and $V \in \Gamma\left(T^{\perp} M\right)$, we can write
(a) $\phi X=P X+Q X$;
(b) $\phi V=b V+c V$,
where $P X, b V$ are the tangential components and $Q X, c V$ are the normal components.
A submanifold M of an almost contact metric manifold \bar{M} is said to be slant if for each non-zero vector $X \in T_{p} M$, the angle θ between ϕX and $T_{p} M$ is constant, i.e., it does not depend on the choice of $p \in M$.

A submanifold M of an almost contact metric manifold \bar{M} is said to be pointwise slant [13] if for any non-zero vector $X \in T_{p} M$ at $p \in M$, such that X is not proportional to ξ_{p}, the angle $\theta(X)$ between ϕX and $T_{p}^{*} M=T_{p} M-\{0\}$ is independent of the choice of non-zero $X \in T_{p}^{*} M$.

For pointwise slant submanifold, θ is a function on M, which is known as slant function of M. Invariant and anti-invariant submanifolds are particular cases of pointwise slant submanifolds with slant function $\theta=0$ and $\frac{\pi}{2}$ respectively. Also a pointwise slant submanifold M will be slant if θ is constant on M. Thus a pointwise slant submanifold is proper if neither $\theta=0, \frac{\pi}{2}$ nor constant. It may be noted that [25] M is a pointwise slant submanifold of \bar{M} if and only if exists a constant $\lambda \in[0,1]$ such that

$$
\begin{equation*}
P^{2}=\lambda(-I+\eta \otimes \xi) \tag{2.9}
\end{equation*}
$$

Furthermore, $\lambda=\cos ^{2} \theta$ for slant function θ. If M be a pointwise slant submanifold of \bar{M}, then we have [34]:

$$
\begin{equation*}
b Q X=\sin ^{2} \theta\{-X+\eta(X) \xi\}, \quad c Q X=-Q P X \tag{2.10}
\end{equation*}
$$

Let M_{1}, M_{2}, M_{3} be Riemannian manifolds and let $M=M_{1} \times_{f_{1}} M_{2} \times_{f_{2}} M_{3}$ be the product manifold of M_{1}, M_{2}, M_{3} such that $f_{1}, f_{2}: M_{1} \rightarrow \mathbb{R}^{+}$are real valued smooth functions. For each i, denote by $\pi_{i}: M \rightarrow M_{i}$ the canonical projection of M onto M_{i}, $i=1,2,3$. Then the metric on M, called a bi-warped metric is given by

$$
g(X, Y)=g\left(\pi_{1_{*}} X, \pi_{2_{*}} Y\right)+\left(f_{1} \circ \pi_{1}\right)^{2} g\left(\pi_{2_{*}} X, \pi_{2_{*}} Y\right)+\left(f_{2} \circ \pi_{1}\right)^{2} g\left(\pi_{3_{*}} X, \pi_{3_{*}} Y\right)
$$

for any $X, Y \in \Gamma(T M)$ and $*$ denotes the symbol for tangent maps. The manifold M endowed with this product metric is called a bi-warped product manifold. Here f_{1}, f_{2} are non-constant functions, called warping functions on M. Clearly, if both f_{1}, f_{2} are constant on M, then M is simply a Riemannian product manifold and if anyone of the functions is constant, then M is a single warped product manifold. If neither f_{1} nor f_{2} is constant, then M is a proper bi-warped product manifold.

Let $M=M_{1} \times f_{1} M_{2} \times f_{2} M_{3}$ be a warped product submanifold of \bar{M}. Then we have [35]

$$
\nabla_{X} Z=\sum_{i=1}^{2}\left(X\left(\ln f_{i}\right)\right) Z^{i}
$$

for any $X \in \mathcal{D}^{1}$, the tangent space of M_{1} and $Z \in \Gamma(T N)$, where $N={ }_{f_{1}} M_{2} \times{ }_{f_{2}} M_{3}$ and Z^{i} is M_{i} components of Z for each $i=2,3$ and ∇ is the Levi-Civita connection on M.

3. Submanifolds of \bar{M}

In this section we consider submanifold M of \bar{M} such that

$$
\begin{aligned}
T M & =\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}} \oplus\langle\xi\rangle \\
T^{\perp} M & =Q \mathcal{D}^{\theta_{1}} \oplus Q \mathcal{D}^{\theta_{2}} \oplus Q \mathcal{D}^{\theta_{3}} \oplus \nu
\end{aligned}
$$

where ν is a ϕ-invariant normal subbundle of $T^{\perp} M$.
If M is such submanifold of \bar{M}, then for any $X \in \Gamma(T M)$ we have

$$
\begin{equation*}
X=T_{1} X+T_{2} X+T_{3} X \tag{3.1}
\end{equation*}
$$

where T_{1}, T_{2} and T_{3} are the projections from $T M$ onto $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$, respectively.
If we put $P_{1}=T_{1} \circ P, P_{2}=T_{2} \circ P$ and $P_{3}=T_{3} \circ P$ then from (3.1), we get

$$
\begin{equation*}
\phi X=P_{1} X+P_{2} X+P_{3} X+Q X \tag{3.2}
\end{equation*}
$$

for $X \in \Gamma(T M)$.
From (2.9) and (3.2), we get

$$
\begin{equation*}
P_{i}^{2}=\cos ^{2} \theta_{i}(-I+\eta \otimes \xi), \quad \text { for } i=1,2,3 . \tag{3.3}
\end{equation*}
$$

Now for the sake of further study we obtain the following useful results.
Lemma 3.1. Let M be a submanifold of \bar{M} such that $T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}}$ and $\xi \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}}\right)$ then the following relations hold:

$$
\begin{align*}
\left(\sin ^{2} \theta_{1}-\sin ^{2} \theta_{3}\right) g\left(\nabla_{X_{1}} Y_{1}, X_{3}\right)= & g\left(A_{Q P_{1} Y_{1}} X_{3}-A_{Q Y_{1}} P_{3} X_{3}, X_{1}\right) \tag{3.4}\\
& +g\left(A_{Q P_{3} X_{3}} Y_{1}-A_{Q X_{3}} P_{1} Y_{1}, X_{1}\right), \\
\left(\sin ^{2} \theta_{2}-\sin ^{2} \theta_{3}\right) g\left(\nabla_{X_{2}} Y_{2}, X_{3}\right)= & g\left(A_{Q P_{2} Y_{2}} X_{3}-A_{Q Y_{2}} P_{3} X_{3}, X_{2}\right) \tag{3.5}\\
& +g\left(A_{Q P_{3} X_{3}} Y_{2}-A_{Q X_{3}} P_{2} Y_{2}, X_{2}\right), \\
\left(\sin ^{2} \theta_{2}-\sin ^{2} \theta_{3}\right) g\left(\nabla_{X_{1}} X_{2}, X_{3}\right)= & g\left(A_{Q P_{2} X_{2}} X_{3}-A_{Q X_{2}} P_{3} X_{3}, X_{1}\right) \tag{3.6}\\
& +g\left(A_{Q P_{3} X_{3}} X_{2}-A_{Q X_{3}} P_{2} X_{2}, X_{1}\right),
\end{align*}
$$

$$
\begin{align*}
\left(\sin ^{2} \theta_{1}-\sin ^{2} \theta_{3}\right) g\left(\nabla_{X_{2}} X_{1}, X_{3}\right)= & g\left(A_{Q P_{1} X_{1}} X_{3}-A_{Q X_{1}} P_{3} X_{3}, X_{2}\right) \tag{3.7}\\
& +g\left(A_{Q P_{3} X_{3}} X_{1}-A_{Q X_{3}} P_{1} X_{1}, X_{2}\right),
\end{align*}
$$

for any $X_{1}, Y_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus\langle\xi\rangle\right), X_{2}, Y_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$ and $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.
Proof. For any $X_{1}, Y_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus\langle\xi\rangle\right)$ and $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$, we have from (2.3), (2.5) and (3.2) that

$$
\begin{aligned}
g\left(\nabla_{X_{1}} Y_{1}, X_{3}\right)= & g\left(\bar{\nabla}_{X_{1}} P_{1} Y_{1}, \phi X_{3}\right)+g\left(\bar{\nabla}_{X_{1}} Q Y_{1}, \phi X_{3}\right) \\
= & -g\left(\phi \bar{\nabla}_{X_{1}} P_{1} Y_{1}, X_{3}\right)+g\left(\bar{\nabla}_{X_{1}} Q Y_{1}, P_{3} X_{3}\right)+g\left(\bar{\nabla}_{X_{1}} Q Y_{1}, Q X_{3}\right) \\
= & -g\left(\bar{\nabla}_{X_{1}} P_{1}^{2} Y_{1}, X_{3}\right)-g\left(\bar{\nabla}_{X_{1}} Q P_{1} Y_{1}, X_{3}\right)+g\left(\left(\bar{\nabla}_{X_{1}} \phi\right) P_{1} Y_{1}, X_{3}\right) \\
& +g\left(\bar{\nabla}_{X_{1}} Q Y_{1}, P_{3} X_{3}\right)-g\left(\bar{\nabla}_{X_{1}} Q X_{3}, \phi Y_{1}\right)+g\left(\bar{\nabla}_{X_{1}} Q X_{3}, P_{1} Y_{1}\right) \\
= & -g\left(\bar{\nabla}_{X_{1}} P_{1}^{2} Y_{1}, X_{3}\right)-g\left(\bar{\nabla}_{X_{1}} Q P_{1} Y_{1}, X_{3}\right)+g\left(\bar{\nabla}_{X_{1}} Q Y_{1}, P_{3} X_{3}\right) \\
& +g\left(\bar{\nabla}_{X_{1}} b Q X_{3}, Y_{1}\right)+g\left(\bar{\nabla}_{X_{1}} c Q X_{3}, Y_{1}\right)+g\left(\bar{\nabla}_{X_{1}} Q X_{3}, P_{1} Y_{1}\right) .
\end{aligned}
$$

Using (2.7), (2.10) and (3.3), the above equation reduces to

$$
\begin{aligned}
g\left(\nabla_{X_{1}} Y_{1}, X_{3}\right)= & \cos ^{2} \theta_{1} g\left(\bar{\nabla}_{X_{1}} Y_{1}, X_{3}\right)+g\left(A_{Q P_{1} Y_{1}} X_{3}, X_{1}\right)-g\left(A_{Q Y_{1}} P_{3} X_{3}, X_{1}\right) \\
& +\sin ^{2} \theta_{3} g\left(\bar{\nabla}_{X_{1}} Y_{1}, X_{3}\right)+g\left(A_{Q P_{3} X_{3}} Y_{1}, X_{1}\right)-g\left(A_{Q X_{3}} P_{1} Y_{1}, X_{1}\right),
\end{aligned}
$$

from which the relation (3.4) follows.
The relations (3.5)-(3.7) follow similarly.
Lemma 3.2. Let M be a submanifold of \bar{M} where $T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}}$ such that $\xi \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}}\right)$. Then the following relations hold:

$$
\begin{align*}
\left(\sin ^{2} \theta_{3}-\sin ^{2} \theta_{1}\right) g\left(\nabla_{X_{3}} Y_{3}, X_{1}\right)= & g\left(A_{Q P_{3} Y_{3}} X_{1}-A_{Q Y_{3}} P_{1} X_{1}, X_{3}\right) \tag{3.8}\\
& +g\left(A_{Q P_{1} X_{1}} Y_{3}-A_{Q X_{1}} P_{3} Y_{3}, X_{3}\right) \\
& +\left(\cos ^{2} \theta_{3}-\cos ^{2} \theta_{1}\right) \eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right), \\
\left(\sin ^{2} \theta_{3}-\sin ^{2} \theta_{2}\right) g\left(\nabla_{X_{3}} Y_{3}, X_{2}\right)= & g\left(A_{Q P_{3} Y_{3} X_{2}}-A_{Q Y_{3}} P_{2} X_{2}, X_{3}\right) \tag{3.9}\\
& +g\left(A_{Q P_{2} X_{2}} Y_{3}-A_{Q X_{2}} P_{3} Y_{3}, X_{3}\right) \\
& +\left(\cos ^{2} \theta_{3}-\cos ^{2} \theta_{2}\right) \eta\left(X_{2}\right) g\left(X_{3}, Y_{3}\right),
\end{align*}
$$

for any $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus\langle\xi\rangle\right), X_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$ and $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.
Proof. For any $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus\langle\xi\rangle\right)$ and $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$, we have from (2.3), (2.5) and (3.2) that

$$
\begin{aligned}
g\left(\nabla_{X_{3}} Y_{3}, X_{1}\right)= & g\left(\bar{\nabla}_{X_{3}} P_{3} Y_{3}, \phi X_{1}\right)+g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, \phi X_{1}\right)-\eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) \\
= & -g\left(\phi \bar{\nabla}_{X_{3}} P_{3} Y_{3}, X_{1}\right)+g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, P_{1} X_{1}\right) \\
& +g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, Q X_{1}\right)-\eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) \\
= & -g\left(\bar{\nabla}_{X_{3}} P_{3}^{2} Y_{3}, X_{1}\right)-g\left(\bar{\nabla}_{X_{3}} Q P_{3} Y_{3}, X_{1}\right)+g\left(\left(\bar{\nabla}_{X_{3}} \phi\right) P_{3} Y_{3}, X_{1}\right) \\
& +g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, P_{1} X_{1}\right)-g\left(\bar{\nabla}_{X_{3}} Q X_{1}, \phi Y_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +g\left(\bar{\nabla}_{X_{3}} Q X_{1}, P_{3} Y_{3}\right)-\eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) \\
= & \cos ^{2} \theta_{3} g\left(\bar{\nabla}_{X_{3}} Y_{3}, X_{1}\right)-\sin 2 \theta_{3} X_{3}\left(\theta_{3}\right) g\left(Y_{3}, X_{1}\right) \\
& +\cos ^{2} \theta_{3} \eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right)-g\left(\bar{\nabla}_{X_{3}} Q P_{3} Y_{3}, X_{1}\right) \\
& +g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, P_{1} X_{1}\right)+g\left(\bar{\nabla}_{X_{3}} b Q X_{1}, Y_{3}\right)+g\left(\bar{\nabla}_{X_{3}} c Q X_{1}, Y_{3}\right) \\
& -g\left(\left(\bar{\nabla}_{X_{3}} \phi\right) Q X_{1}, Y_{3}\right)+g\left(\bar{\nabla}_{X_{3}} Q X_{1}, P_{3} Y_{3}\right)-\eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) .
\end{aligned}
$$

Using (2.5), (2.7), (2.10), orthogonality of the distributions and symmetry of the shape operator, the above equation reduces to

$$
\begin{aligned}
g\left(\nabla_{X_{3}} Y_{3}, X_{1}\right)= & \cos ^{2} \theta_{3} g\left(\bar{\nabla}_{X_{3}} Y_{3}, X_{1}\right)+\cos ^{2} \theta_{3} \eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) \\
& +g\left(A_{Q P_{3} Y_{3}} X_{1}, X_{3}\right)-g\left(A_{Q Y_{3}} P_{1} X_{1}, X_{3}\right) \\
& +\sin ^{2} \theta_{1} g\left(\bar{\nabla}_{X_{1}} Y_{3}, X_{1}\right)+g\left(A_{Q P_{1} X_{1}} Y_{3}, X_{3}\right) \\
& -g\left(A_{Q X_{1}} P_{3} Y_{3}, X_{3}\right)-\cos ^{2} \theta_{1} \eta\left(X_{1}\right) g\left(X_{3}, Y_{3}\right) .
\end{aligned}
$$

Following the same computational procedure for any $X_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$ and $X_{3}, Y_{3} \in$ $\Gamma\left(\mathcal{D}^{\theta_{3}}\right)$ we can establish the relation (3.9). And hence, the lemma is proved.

4. Warped Product Submanifolds of Kenmotsu Manifolds

In this section we study warped product submanifolds of the form $M=M_{4} \times{ }_{f} M_{\theta_{3}}$ of \bar{M} where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$ such that ξ is orthogonal to $M_{\theta_{3}}$. Here $M_{\theta_{1}}, M_{\theta_{2}}$ represents proper slant submanifolds of \bar{M} with slant angles θ_{1}, θ_{2}, respectively and $M_{\theta_{3}}$ represents pointwise-slant submanifolds of \bar{M} with slant function θ_{3}.

Now we construct an example of a non-trivial warped product submanifold M of \bar{M} of the form $M_{4} \times{ }_{f} M_{\theta_{3}}$.
Example 4.1. Consider the Kenmotsu manifold $M=\mathbb{R} \times_{f} \mathbb{C}^{7}$ with the structure (ϕ, ξ, η, g) is given by

$$
\phi\left(\sum_{i=1}^{7}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)+Z \frac{\partial}{\partial t}\right)=\sum_{i=1}^{7}\left(X_{i} \frac{\partial}{\partial y_{i}}-Y_{i} \frac{\partial}{\partial x_{i}}\right),
$$

$\xi=\frac{\partial}{\partial t}, \eta=d t$ and $g=\eta \otimes \eta+\sum_{i=1}^{7}\left(d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right)$. Let M be a submanifold of \bar{M} defined by the immersion χ as follows:

$$
\begin{aligned}
& \chi(u, v, \theta, \phi, r, s, t) \\
= & (u \cos \theta, u \sin \theta, 2 u+3 v, 3 u+2 v, v \cos \phi, v \sin \phi, 3 \theta+5 \phi, 5 \theta+3 \phi, v \cos \theta, v \sin \theta, \\
& u \cos \phi, u \sin \phi, 2 r+5 s, 5 r+2 s, t)
\end{aligned}
$$

Then the local orthonormal frame of $T M$ is spanned by the following:

$$
\begin{aligned}
& Z_{1}=\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial y_{1}}+2 \frac{\partial}{\partial x_{2}}+3 \frac{\partial}{\partial y_{2}}+\cos \phi \frac{\partial}{\partial x_{6}}+\sin \phi \frac{\partial}{\partial y_{6}}, \\
& Z_{2}=3 \frac{\partial}{\partial x_{2}}+2 \frac{\partial}{\partial y_{2}}+\cos \phi \frac{\partial}{\partial x_{3}}+\sin \phi \frac{\partial}{\partial y_{3}}+\cos \theta \frac{\partial}{\partial x_{5}}+\sin \theta \frac{\partial}{\partial y_{5}},
\end{aligned}
$$

$$
\begin{aligned}
& Z_{3}=-u \sin \theta \frac{\partial}{\partial x_{1}}+u \cos \theta \frac{\partial}{\partial y_{1}}+3 \frac{\partial}{\partial x_{4}}+5 \frac{\partial}{\partial y_{4}}-v \sin \theta \frac{\partial}{\partial x_{5}}+v \cos \theta \frac{\partial}{\partial y_{5}}, \\
& Z_{4}=-v \sin \phi \frac{\partial}{\partial x_{3}}+v \cos \phi \frac{\partial}{\partial y_{3}}+5 \frac{\partial}{\partial x_{4}}+3 \frac{\partial}{\partial y_{4}}-u \sin \phi \frac{\partial}{\partial x_{6}}+u \cos \phi \frac{\partial}{\partial y_{6}} \\
& Z_{5}=2 \frac{\partial}{\partial x_{7}}+5 \frac{\partial}{\partial y_{7}}, \quad Z_{6}=5 \frac{\partial}{\partial x_{7}}+2 \frac{\partial}{\partial y_{7}} \quad \text { and } \quad Z_{7}=\frac{\partial}{\partial t} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi Z_{1}=\cos \theta \frac{\partial}{\partial y_{1}}-\sin \theta \frac{\partial}{\partial x_{1}}+2 \frac{\partial}{\partial y_{2}}-3 \frac{\partial}{\partial x_{2}}+\cos \phi \frac{\partial}{\partial y_{6}}-\sin \phi \frac{\partial}{\partial x_{6}}, \\
& \phi Z_{2}=3 \frac{\partial}{\partial y_{2}}-2 \frac{\partial}{\partial x_{2}}+\cos \phi \frac{\partial}{\partial y_{3}}-\sin \phi \frac{\partial}{\partial x_{3}}+\cos \theta \frac{\partial}{\partial y_{5}}-\sin \theta \frac{\partial}{\partial x_{5}}, \\
& \phi Z_{3}=-u \sin \theta \frac{\partial}{\partial y_{1}}-u \cos \theta \frac{\partial}{\partial x_{1}}+3 \frac{\partial}{\partial y_{4}}-5 \frac{\partial}{\partial x_{4}}-v \sin \theta \frac{\partial}{\partial y_{5}}-v \cos \theta \frac{\partial}{\partial x_{5}}, \\
& \phi Z_{4}=-v \sin \phi \frac{\partial}{\partial y_{3}}-v \cos \phi \frac{\partial}{\partial x_{3}}+5 \frac{\partial}{\partial y_{4}}-3 \frac{\partial}{\partial x_{4}}-u \sin \phi \frac{\partial}{\partial y_{6}}-u \cos \phi \frac{\partial}{\partial x_{6}}, \\
& \phi Z_{5}=2 \frac{\partial}{\partial y_{7}}-5 \frac{\partial}{\partial x_{7}} \text { and } \phi Z_{6}=5 \frac{\partial}{\partial y_{7}}-2 \frac{\partial}{\partial x_{7}} .
\end{aligned}
$$

We take, $\mathcal{D}^{\theta_{1}}=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}, D^{\theta_{2}}=\operatorname{Span}\left\{Z_{5}, Z_{6}\right\}$ and $\mathcal{D}^{\theta_{3}}=\operatorname{Span}\left\{Z_{3}, Z_{4}\right\}$. Then it is clear that $\mathcal{D}^{\theta_{1}}$ and $\mathcal{D}^{\theta_{2}}$ are proper slant distributions with slant angles $\cos ^{-1} \frac{1}{3}$ and $\cos ^{-1} \frac{21}{29}$, respectively. Also, $\mathcal{D}^{\theta_{3}}$ is a proper pointwise slant distribution with slant function $\cos ^{-1}\left(\frac{16}{u^{2}+v^{2}+34}\right)$.

Clearly, $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$ are integrable distributions. Let us say that M_{4} and $M_{\theta_{3}}$ are integral submanifolds of $\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle$ and $\mathcal{D}^{\theta_{3}}$, respectively. Then the metric tensor g_{M} of M is given by

$$
\begin{aligned}
g_{M} & =15\left(d u^{2}+d v^{2}\right)+29\left(d r^{2}+d s^{2}\right)+\left(u^{2}+v^{2}+34\right)\left(d \theta^{2}+d \phi^{2}\right) \\
& =g_{M_{4}}+\left(u^{2}+v^{2}+34\right) g_{M_{\theta_{3}}} .
\end{aligned}
$$

Thus $M=M_{4} \times_{f} M_{\theta_{3}}$ is a warped product submanifold of \bar{M} with the warping function $f=\sqrt{u^{2}+v^{2}+34}$.

Next we obtain the following useful lemmas.
Lemma 4.1. Let $M=M_{4} \times{ }_{f} M_{\theta_{3}}$ be a warped product submanifold of \bar{M} such that $\xi \in M_{4}$, where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}, M_{\theta_{1}}, M_{\theta_{2}}$ are proper slant submanifolds and $M_{\theta_{3}}$ is a proper pointwise slant submanifold of \bar{M}, then

$$
\begin{align*}
\xi \ln f & =1 \tag{4.1}\\
g\left(h\left(X_{1}, Y_{1}\right), Q X_{3}\right) & =g\left(h\left(X_{1}, X_{3}\right), Q Y_{1}\right), \tag{4.2}\\
g\left(h\left(X_{2}, Y_{2}\right), Q X_{3}\right) & =g\left(h\left(X_{2}, X_{3}\right), Q Y_{2}\right), \tag{4.3}\\
g\left(h\left(X_{1}, X_{3}\right), Q X_{2}\right) & =g\left(h\left(X_{1}, X_{2}\right), Q X_{3}\right)=g\left(h\left(X_{2}, X_{3}\right), Q X_{1}\right), \tag{4.4}
\end{align*}
$$

for $X_{1}, Y_{1} \in M_{\theta_{1}}, X_{2}, Y_{2} \in M_{\theta_{2}}$ and $X_{3}, Y_{3} \in M_{\theta_{3}}$.

Proof. The proof of (4.1) is similar as in [28].
Now, for $X_{1}, Y_{1} \in M_{\theta_{1}}$ and $X_{3} \in M_{\theta_{3}}$, we have from (2.5) and (3.3) that
(4.5) $g\left(h\left(X_{1}, X_{3}\right), Q Y_{1}\right)=-g\left(\bar{\nabla}_{X 1} P_{3} X_{3}, Y_{1}\right)-g\left(\bar{\nabla}_{X 1} Q X_{3}, Y_{1}\right)-g\left(\bar{\nabla}_{X_{1}} X_{3}, P_{1} Y_{1}\right)$.

Then using (1.1) in (4.5), we get (4.2).
Proceeding the same, for any $X_{2}, Y_{2} \in M_{\theta_{2}}$ and $X_{3} \in M_{\theta_{3}}$, we get (4.2).
Again, for any $X_{1} \in M_{\theta_{1}}, X_{2} \in M_{\theta_{2}}$ and $X_{3} \in M_{\theta_{3}}$ we have from (2.5) and (3.3) that

$$
\begin{equation*}
g\left(h\left(X_{1}, X_{3}\right), Q X_{2}\right)=-g\left(\bar{\nabla}_{X_{3}} P_{1} X_{1}, X_{2}\right)-g\left(\bar{\nabla}_{X_{3}} Q X_{1}, X_{2}\right)-g\left(\bar{\nabla}_{X_{3}} X_{1}, P_{2} X_{2}\right) . \tag{4.6}
\end{equation*}
$$

Using (1.1) in (4.6), we find

$$
\begin{equation*}
g\left(h\left(X_{1}, X_{3}\right), Q X_{2}\right)=g\left(h\left(X_{2}, X_{3}\right), Q X_{1}\right) . \tag{4.7}
\end{equation*}
$$

Also,

$$
\begin{equation*}
g\left(h\left(X_{1}, X_{2}\right), Q X_{3}\right)=-g\left(\bar{\nabla}_{X_{1}} P_{2} X_{2}, X_{3}\right)-g\left(\bar{\nabla}_{X_{1}} P_{2} X_{2}, X_{3}\right)-g\left(\bar{\nabla}_{X_{1}} X_{2}, P_{3} X_{3}\right) . \tag{4.8}
\end{equation*}
$$

Using (1.1) in (4.8), we get

$$
\begin{equation*}
g\left(h\left(X_{1}, X_{2}\right), Q X_{3}\right)=g\left(h\left(X_{1}, X_{3}\right), Q X_{2}\right) . \tag{4.9}
\end{equation*}
$$

Combining (4.7) and (4.9), we obtain (4.4). This completes the proof.
Lemma 4.2. Let $M=M_{4} \times_{f} M_{\theta_{3}}$ be a warped product submanifold of \bar{M} such that $\xi \in M_{4}$, where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}, M_{\theta_{1}}, M_{\theta_{2}}$ are proper slant submanifolds and $M_{\theta_{3}}$ is a proper pointwise slant submanifold of \bar{M}, then

$$
\begin{align*}
& g\left(h\left(X_{3}, X_{1}\right), Q Y_{3}\right)-g\left(h\left(X_{3}, Y_{3}\right), Q X_{1}\right) \tag{4.10}\\
= & \left\{\left(X_{1} \ln f\right)-\eta\left(X_{1}\right)\right\} g\left(P_{3} X_{3}, Y_{3}\right)-\left(P_{1} X_{1} \ln f\right) g\left(X_{3}, Y_{3}\right), \\
& g\left(h\left(X_{3}, X_{2}\right), Q Y_{3}\right)-g\left(h\left(X_{3}, Y_{3}\right), Q X_{2}\right) \tag{4.11}\\
= & \left\{\left(X_{2} \ln f\right)-\eta\left(X_{2}\right)\right\} g\left(P_{3} X_{3}, Y_{3}\right)-\left(P_{2} X_{2} \ln f\right) g\left(X_{3}, Y_{3}\right), \\
& g\left(h\left(X_{3}, Y_{3}\right), Q P_{1} X_{1}\right)-g\left(h\left(P_{3} Y_{3}, X_{3}\right), Q X_{1}\right) \tag{4.12}\\
& +g\left(h\left(X_{1}, X_{3}\right), Q P_{3} Y_{3}\right)-g\left(h\left(P_{1} X_{1}, X_{3}\right), Q Y_{3}\right) \\
= & \left(\cos ^{2} \theta_{1}-\cos ^{2} \theta_{3}\right)\left[\eta\left(X_{1}\right)-\left(X_{1} \ln f\right)\right] g\left(X_{3}, Y_{3}\right), \\
& g\left(h\left(X_{3}, Y_{3}\right), Q P_{2} X_{2}\right)-g\left(h\left(P_{3} Y_{3}, X_{3}\right), Q X_{2}\right) \tag{4.13}\\
& +g\left(h\left(X_{2}, X_{3}\right), Q P_{3} Y_{3}\right)-g\left(h\left(P_{2} X_{2}, X_{3}\right), Q Y_{3}\right) \\
= & \left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{3}\right)\left[\eta\left(X_{2}\right)-\left(X_{2} \ln f\right)\right] g\left(X_{3}, Y_{3}\right),
\end{align*}
$$

for $X_{1} \in M_{\theta_{1}}, X_{2} \in M_{\theta_{2}}$ and $X_{3}, Y_{3} \in M_{\theta_{3}}$.
Proof. From (2.5) and (3.3), we have for $X_{1} \in M_{\theta_{1}}$ and $X_{3}, Y_{3} \in M_{\theta_{3}}$ that

$$
\begin{align*}
g\left(h\left(X_{3}, Y_{3}\right), Q X_{1}\right)= & -g\left(\bar{\nabla}_{X_{3}} X_{1}, P_{3} Y_{3}\right)-g\left(\bar{\nabla}_{X_{3}} Q Y_{3}, X_{1}\right) \tag{4.14}\\
& +\eta\left(X_{1}\right) g\left(\phi X_{3}, Y_{3}\right)+g\left(\bar{\nabla}_{X_{3}} P_{1} X_{1}, Y_{3}\right) .
\end{align*}
$$

Using (2.7) and (1.1) in (4.14), we get (4.10). Following the same procedure, for any $X_{2} \in M_{\theta_{2}}$ and $X_{3}, Y_{3} \in M_{\theta_{3}}$ we easily obtain (4.11).

Next, replacing X_{1} by $P_{1} X_{1}$ and Y_{3} by $P_{3} Y_{3}$ in (4.10), respectively and then adding the obtained equations, we get (4.12). Similarly, replacing X_{2} by $P_{2} X_{2}$ and Y_{3} by $P_{3} Y_{3}$ in (4.11), respectively and then adding the obtained equations, we get (4.13).

5. Characterization

We prove the following theorem.
Theorem 5.1. Let M be a submanifold of \bar{M} such that $T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}}$ with ξ orthogonal to $\mathcal{D}^{\theta_{3}}$, then M is locally a warped product submanifold of the form $M=M_{4} \times_{f} M_{\theta_{3}}$ where $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$ if and only if

$$
\begin{align*}
& A_{Q P_{1} X_{1}} Y_{3}-A_{Q X_{1}} P_{3} Y_{3}+A_{Q P_{3} Y_{3}} X_{1}-A_{Q Y_{3}} P_{1} X_{1} \tag{5.1}\\
= & \left(\cos ^{2} \theta_{3}-\cos ^{2} \theta_{1}\right)\left[X_{1} \mu-\eta\left(X_{1}\right)\right] Y_{3}, \\
& A_{Q P_{2} X_{2}} Y_{3}-A_{Q X_{2}} P_{3} Y_{3}+A_{Q P_{3} Y_{3}} X_{2}-A_{Q Y_{3}} P_{2} X_{2} \tag{5.2}\\
= & \left(\cos ^{2} \theta_{3}-\cos ^{2} \theta_{2}\right)\left[X_{2} \mu-\eta\left(X_{2}\right)\right] Y_{3}, \\
\xi \mu= & 1, \tag{5.3}
\end{align*}
$$

for every $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right)$, $X_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$, $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$ and for some smooth function μ on M satisfying where $\left(Y_{3} \mu\right)=0$ for any $Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.

Proof. Let $M=M_{4} \times{ }_{f} M_{\theta_{3}}$ be a proper warped product submanifold of M such that $M_{4}=M_{\theta_{1}} \times M_{\theta_{2}}$. Denote the tangent space of $M_{\theta_{1}}, M_{\theta_{2}}$ and $M_{\theta_{3}}$ by $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$ respectively. Then from (4.2) we get

$$
\begin{equation*}
g\left(A_{Q P_{1} X_{1}} Y_{3}-A_{Q X_{1}} P_{3} Y_{3}+A_{Q P_{3} Y_{3}} X_{1}-A_{Q Y_{3}} P_{1} X_{1}, X_{1}\right)=0 . \tag{5.4}
\end{equation*}
$$

Similarly, from (4.4) we get

$$
\begin{equation*}
g\left(A_{Q P_{1} X_{1}} Y_{3}-A_{Q X_{1}} P_{3} Y_{3}+A_{Q P_{3} Y_{3}} X_{1}-A_{Q Y_{3}} P_{1} X_{1}, X_{2}\right)=0 . \tag{5.5}
\end{equation*}
$$

So, from (5.4) and (5.5) we conclude that

$$
\begin{equation*}
A_{Q P_{1} X_{1}} Y_{3}-A_{Q X_{1}} P_{3} Y_{3}+A_{Q P_{3} Y_{3}} X_{1}-A_{Q Y_{3}} P_{1} X_{1} \in \mathcal{D}^{\theta_{3}} \tag{5.6}
\end{equation*}
$$

Hence, from (4.12) and (5.6), relation (5.1) follows.
In similar way, in view of (4.3), (4.4) and (4.13) we get (5.2). The relation (5.3) is directly obtained from (4.1).

Conversely, let M be a submanifold of \bar{M} such that $T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}}$ with ξ orthogonal to $\mathcal{D}^{\theta_{3}}$ and the conditions (5.1)-(5.3) satisfied. Then from (3.4) and (3.7), in view of (5.1), respectively we get

$$
\begin{equation*}
g\left(\nabla_{X_{1}} Y_{1}, X_{3}\right)=0 \quad \text { and } \quad g\left(\nabla_{X_{2}} X_{1}, X_{3}\right)=0 \tag{5.7}
\end{equation*}
$$

and also from (3.5), (3.6) in view of (5.2), respectively we get

$$
\begin{equation*}
g\left(\nabla_{X_{2}} Y_{2}, X_{3}\right)=0 \quad \text { and } \quad g\left(\nabla_{X_{1}} X_{2}, X_{3}\right)=0 . \tag{5.8}
\end{equation*}
$$

Thus, from (5.7), (5.8) and the fact that $\nabla_{X_{3}} \xi=0$ we conclude that $g\left(\nabla_{E} F, X_{3}\right)=0$ for every $E, F \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$. Hence the leaves of $\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle$ are totally geodesic in M.

Now, by virtue of (3.8), (5.1) yields

$$
\begin{equation*}
g\left(\left[X_{3}, Y_{3}\right], X_{1}\right)=0 \tag{5.9}
\end{equation*}
$$

and by virtue of (3.9), (5.2) yields

$$
\begin{equation*}
g\left(\left[X_{3}, Y_{3}\right], X_{2}\right)=0 \tag{5.10}
\end{equation*}
$$

Hence, from (5.9), (5.10) and the fact that $h(A, \xi)=0$, for all $A \in T M$, we conclude that

$$
g\left(\left[X_{3}, Y_{3}\right], E\right)=0, \quad \text { for all } X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)
$$

and $E \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$, consequently $\mathcal{D}^{\theta_{3}}$ is integrable.
Let $h^{\theta_{3}}$ be the second fundamental form of $M_{\theta_{3}}$ in \bar{M}. Then for any $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$ and $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right)$, from (3.8), we find

$$
\begin{equation*}
g\left(h^{\theta_{3}}\left(X_{3}, Y_{3}\right), X_{1}\right)=-\left(X_{1} \mu\right) g\left(X_{3}, Y_{3}\right) . \tag{5.11}
\end{equation*}
$$

Similarly, for $X_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$, from (3.9) we get

$$
\begin{equation*}
g\left(h^{\theta_{3}}\left(X_{3}, Y_{3}\right), X_{2}\right)=-\left(X_{2} \mu\right) g\left(X_{3}, Y_{3}\right) \tag{5.12}
\end{equation*}
$$

Again, for any $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$, in view of (5.3) we have

$$
\begin{equation*}
g\left(h^{\theta_{3}}\left(X_{3}, Y_{3}\right), \xi\right)=-(\xi \mu) g\left(X_{3}, Y_{3}\right) \tag{5.13}
\end{equation*}
$$

Hence, from (5.11)-(5.13) we conclude that

$$
g\left(h^{\theta}\left(X_{3}, Y_{3}\right), E\right)=-g(\nabla \mu, E) g\left(X_{3}, Y_{3}\right)
$$

for every $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$ and $E \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus,\langle\xi\rangle\right)$. Consequently, $M_{\theta_{3}}$ is totally umbilical in \bar{M} with mean curvature vector $H^{\theta_{3}}=-\nabla \mu$.

Finally, we will show that $H^{\theta_{3}}$ is parallel with respect to the normal connection ∇^{\perp} of $M_{\theta_{3}}$ in M. We take $E \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{3}} \oplus\langle\xi\rangle\right)$ and $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$, then we have

$$
g\left(\nabla_{X_{3}}^{\perp} \boldsymbol{\nabla} \mu, E\right)=g\left(\nabla_{X_{3}} \nabla^{\theta_{1}} \mu, X_{1}\right)+g\left(\nabla_{X_{3}} \nabla^{\theta_{2}} \mu, X_{2}\right)+g\left(\nabla_{X_{3}} \nabla^{\xi} \mu, \xi\right),
$$

where $\boldsymbol{\nabla}^{\theta_{1}}, \boldsymbol{\nabla}^{\theta_{2}}$ and $\boldsymbol{\nabla}^{\xi}$ are the gradient components of μ on M along $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\langle\xi\rangle$ respectively. Then by the property of Riemannian metric, the above equation reduces to

$$
\begin{aligned}
g\left(\nabla_{U}^{\perp} \boldsymbol{\nabla} \mu, E\right)= & X_{3} g\left(\boldsymbol{\nabla}^{\theta_{1}} \mu, X_{1}\right)-g\left(\boldsymbol{\nabla}^{\theta_{1}} \mu, \nabla_{X_{3}} X_{1}\right)+X_{3} g\left(\boldsymbol{\nabla}^{\theta_{2}} \mu, X_{2}\right) \\
& -g\left(\boldsymbol{\nabla}^{\theta_{2}} \mu, \nabla_{X_{3}} X_{2}\right)+X_{3} g\left(\boldsymbol{\nabla}^{\xi} \mu, \xi\right)-g\left(\boldsymbol{\nabla}^{\xi} \mu, \nabla_{X_{3}} \xi\right) \\
= & X_{3}\left(X_{1} \mu\right)-g\left(\boldsymbol{\nabla}^{\theta_{1}} \mu,\left[X_{3}, X_{1}\right]\right)-g\left(\boldsymbol{\nabla}^{\theta_{1}} \mu, \nabla_{X_{1}} X_{3}\right) \\
& +X_{3}\left(X_{2} \mu\right)-g\left(\boldsymbol{\nabla}^{\theta_{2}} \mu,\left[X_{3}, X_{2}\right]\right)-g\left(\boldsymbol{\nabla}^{\theta_{2}} \mu, \nabla_{X_{2}} X_{3}\right) \\
& +X_{3}(\xi \mu)-g\left(\boldsymbol{\nabla}^{\xi} \mu,\left[X_{3}, \xi\right]\right)-g\left(\boldsymbol{\nabla}^{\xi} \mu, \nabla_{\xi} X_{3}\right) \\
= & X_{1}\left(X_{3} \mu\right)+g\left(\nabla_{X_{1}} \boldsymbol{\nabla}^{\theta_{1}} \mu, X_{3}\right)+X_{2}\left(X_{3} \mu\right)
\end{aligned}
$$

$$
\begin{aligned}
& +g\left(\nabla_{X_{2}} \nabla^{\theta_{2}} \mu, X_{3}\right)+\xi\left(X_{3} \mu\right)-g\left(\nabla_{\xi} \nabla^{\xi} \mu, X_{3}\right) \\
= & 0
\end{aligned}
$$

since $\left(X_{3} \mu\right)=0$ for every $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$ and $\nabla_{X_{1}} \boldsymbol{\nabla}^{\theta_{1}} \mu+\nabla_{X_{2}} \nabla^{\theta_{2}} \mu+\nabla_{\xi} \boldsymbol{\nabla}^{\xi} \mu=\nabla_{E} \boldsymbol{\nabla} \mu$ is orthogonal to $\mathcal{D}^{\theta_{3}}$ for any $E \in \Gamma\left(\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus\langle\xi\rangle\right)$ and $\nabla \mu$ is the gradient along M_{4} and M_{4} is totally geodesic in \bar{M}. Hence, the mean curvature vector $H^{\theta_{3}}$ of $M_{\theta_{3}}$ is parallel. Thus, $M_{\theta_{3}}$ is an extrinsic sphere in M. Hence, by Hiepko's Theorem (see [14]), M is locally a warped product submanifold. Thus, the proof is complete.

6. Bi-Warped Product Submanifolds

In this section we have studied bi-warped product submanifolds $M=M_{\theta_{1}} \times{ }_{f_{1}}$ $M_{\theta_{2}} \times f_{f_{2}} M_{\theta_{3}}$ of \bar{M}, where $M_{\theta_{1}}, M_{\theta_{2}}, M_{\theta_{3}}$ are pointwise slant submanifolds of \bar{M} and an supporting example has been constructed. We denote $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}$ as the tangent spaces of $M_{\theta_{1}}, M_{\theta_{2}}, M_{\theta_{3}}$, respectively.

Then we write

$$
T M=\mathcal{D}^{\theta_{1}} \oplus \mathcal{D}^{\theta_{2}} \oplus \mathcal{D}^{\theta_{3}} \oplus\langle\xi\rangle
$$

and

$$
T^{\perp} M=Q \mathcal{D}^{\theta_{1}} \oplus Q \mathcal{D}^{\theta_{2}} \oplus Q \mathcal{D}^{\theta_{3}}
$$

Example 6.1. Consider the Kenmotsu manifold $M=\mathbb{R} \times_{f} \mathbb{C}^{10}$ with the structure (ϕ, ξ, η, g) is given by

$$
\phi\left(\sum_{i=1}^{10}\left(X_{i} \frac{\partial}{\partial x_{i}}+Y_{i} \frac{\partial}{\partial y_{i}}\right)+Z \frac{\partial}{\partial t}\right)=\sum_{i=1}^{10}\left(X_{i} \frac{\partial}{\partial y_{i}}-Y_{i} \frac{\partial}{\partial x_{i}}\right),
$$

$\xi=\frac{\partial}{\partial t}, \eta=d t$ and $g=\eta \otimes \eta+\sum_{i=1}^{10}\left(d x^{i} \otimes d x^{i}+d y^{i} \otimes d y^{i}\right)$. Let M be a submanifold of \bar{M} defined by the immersion χ as follows:

$$
\chi(u, v, \theta, \phi, r, s, t)
$$

$=(u \cos \theta, u \sin \theta, v \cos \phi, v \sin \phi, 3 \theta+5 \phi, 5 \theta+3 \phi, v \cos \theta, v \sin \theta, u \cos \phi, u \sin \phi, u \cos r$,
$v \cos s, u \sin r, v \sin s, 3 r+2 s, 2 r+3 s, u \cos s, v \cos r, u \sin s, v \sin r, t)$.
Then the local orthonormal frame of $T M$ is spanned by the following:

$$
\begin{aligned}
Z_{1}= & \cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial y_{1}}+\cos \phi \frac{\partial}{\partial x_{5}}+\sin \phi \frac{\partial}{\partial y_{5}} \\
& +\cos r \frac{\partial}{\partial x_{6}}+\sin r \frac{\partial}{\partial x_{7}}+\cos s \frac{\partial}{\partial x_{9}}+\sin s \frac{\partial}{\partial x_{10}}, \\
Z_{2}= & \cos \phi \frac{\partial}{\partial x_{2}}+\sin \phi \frac{\partial}{\partial y_{2}}+\cos \theta \frac{\partial}{\partial x_{4}}+\sin \theta \frac{\partial}{\partial y_{4}} \\
& +\cos s \frac{\partial}{\partial y_{6}}+\sin s \frac{\partial}{\partial y_{7}}+\cos r \frac{\partial}{\partial y_{9}}+\sin r \frac{\partial}{\partial y_{10}}, \\
Z_{3}= & -u \sin \theta \frac{\partial}{\partial x_{1}}+u \cos \theta \frac{\partial}{\partial y_{1}}+3 \frac{\partial}{\partial x_{3}}+5 \frac{\partial}{\partial y_{3}}-v \sin \theta \frac{\partial}{\partial x_{4}}+v \cos \theta \frac{\partial}{\partial y_{4}},
\end{aligned}
$$

$$
\begin{aligned}
& Z_{4}=-v \sin \phi \frac{\partial}{\partial x_{2}}+v \cos \phi \frac{\partial}{\partial y_{2}}+5 \frac{\partial}{\partial x_{3}}+3 \frac{\partial}{\partial y_{3}}-u \sin \phi \frac{\partial}{\partial x_{5}}+u \cos \phi \frac{\partial}{\partial y_{5}} \\
& Z_{5}=-u \sin r \frac{\partial}{\partial x_{6}}+u \cos r \frac{\partial}{\partial x_{7}}+3 \frac{\partial}{\partial x_{8}}+2 \frac{\partial}{\partial y_{8}}-v \sin r \frac{\partial}{\partial y_{9}}+v \cos r \frac{\partial}{\partial y_{10}}, \\
& Z_{6}=V-X v \sin s \frac{\partial}{\partial y_{6}}+v \cos s \frac{\partial}{\partial y_{7}}+2 \frac{\partial}{\partial x_{8}}+3 \frac{\partial}{\partial y_{8}}-u \sin s \frac{\partial}{\partial x_{9}}+u \cos s \frac{\partial}{\partial x_{10}}
\end{aligned}
$$

and

$$
Z_{7}=\frac{\partial}{\partial t}
$$

Then

$$
\begin{aligned}
\phi Z_{1}= & \cos \theta \frac{\partial}{\partial y_{1}}-\sin \theta \frac{\partial}{\partial x_{1}}+\cos \phi \frac{\partial}{\partial y_{5}}-\sin \phi \frac{\partial}{\partial x_{5}} \\
& +\cos r \frac{\partial}{\partial y_{6}}+\sin r \frac{\partial}{\partial y_{7}}+\cos s \frac{\partial}{\partial y_{9}}+\sin s \frac{\partial}{\partial y_{10}}, \\
\phi Z_{2}= & \cos \phi \frac{\partial}{\partial y_{2}}-\sin \phi \frac{\partial}{\partial x_{2}}+\cos \theta \frac{\partial}{\partial y_{4}}-\sin \theta \frac{\partial}{\partial x_{4}} \\
& -\cos s \frac{\partial}{\partial x_{6}}-\sin s \frac{\partial}{\partial x_{7}}-\cos r \frac{\partial}{\partial x_{9}}-\sin r \frac{\partial}{\partial x_{10}}, \\
\phi Z_{3}= & -u \sin \theta \frac{\partial}{\partial y_{1}}-u \cos \theta \frac{\partial}{\partial x_{1}}+3 \frac{\partial}{\partial y_{3}}-5 \frac{\partial}{\partial x_{3}}-v \sin \theta \frac{\partial}{\partial y_{4}}-v \cos \theta \frac{\partial}{\partial x_{4}}, \\
\phi Z_{4}= & -v \sin \phi \frac{\partial}{\partial y_{2}}-v \cos \phi \frac{\partial}{\partial x_{2}}+5 \frac{\partial}{\partial y_{3}}-3 \frac{\partial}{\partial x_{3}}-u \sin \phi \frac{\partial}{\partial y_{5}}-u \cos \phi \frac{\partial}{\partial x_{5}}, \\
\phi Z_{5}= & -u \sin r \frac{\partial}{\partial y_{6}}+u \cos r \frac{\partial}{\partial y_{7}}+3 \frac{\partial}{\partial y_{8}}-2 \frac{\partial}{\partial x_{8}}+v \sin r \frac{\partial}{\partial x_{9}}-v \cos r \frac{\partial}{\partial x_{10}}, \\
\phi Z_{6}= & v \sin s \frac{\partial}{\partial x_{6}}-v \cos s \frac{\partial}{\partial x_{7}}+2 \frac{\partial}{\partial y_{8}}-3 \frac{\partial}{\partial x_{8}}-u \sin s \frac{\partial}{\partial y_{9}}+u \cos s \frac{\partial}{\partial y_{10}} .
\end{aligned}
$$

We take $\mathcal{D}^{\theta_{1}}=\operatorname{Span}\left\{Z_{1}, Z_{2}\right\}, \mathcal{D}^{\theta_{2}}=\operatorname{Span}\left\{Z_{3}, Z_{4}\right\}$ and $\mathcal{D}^{\theta_{3}}=\operatorname{Span}\left\{Z_{5}, Z_{6}\right\}$. Then it is clear that $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$ are proper pointwise slant distributions with slant functions $\cos ^{-1}\left\{\frac{1}{2} \cos (r-s)\right\}, \cos ^{-1}\left(\frac{16}{u^{2}+v^{2}+34}\right)$ and $\cos ^{-1}\left(\frac{5}{u^{2}+v^{2}+13}\right)$, respectively. Clearly, $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$ are integrable distributions. Let us say that $M_{\theta_{1}}, M_{\theta_{2}}$ and $M_{\theta_{3}}$ are integral submanifolds of $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$, respectively. Then the metric tensor g_{M} of M is given by

$$
\begin{aligned}
g_{M} & =4\left(d u^{2}+d v^{2}\right)+\left(u^{2}+v^{2}+34\right)\left(d \theta^{2}+d \phi^{2}\right)+\left(u^{2}+v^{2}+13\right)\left(d r^{2}+d s^{2}\right) \\
& =g_{M_{\theta_{1}}}+\left(u^{2}+v^{2}+34\right) g_{M_{\theta_{2}}}+\left(u^{2}+v^{2}+13\right) g_{M_{\theta_{3}}} .
\end{aligned}
$$

Thus, $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times_{f_{2}} M_{\theta_{3}}$ is a bi-warped product submanifold of \bar{M} with the warping functions $f_{1}=\sqrt{u^{2}+v^{2}+34}$ and $f_{2}=\sqrt{u^{2}+v^{2}+13}$.

Proposition 6.1 ([33]). Let $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M}. Then M is a single warped product if ξ is orthogonal to $\mathcal{D}^{\theta_{1}}$.

Proposition 6.2 ([33]). Let $M=M_{\theta_{1}} \times_{f_{1}} M_{\theta_{2}} \times_{f_{2}} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M} such that ξ such that M is tangent to $M_{\theta_{1}}$. Then

$$
\begin{equation*}
\xi\left(\ln f_{i}\right)=1, \quad \text { for all } i=1,2 . \tag{6.1}
\end{equation*}
$$

Lemma 6.1. Let $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$. Then

$$
\begin{align*}
g\left(h\left(X_{1}, Y_{1}\right), Q X_{3}\right) & =g\left(h\left(X_{1}, X_{3}\right), Q Y_{1}\right), \tag{6.2}\\
g\left(h\left(X_{2}, Y_{2}\right), Q X_{3}\right) & =g\left(h\left(X_{1}, X_{3}\right), Q Y_{2}\right), \tag{6.3}\\
g\left(h\left(X_{1}, X_{2}\right), Q X_{3}\right) & =g\left(h\left(X_{1}, X_{3}\right), Q X_{2}\right), \tag{6.4}
\end{align*}
$$

for every $X_{1}, Y_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right), X_{2}, Y_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$ and $X_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.
Proof. Proof is similar to the proof of Lemma 4.1.
Lemma 6.2. Let $M=M_{\theta_{1}} \times f_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$. Then

$$
\begin{align*}
& g\left(h\left(X_{2}, Y_{2}\right), Q X_{1}\right)-g\left(h\left(X_{1}, X_{2}\right), Q Y_{2}\right) \tag{6.5}\\
= & \left(P_{1} X_{1} \ln f_{1}\right) g\left(X_{2}, Y_{2}\right)+\left[X_{1}\left(\ln f_{1}\right)-\eta\left(X_{1}\right)\right] g\left(X_{2}, P_{2} Y_{2}\right), \\
& g\left(h\left(X_{3}, Y_{3}\right), Q X_{1}\right)-g\left(h\left(X_{1}, X_{3}\right), Q Y_{3}\right) \tag{6.6}\\
= & \left(P_{1} X_{1} \ln f_{2}\right) g\left(X_{3}, Y_{3}\right)+\left[X_{1}\left(\ln f_{2}\right)-\eta\left(X_{1}\right)\right] g\left(X_{3}, P_{3} Y_{3}\right), \\
& g\left(h\left(X_{3}, Y_{3}\right), Q X_{2}\right)-g\left(h\left(X_{2}, X_{3}\right), Q Y_{3}\right) \tag{6.7}\\
= & \left(P_{2} X_{2} \ln f_{2}\right) g\left(X_{3}, Y_{3}\right)+X_{2}\left(\ln f_{2}\right) g\left(X_{3}, P_{3} Y_{3}\right),
\end{align*}
$$

for every $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right)$, $X_{2}, Y_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$ and $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.
Proof. Proof is similar to the proof of Lemma 4.2.
Lemma 6.3. Let $M=M_{\theta_{1}} \times f_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$. Then

$$
\begin{align*}
& g\left(h\left(X_{1}, Y_{2}\right), Q P_{2} X_{2}\right)-g\left(h\left(X_{1}, P_{2} X_{2}\right), Q Y_{2}\right) \tag{6.8}\\
= & 2 \cos ^{2} \theta_{2}\left\{\left(X_{1} \ln f_{1}\right)-\eta\left(X_{1}\right)\right\} g\left(X_{2}, Y_{2}\right), \\
& g\left(h\left(X_{1}, X_{3}\right), Q P_{3} Y_{3}\right)-g\left(h\left(X_{1}, P_{3} X_{3}\right), Q Y_{3}\right) \tag{6.9}\\
= & 2 \cos ^{2} \theta_{3}\left\{\left(X_{1} \ln f_{2}\right)-\eta\left(X_{1}\right)\right\} g\left(X_{3}, Y_{3}\right), \\
& g\left(h\left(X_{2}, X_{3}\right), Q P_{3} Y_{3}\right)-g\left(h\left(X_{2}, P_{3} X_{3}\right), Q Y_{3}\right) \tag{6.10}\\
= & 2 \cos ^{2} \theta_{3}\left(X_{2} \ln f_{2}\right) g\left(X_{3}, Y_{3}\right),
\end{align*}
$$

for every $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right), X_{2}, Y_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$ and $X_{3}, Y_{3} \in \Gamma\left(\mathcal{D}^{\theta_{3}}\right)$.
Proof. By polarization of (6.5), we get

$$
\begin{align*}
g\left(h\left(X_{2}, Y_{2}\right), Q X_{1}\right)-g\left(h\left(X_{1}, Y_{2}\right), Q Z\right)= & \left(P_{1} X_{1} \ln f_{1}\right) g\left(X_{2}, Y_{2}\right) \tag{6.11}\\
& +\left[X_{1}\left(\ln f_{1}\right)-\eta\left(X_{1}\right)\right] g\left(X_{2}, Y_{2}\right) .
\end{align*}
$$

Subtracting (6.11) from (6.4), we find

$$
\begin{equation*}
g\left(h\left(X_{1}, Y_{2}\right), Q X_{2}\right)-g\left(h\left(X_{1}, X_{2}\right), Q Y_{2}\right)=2\left[X_{1}\left(\ln f_{1}\right)-\eta\left(X_{1}\right)\right] g\left(X_{2}, P_{2} Y_{2}\right) . \tag{6.12}
\end{equation*}
$$

Replacing X_{2} by $P_{2} X_{2}$ in (6.12), we get (6.8). Similarly, (6.9) follows from (6.6) and (6.10) follows from (6.7).

Theorem 6.1. Let $M=M_{\theta_{1}} \times f_{f_{1}} M_{\theta_{2}} \times f_{2} M_{\theta_{3}}$ be a bi-warped product submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$. Then M can be $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{3}}$ mixed totally geodesic but cannot be $\mathcal{D}^{\theta_{2}}-\mathcal{D}^{\theta_{3}}$ mixed totally geodesic.

Proof. The theorem follows from Lemma 6.3.

7. Inequality

In this section, we establish a Chen-type inequality on a bi-warped product submanifold $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times f_{f_{2}} M_{\theta_{3}}$ of \bar{M} of dimension n such that ξ is tangent to $M_{\theta_{1}}$. We take $\operatorname{dim} M_{\theta_{1}}=2 p+1$, $\operatorname{dim} M_{\theta_{2}}=2 q$, $\operatorname{dim} M_{\theta_{3}}=2 s$ and their corresponding tangent spaces are $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$, respectively. Assume that $\left\{e_{1}, e_{2}, \ldots, e_{p}, e_{p+1}=\sec \theta_{1} P_{1} e_{1}, \ldots, e_{2 p}=\sec \theta_{1} P_{1} e_{p}, e_{2 p+1}=\xi\right\},\left\{e_{2 p+2}=\right.$ $\left.e_{1}^{*}, \ldots, e_{2 p+q+1}=e_{q}^{*}, e_{2 p+q+2}=e_{q+1}^{*}=\sec \theta_{2} P_{2} e_{1}^{*}, \ldots, e_{2 p+2 q+1}=e_{2 q}^{*}=\sec \theta_{2} P_{2} e_{q}^{*}\right\}$ and $\left\{e_{2 p+2 q+2}=\hat{e}_{1}, \ldots, e_{2 p+2 q+s+1}=\hat{e}_{s}, e_{2 p+2 q+s+2}=\hat{e}_{s+1}=\sec \theta_{3} P_{3} \hat{e}_{1}, \ldots, e_{2 p+2 q+2 s+1}=\right.$ $\left.\hat{e}_{2 s}=\sec \theta_{3} P_{3} \hat{e}_{s}\right\}$ are local orthonormal frames of $\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{3}}$, respectively. Then the local orthonormal frames for $Q \mathcal{D}^{\theta_{1}}, Q \mathcal{D}^{\theta_{2}}, Q \mathcal{D}^{\theta_{3}}$ and ν are $\left\{\tilde{e}_{1}=\csc \theta_{1} Q e_{1}, \ldots\right.$, $\left.\tilde{e}_{p}=\csc \theta_{1} Q e_{p}, \tilde{e}_{p+1}=\csc \theta_{1} \sec \theta_{1} Q P_{1} e_{1}, \ldots, \tilde{e}_{2 p} \csc \theta_{1} \sec \theta_{1} Q P_{1} e_{p}\right\},\left\{\tilde{e}_{2 p+1}=\tilde{e}_{1}^{*}=\right.$ $\csc \theta_{2} Q e_{1}^{*}, \ldots, \tilde{e}_{2 p+q}=\tilde{e}_{q}^{*}=\csc \theta_{2} Q e_{q}^{*}, \tilde{e}_{2 p+q+1}=\tilde{e}_{q+1}^{*}=\csc \theta_{2} \sec \theta_{2} Q P_{2} e_{1}^{*}, \ldots, \tilde{e}_{2 p+2 q}$ $\left.=\tilde{e}_{2 q}^{*}=\csc \theta_{2} \sec \theta_{2} Q P_{2} e_{q}^{*}\right\},\left\{\tilde{e}_{2 p+2 q+1}=\tilde{\hat{e}}_{1}=\csc \theta_{3} Q \hat{e}_{1}, \ldots, \tilde{e}_{2 p+2 q+s}=\tilde{\hat{e}}_{s}=\csc \theta_{3} Q \hat{e}_{s}\right.$, $\left.\tilde{e}_{2 p+2 q+s+1}=\tilde{\hat{e}}_{s+1}=\csc \theta_{3} \sec \theta_{3} Q P_{3} \hat{e}_{1}, \ldots, \tilde{e}_{2 p+2 q+2 s}=\tilde{\hat{e}}_{2 s}=\csc \theta_{3} \sec \theta_{3} Q P_{3} \hat{e}_{s}\right\}$ and $\left\{\tilde{e}_{2 p+2 q+2 s+1}, \ldots, \tilde{e}_{2 m+1}\right\}$ of dimensions $2 p, 2 q, 2 s$ and $(2 m+1-n-2 p-2 q-2 s)$, respectively.
Theorem 7.1. Let $M=M_{\theta_{1}} \times{ }_{f_{1}} M_{\theta_{2}} \times{ }_{f_{2}} M_{\theta_{3}}$ be both $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{3}}$ mixed totally geodesic bi-warped product submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$. Then the squared norm of the second fundamental form satisfies

$$
\begin{align*}
\|h\|^{2} \geq & 2 q \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)\left(\left\|\boldsymbol{\nabla} \ln f_{1}\right\|^{2}-1\right) \tag{7.1}\\
& +2 s \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{3}\right)\left(\left\|\boldsymbol{\nabla} \ln f_{2}\right\|^{2}-1\right)
\end{align*}
$$

where $2 q=\operatorname{dim} M_{\theta_{1}}, 2 s=\operatorname{dim} M_{\theta_{3}}, \nabla \ln f_{1}$ and $\boldsymbol{\nabla} \ln f_{2}$ are the gradients of warping function $\ln f_{1}$ and $\ln f_{2}$ along $M_{\theta_{1}}$ and $M_{\theta_{2}}$, respectively.

If the equality sign of (7.1) holds, then $M_{\theta_{1}}$ is totally geodesic and $M_{\theta_{2}}, M_{\theta_{3}}$ are totally umbilical submanifolds of \bar{M}.

Proof. From the definition of h, we have

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{2 p+1} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{7.2}
\end{equation*}
$$

Now by decomposing (7.2) in our constructed frame fields, we get

$$
\begin{align*}
\|h\|^{2}= & \sum_{r=n+1}^{2 m+1} \sum_{i, j=1}^{2 p+1} g\left(h\left(e_{i}, e_{j}\right), \tilde{e}_{r}\right)^{2}+2 \sum_{r=n+1}^{2 m+1} \sum_{i=1}^{2 p+1} \sum_{j=1}^{2 q} g\left(h\left(e_{i}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{r=n+1}^{2 m+1} \sum_{i=1}^{2 p+1} \sum_{j=1}^{2 s} g\left(h\left(e_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=n+1}^{2 m+1} \sum_{i, j=1}^{2 q} g\left(h\left(e_{i}^{*}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \tag{7.3}\\
& +2 \sum_{r=n+1}^{2 m+1} \sum_{i=1}^{2 q} \sum_{j=1}^{2 s} g\left(h\left(e_{i}^{*}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=n+1}^{2 m+1} \sum_{i, j=1}^{2 s} g\left(h\left(\hat{e}_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2} .
\end{align*}
$$

Neglecting the ν component terms of (7.3), we obtain

$$
\begin{align*}
\mid h \|^{2} \geq & \sum_{r=1}^{2 p} \sum_{i, j=1}^{2 p+1} g\left(h\left(e_{i}, e_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=1}^{2 q} \sum_{i, j=1}^{2 p+1} g\left(h\left(e_{i}, e_{j}\right), \tilde{e}_{r}\right)^{2} \tag{7.4}\\
& +\sum_{r=1}^{2 s} \sum_{i, j=1}^{2 p+1} g\left(h\left(e_{i}, e_{j}\right), \tilde{e}_{r}\right)^{2}+2 \sum_{i, r=1}^{2 p} \sum_{j=1}^{2 q} g\left(h\left(e_{i}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{r, j=1}^{2 q} \sum_{i=1}^{2 p} g\left(h\left(e_{i}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2}+2 \sum_{r=1}^{2 s} \sum_{i=1}^{2 p} \sum_{j=1}^{2 q} g\left(h\left(e_{i}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{i, r=1}^{2 p} \sum_{j=1}^{2 s} g\left(h\left(e_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+2 \sum_{r=1}^{2 q} \sum_{i=1}^{2 p} \sum_{j=1}^{2 s} g\left(h\left(e_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{r, j=1}^{2 s} \sum_{i=1}^{2 p} g\left(h\left(e_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=1}^{2 p} \sum_{i, j=1}^{2 q} g\left(h\left(e_{i}^{*}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \\
& +\sum_{i, j, r=1}^{2 q} g\left(h\left(e_{i}^{*}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=1}^{2 s} \sum_{i, j=1}^{2 q} g\left(h\left(e_{i}^{*}, e_{j}^{*}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{r=1}^{2 p} \sum_{i=1}^{2 q} \sum_{j=1}^{2 s} g\left(h\left(e_{i}^{*}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+2 \sum_{i, r=1}^{2 q} \sum_{j=1}^{2 s} g\left(h\left(e_{i}^{*}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2} \\
& +2 \sum_{j, r=1}^{2 s} \sum_{i=1}^{2 q} g\left(h\left(e_{i}^{*}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{r=1}^{2 p} \sum_{i, j=1}^{2 s} g\left(h\left(\hat{e}_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2} \\
& +\sum_{r=1}^{2 q} \sum_{i, j=1}^{2 s} g\left(h\left(\hat{e}_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2}+\sum_{i, j, r=1}^{2 s} g\left(h\left(\hat{e}_{i}, \hat{e}_{j}\right), \tilde{e}_{r}\right)^{2} .
\end{align*}
$$

In view of Lemma (6.1), the second, third and thirteenth terms are equal to zero. Using the $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{3}}$ mixed totally geodesic condition, seventh to thirteenth terms are also equal to zero. Also we can not find any relation for $g\left(h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right), Q \mathcal{D}^{\theta_{1}}\right)$, $g\left(h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{1}}\right), Q \mathcal{D}^{\theta_{2}}\right), \quad g\left(h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{2}}\right), Q \mathcal{D}^{\theta_{3}}\right), \quad g\left(h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right), Q \mathcal{D}^{\theta_{3}}\right), \quad g\left(h\left(\mathcal{D}^{\theta_{3}}, \mathcal{D}^{\theta_{3}}\right)\right.$, $\left.Q \mathcal{D}^{\theta_{2}}\right)$ and $g\left(h\left(\mathcal{D}^{\theta_{3}}, \mathcal{D}^{\theta_{3}}\right), Q \mathcal{D}^{\theta_{3}}\right)$, so we neglect first, eleventh, twelfth, fourteenth,
fifteenth, seventeenth and eighteenth terms of (7.4) and obtain

$$
\begin{aligned}
\|h\|^{2} \geq & \csc ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q} g\left(h\left(e_{i}^{*}, e_{j}^{*}\right), Q e_{r}\right)^{2}+\csc ^{2} \theta_{1} \sec ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q} g\left(h\left(e_{i}^{*}, P_{1} e_{j}^{*}\right), Q P_{1} e_{r}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r,=1}^{p} \sum_{i, j=1}^{2 s} g\left(h\left(\hat{e}_{i}, \hat{e}_{j}\right), Q e_{r}\right)^{2}+\csc ^{2} \theta_{1} \sec ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 s} g\left(h\left(\hat{e}_{i}, P_{1} \hat{e}_{j}\right), Q P_{1} e_{r}\right)^{2} .
\end{aligned}
$$

By virtue of Lemma 6.2, the above relation yields

$$
\begin{aligned}
\|h\|^{2} \geq & \csc ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q}\left(P_{1} e_{r} \ln f_{1}\right)^{2} g\left(e_{i}^{*}, e_{j}^{*}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q}\left[\left(e_{r} \ln f_{1}\right)-\eta\left(e_{r}\right)\right]^{2} g\left(e_{i}^{*}, P_{2} e_{j}^{*}\right)^{2} \\
& +\csc ^{2} \theta_{1} \cos ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q}\left(e_{r} \ln f_{1}\right)^{2} g\left(e_{i}^{*}, e_{j}^{*}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r,=1}^{p} \sum_{i, j=1}^{2 q}\left(P_{1} e_{r} \ln f_{1}\right)^{2} g\left(e_{i}^{*}, P_{2} e_{j}^{*}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 s}\left(P_{1} e_{r} \ln f_{2}\right)^{2} g\left(\hat{e}_{i}, \hat{e}_{j}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 q}\left[\left(e_{r} \ln f_{2}\right)-\eta\left(e_{r}\right)\right]^{2} g\left(\hat{e}_{i}, P_{3} \hat{e}_{j}\right)^{2} \\
& +\csc ^{2} \theta_{1} \cos ^{2} \theta_{1} \sum_{r=1}^{p} \sum_{i, j=1}^{2 s}\left(e_{r} \ln f_{2}\right)^{2} g\left(\hat{e}_{i}, \hat{e}_{j}\right)^{2} \\
& +\csc ^{2} \theta_{1} \sum_{r,=1}^{p} \sum_{i, j=1}^{2 s}\left(P_{1} e_{r} \ln f_{2}\right)^{2} g\left(\hat{e}_{i}, P_{3} \hat{e}_{j}\right)^{2} \\
= & 2 q \csc ^{2} \theta_{1}\left(1+\sec ^{2} \theta_{1} \cos ^{2} \theta_{2}\right) \sum_{r=1}^{p}\left(P_{1} e_{r} \ln f_{1}\right)^{2} \\
& +2 q q^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right) \sum_{r=1}^{p}\left[\left(e_{r} \ln f_{1}\right)-\eta\left(e_{r}\right)\right]^{2} \\
& +2 q \csc ^{2} \theta_{1}\left(1+\sec ^{2} \theta_{1} \cos ^{2} \theta_{3}\right) \sum_{r=1}^{p}\left(P_{1} e_{r} \ln f_{2}\right)^{2} \\
& +2 q \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{3}\right) \sum_{r=1}^{p}\left[\left(e_{r} \ln f_{2}\right)-\eta\left(e_{r}\right)\right]^{2} .
\end{aligned}
$$

Thus, we find

$$
\begin{align*}
\|h\|^{2} \geq & 2 q \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)\left(\sum_{r=1}^{2 p+1}\left(P_{1} e_{r} \ln f_{1}\right)^{2}-\left(\xi \ln f_{1}\right)^{2}\right) \tag{7.5}\\
& +2 s \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{3}\right)\left(\sum_{r=1}^{2 p+1}\left(P_{1} e_{r} \ln f_{2}\right)^{2}-\left(\xi \ln f_{2}\right)^{2}\right)
\end{align*}
$$

Using (2.8) and Proposition 6.2, in (7.5), we get the inequality (7.1). If equality of (7.1) holds, for omitting ν components terms of (6.3), we get

$$
h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right) \perp \nu, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{2}}\right) \perp \nu, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \perp \nu, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \perp \nu .
$$

Also, for neglecting terms of (7.4), we obtain $h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right) \perp Q \mathcal{D}^{\theta_{1}}, h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{2}}\right) \perp Q \mathcal{D}^{\theta_{2}}$, $h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{2}}\right) \perp Q \mathcal{D}^{\theta_{3}}, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \perp Q \mathcal{D}^{\theta_{2}}, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \perp Q \mathcal{D}^{\theta_{2}}, \quad h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \perp Q \mathcal{D}^{\theta_{3}}$, $h\left(\mathcal{D}^{\theta_{3}}, \mathcal{D}^{\theta_{3}}\right) \perp Q \mathcal{D}^{\theta_{2}}, h\left(\mathcal{D}^{\theta_{3}}, \mathcal{D}^{\theta_{3}}\right) \perp Q \mathcal{D}^{\theta_{3}}$. Next, since M is both $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{2}}$ and $\mathcal{D}^{\theta_{1}}-\mathcal{D}^{\theta_{3}}$ mixed totally geodesic, we get

$$
\begin{equation*}
h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{2}}\right)=0, \quad h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{3}}\right)=0 . \tag{7.6}
\end{equation*}
$$

Also, from Lemma 6.1 with (6.6), we get

$$
h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right) \perp Q \mathcal{D}^{\theta_{2}}, \quad h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right) \perp Q \mathcal{D}^{\theta_{3}}, \quad h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right) \perp Q \mathcal{D}^{\theta_{2}} .
$$

Thus, we can say that

$$
\begin{align*}
& h\left(\mathcal{D}^{\theta_{1}}, \mathcal{D}^{\theta_{1}}\right)=0, \tag{7.7}\\
& h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{2}}\right) \subset Q \mathcal{D}^{\theta_{1}}, \tag{7.8}\\
& h\left(\mathcal{D}^{\theta_{2}}, \mathcal{D}^{\theta_{3}}\right) \subset Q \mathcal{D}^{\theta_{1}}, \tag{7.9}\\
& h\left(\mathcal{D}^{\theta_{3}}, \mathcal{D}^{\theta_{3}}\right) \subset Q \mathcal{D}^{\theta_{1}} . \tag{7.10}
\end{align*}
$$

From (7.6) and (7.7), $M_{\theta_{1}}$ is totally geodesic in M and hence in $\bar{M}[5,7]$. Again, since $M_{\theta_{2}}$ and $M_{\theta_{3}}$ are totally umbilical in $M[5,7]$, with the fact (7.8)-(7.10), we conclude that $M_{\theta_{2}}$ and $M_{\theta_{3}}$ are totally umbilical in \bar{M}. Hence, the theorem is proved completely.

8. Some Applications

As consequences of Theorem 5.1 we have the following.

1. If we take $\operatorname{dim} M_{\theta_{2}}=0$ and replace θ_{3} by θ_{2}, then M changes to a warped product pointwise bi-slant submanifold of the form $M_{\theta_{1}} \times_{f} M_{\theta_{2}}$, studied in [17]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [17]).

Let M be a proper pointwise bi-slant submanifold of \bar{M} such that $\xi \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right)$, then M is locally a warped product submanifold of the form $M_{\theta_{1}} \times{ }_{f} M_{\theta_{2}}$ if and only if

$$
\begin{aligned}
& A_{Q P_{1} X_{1}} Y_{2}-A_{Q X_{1}} P_{2} Y_{2}+A_{Q P_{2} Y_{2}} X_{1}-A_{Q Y_{2}} P_{1} X_{1} \\
= & \left(\cos ^{2} \theta_{2}-\cos ^{2} \theta_{1}\right)\left[\left(X_{1} \mu\right)-\eta\left(X_{1}\right)\right] Y_{2},
\end{aligned}
$$

for any $X_{1} \in \Gamma\left(\mathcal{D}^{\theta_{1}}\right), X_{2} \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$, for some smooth function μ on M satisfying $(Y \mu)=0$, for any $W \in \Gamma\left(\mathcal{D}^{\theta_{2}}\right)$. Thus, Theorem 5.1 of this paper is a generalisation of Theorem 5.1 of [17].
2. If we take $\theta_{1}=0, \theta_{2}=$ constant $=\theta, \theta_{3}=\frac{\pi}{2}$, then M changes to a warped product skew CR-submanifold of the form $M_{1} \times{ }_{f} M_{\perp}$, where $M_{1}=M_{T} \times M_{\theta}$, studied in [28]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.3 of [28]).

Let M be a proper skew CR-submanifold of \bar{M}, then M is locally a $\mathcal{D}^{\theta}-\mathcal{D}^{\perp}$ mixed totally geodesic warped product submanifold of the form $M_{1} \times_{f} M_{\perp}$, where $M_{1}=M_{T} \times M_{\theta}$ if and only if
(i) $A_{\phi Z} X \in \Gamma\left(\mathcal{D}^{\perp}\right)$ for any $X \in \Gamma\left(\mathcal{D}^{T} \oplus \mathcal{D}^{\theta}\right) \oplus\{\xi\}$ and $Z \in \Gamma\left(\mathcal{D}^{\perp}\right)$;
(ii) for any $X_{1} \in \Gamma\left(\mathcal{D}^{T}\right), X_{2} \in \Gamma\left(\mathcal{D}^{\theta}\right)$ and $Z \in \Gamma\left(\mathcal{D}^{\perp}\right), A_{\phi Z} X_{1}=-\left(\phi X_{1} \mu\right)$, $A_{\phi} Z X_{2}=0, A_{Q X_{2} Z}=\left(P_{2} X_{2} \mu\right) Z,(\xi \mu)=1$,
for some smooth function μ on M satisfying $(V \mu)=0$, for any $V \in \Gamma\left(\mathcal{D}^{\perp}\right)$. Thus, Theorem 5.1 of this paper is a generalization of Theorem 5.3 of [28].
3. If we take $\theta_{1}=\frac{\pi}{2}, \theta_{2}=$ constant $=\theta, \theta_{3}=0$, then M changes to a warped product skew CR-submanifold of the form $M_{2} \times_{f} M_{T}$, where $M_{2}=M_{\perp} \times M_{\theta}$, studied in [19]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [19]).

Let M be a proper skew CR-submanifold of \bar{M}, then M is locally a warped product submanifold of the form $M_{2} \times_{f} M_{T}$, where $M_{2}=M_{\perp} \times M_{\theta}$ if and only if
(i) $A_{\phi} Z X=\{\eta(Z)-(Z \mu)\} \phi X$;
(ii) $A_{Q U X}=\{\eta(U)-(U \mu)\} \phi X+\left(P_{2} U \mu\right) X$;
(iii) $(\xi \mu)=1$,
for any $X \in \Gamma\left(\mathcal{D}^{T}\right), U \in \Gamma\left(\mathcal{D}^{\theta}\right), Z \in \Gamma\left(\mathcal{D}^{\perp}\right)$, for some smooth function μ on M satisfying $(Y \mu)=0$, for any $Y \in \Gamma\left(\mathcal{D}^{T}\right)$. Thus, Theorem 5.1 of this paper is a generalisation of Theorem 5.1 of [19].
4. If we take $\theta_{1}=0, \theta_{2}=\frac{\pi}{2}$ and $\theta_{3}=\theta$ then M changes to a warped product submanifold of the form $M_{3} \times{ }_{f} M_{\theta}$, where $M_{3}=M_{T} \times M_{\perp}$, studied in [18]. In this case Theorem 5.1 of this paper takes the following form (Theorem 5.1 of [18]).

Let M be a submanifold of a Kenmotsu manifold \bar{M} such that $T M=\mathcal{D}^{T} \oplus \mathcal{D}^{\perp} \oplus \mathcal{D}^{\theta}$ with ξ is orthogonal to M_{θ}. Then M is locally a warped product submanifold of the form $M=M_{3} \times_{f} M_{\theta}$, where $M_{3}=M_{T} \times M_{\perp}$, if and only if the following relations hold:
(i) $A_{Q V} \phi X-A_{Q P V} X=\sin ^{2} \theta[(X \mu)-\eta(X)] V$;
(ii) $A_{\phi Z} P V-A_{Q P V} Z=-\cos ^{2} \theta[(Z \mu)-\eta(Z)] V$;
(iii) $(\xi \mu)=1$,
for every $X \in \Gamma\left(\mathcal{D}^{T}\right), Z \in \Gamma\left(\mathcal{D}^{\perp}\right)$ and $V \in \Gamma\left(\mathcal{D}^{\theta}\right)$ and $(V \mu)=0$ for some function μ on M satisfying $(W \mu)=0$, for any $W \in \Gamma\left(\mathcal{D}^{\theta}\right)$. Thus, Theorem 5.1 of this paper is a generalisation of Theorem 5.1 of [18].

As consequences of Theorem 7.1, we have the following.

1. If we consider $\theta_{1}=$ constant, $\theta_{2}=0, \theta_{3}=\frac{\pi}{2}$, then the submanifold M changes to bi-warped product submanifold of the form $M_{\theta} \times_{f_{1}} M_{T} \times{ }_{f_{2}} M_{\perp}$, studied in [33]. In this case Theorem 7.1 of this paper takes the following form.

Let $M=M_{\theta} \times_{f_{1}} M_{T} \times_{f_{2}} M_{\perp}$ be a bi-warped product submanifold of \bar{M} such that ξ is tangent to M_{θ}, then the squared norm of the second fundamental form satisfies

$$
\|h\|^{2} \geq 2 q \csc ^{2} \theta\left(1+\cos ^{2} \theta\right)\left(\left\|\boldsymbol{\nabla} \ln f_{1}\right\|^{2}-1\right)+2 s \cot ^{2} \theta\left(\left\|\boldsymbol{\nabla} \ln f_{2}\right\|^{2}-1\right)
$$

where $2 q=\operatorname{dim} M_{T}, 2 s=\operatorname{dim} M_{\perp}, \boldsymbol{\nabla} \ln f_{1}$ and $\boldsymbol{\nabla} \ln f_{2}$ are the gradients of warping function $\ln f_{1}$ and $\ln f_{2}$ along M_{T} and M_{\perp}, respectively.

If the equality sign holds, then M_{θ} is totally geodesic and M_{T}, M_{\perp} are totally umbilical submanifold of \bar{M}. Taking $\operatorname{dim} M_{T}=2 q=m_{1}$ and $\operatorname{dim} M_{\perp}=2 s=m_{2}$, we see that this statement coincides with the statement of Theorem 6 of [33]. Thus, Theorem 7.1 of this paper is a generalisation of Theorem 6 of [33].
2. If we consider $\operatorname{dim} M_{\theta_{2}}=0$, then the submanifold M changes into warped product pointwise bi-slant submanifold of the form $M_{\theta_{1}} \times_{f} M_{\theta_{2}}$ studied in [17]. In this case Theorem 7.1 of this paper takes the following form.

Let $M=M_{\theta_{1}} \times_{f} M_{\theta_{2}}$ be a warped product pointwise bi-slant submanifold of \bar{M} such that ξ is tangent to $M_{\theta_{1}}$, then the squared norm of the second fundamental form satisfies

$$
\|h\|^{2} \geq 2 q \csc ^{2} \theta_{1}\left(\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)\left(\|\nabla \ln f\|^{2}-1\right)
$$

where $2 q=\operatorname{dim} M_{\theta_{2}}, \nabla \ln f$ is the gradient of warping function $\ln f$ along $M_{\theta_{1}}$. If the equality sign holds, then $M_{\theta_{1}}$ is totally geodesic and $M_{\theta_{2}}$ is totally umbilical submanifold of \bar{M}. Thus, we see that this statement coincides with the statement of Theorem 6.1 of [19]. Hence Theorem 7.1 of this paper is a generalization of Theorem 6.1 of [17].

Acknowledgements. The authors would like to express their sincere thanks to the reviewer for giving valuable suggestions towards the improvement of the paper.

References

[1] M. Atceken, Warped product semi-slant submanifolds in Kenmotsu manifolds, Turkish J. Math. 34 (2010), 425-432.
[2] F. R. Al-Solamy and M. A. Khan, Pseudo-slant warped product submanifolds of Kenmotsu manifolds, Math. Morav. 17 (2013), 51-61.
[3] A. Ali, W. A. M. Othman and C. Özel, Some ineqalities of warped product pseudo-slant submanifolds of nearly Kenmotsu manifolds, J. Inequal. Appl. 2015 (2015), Article ID 291. https://doi.org/10.1186/s13660-015-0802-5
[4] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Verlag, 1976.
[5] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[6] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), 125-138.
[7] B. Y. Chen, Slant immersions, Bull. Aust. Math. Soc. 41 (1990), 135-147.
[8] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math. 133 (2001), 177-195.
[9] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math. 134 (2001), 103-119.
[10] B. Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. https://doi.org/101142/10419
[11] B. Y. Chen and F. Dillen, Optimal inequalities for multiply warped products submanifolds, Int. Electron. J. Geom. 1 (1) (2018), 1-11.
[12] F. Dobarro, B. Unal, Curvature of multiply warped products, J. Geom. Phys. 55 (2005), 75-106.
[13] F. Etayo, On quasi-slant submanifolds of an almost Hermitian manifold, Publ. Math. Debrecen 53 (1998), 217-223.
[14] S. Hiepko, Eine inner kennzeichungder verzerrten produkte, Math. Ann. 241 (1979), 209-215.
[15] S. K. Hui, M. Atceken and S. Nandy, Contact CR-warped product submanifolds of $(L C S)_{n^{-}}-$ manifolds, Acta Math. Univ. Comenian. (N. S.) 86 (2017), 101-109.
[16] S. K. Hui, M. Atceken and T. Pal, Warped product pseudo slant submanifolds $(L C S)_{n}$-manifolds, New Trends Math. Sci. 5 (2017), 204-212.
[17] S. K. Hui, J. Roy and T. Pal, Warped product pointwise bi-slant submanifolds of Kenmotsu manifolds, Asian-Eur. J. Math. (to appear).
[18] S. K. Hui, M. Stanković, J. Roy and T. Pal, A class of warped product submanifolds of Kenmotsu manifolds, Turkish J. Math. 44 (2020), 760-777.
[19] S. K. Hui, T. Pal and J. Roy, Another class of warped product skew CR-submanifold of Kenmotsu manifolds, Filomat 33(9) (2019), 2583-2600.
[20] S. K. Hui, S. Uddin, C. Özel and A. A. Mustafa, Warped product submanifolds of LP-Sasakian manifolds, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 868549. https://doi.org/10.1155/ 2012/868549
[21] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
[22] V. A. Khan, M. A. Khan and S. Uddin, Contact CR-warped product submanifolds of Kenmotsu manifold, Thai J. Math. 6 (2008), 307-314.
[23] V. A. Khan and M. Shuaib, Pointwise pseudo-slant submanifolds of Kenmotsu manifold, Filomat 31 (2017), 5833-5853.
[24] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 39 (1996), 183-198.
[25] I. Mihai, S. Uddin and A. Mihai, Warped product pointwise semi-slant submanifolds of Sasakian manifolds, Kragujevac J. Math. 45(5) (2021), 721-738.
[26] C. Murathan, K. Arslan, R. Ezentas and I. Mihai, Contact CR-warped product submanifolds in Kenmotsu space forms, J. Korean Math. Soc. 42 (2005), 1101-1110.
[27] A. Mustafa, A. De and S. Uddin, Characterization of warped product submanifolds in Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 74-85.
[28] M. F. Naghi, I. Mihai, S. Uddin and F. R. Al-Solamy, Warped product skew CR-submanifolds of Kenmotsu manifolds and their applications, Filomat 32(10) (2018), 3505-3528.
[29] K. S. Park, Pointwise slant and pointwise semi slant submanifolds almost contact metric manifold, Mathematics 8(6) (2020), Article ID 985. https://doi.org/10.3390/math8060985
[30] J. Roy, L-I Piscoran and S. K. Hui, Certain classes of warped product submanifolds Sasakian manifolds, in: M. Shahid, M. Ashraf, F. Al-Solamy, Y. Kimura, G. Vilcu (Eds.), Differential Geometry, Algebrs and Analysis, ICDGAA 2016, Proceedings in Mathematics and Statistics 327, Springer, Singapore. https://doi.org/10.1007/978-981-15-5455-1_6
[31] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. 21(1969), 21-38.
[32] S. Uddin, Geometry of warped product semi-slant submanifolds of Kenmotsu manifolds, Bull. Math. Sci. 8 (2018), 435-451. https://doi.org/10.1007/s13373-017-0106-9
[33] S. Uddin and A. H. Alkhaldi, Bi-warped product submanifolds of Kenmotsu manifolds and their applications, Int. J. Geom. Methods Mod. Phys. 16(1) (2019). https://doi.org/10.1142/ S0219887819500014
[34] S. Uddin and F. R. Al-Solamy, Warped product pseudo-slant immersions in Sasakian manifolds, Publ. Math. Debrecen 91(2) (2017), 1-14.
[35] S. Uddin and F. R. Al-Solamy and M. H. Shahid, B.-Y. Chen's inequality for bi-warpes products and its applications in Kenmotsu manifolds, Mediterr. J. Math. 15(5) (2018), Article ID 193. https://doi.org/10.1007/s00009-018-1238-1
[36] S. Uddin, V. A. Khan and K. A. Khan, Warped product submanifolds of Kenmotsu manifolds, Turkish J. Math. 36 (2012), 319-330.
[37] S. Uddin, A. Alghanemi, M. F. Naghi and F. R. Al-Solamy, Another class of warped product CR-submanifolds in Kenmotsu manifolds, J. Math. Comput. Sci. 17 (2017), 148-157. https: //doi.org/10.22436/jmcs.017.01.13
[38] B. Unal, Multiply warped products, J. Geom. Phys. 34(3) (2000), 287-301.

[^1]
[^0]: Key words and phrases. Kenmotsu manifold, pointwise slant submanifolds, warped product, submanifolds, bi-warped product submanifolds.

 2020 Mathematics Subject Classification. Primary: 53C15. Secondary: 53C40.
 DOI 10.46793/KgJMat2306.965H
 Received: October 02, 2020.
 Accepted: January 28, 2021.

[^1]: ${ }^{1}$ Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
 Email address: skhui@math.buruniv.ac.in
 Email address: joydeb.roy8@gmail.com
 ${ }^{2}$ Department of Mathematics, Jamia Millia Islamia University, New Delhi-110025, India
 Email address: mshahid@jmi.ac.in
 ${ }^{3}$ A. M. J. High School,
 Mankhamar, Bankura - 722144,
 West Bengal, India
 Email address: tanumoypalmath@gmail.com

