STRUCTURE OF 3-PRIME NEAR RINGS WITH GENERALIZED (σ, τ) - n-DERIVATIONS

ASMA ALI ${ }^{1}$, ABDELKARIM BOUA ${ }^{2}$, AND INZAMAM UL HUQUE ${ }^{3}$

Abstract

In this paper, we define generalized (σ, τ)-n-derivation for any mappings σ and τ of a near ring N and also investigate the structure of a 3 -prime near ring satisfying certain identities with generalized $(\sigma, \tau)-n$-derivation. Moreover, we characterize the aforementioned mappings.

1. Introduction

A left near ring N is a triplet $(N,+,$.$) , where +$ and . are two binary operations such that $(i)(N,+)$ is a group (not necessarily abelian); $(i i)(N,$.$) is a semigroup,$ and (iii) $x .(y+z)=x . y+x . z$ for all $x, y, z \in N$. Analogously, if N satisfies the right distributive law, i.e., $(x+y) . z=x . z+y . z$ for all $x, y \in N$, then N is said to be a right near ring. The most natural example of a left near ring is the set of all identity preserving mappings acting from right of an additive group G (not necessarily abelian) into itself with pointwise addition and composition of mappings as multiplication. If these mappings act from left on G, then we get a right near ring (Pilz [10, Example 1.4]). Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative centre Z and for any pair of elements $x, y \in N$, $[x, y]=x y-y x, x \circ y=x y+y x$ and $(x, y)=x+y-x-y$ stand for the Lie product, Jordan Product and additive commutator respectively. Let σ and τ be mappings on N. For any $x, y \in N$, set the symbol $[x, y]_{\sigma, \tau}$ will denote $x \sigma(y)-\tau(y) x$, while the symbol $(x \circ y)_{\sigma, \tau}$ will denote $x \sigma(y)+\tau(y) x$. The terminology multiplicative mappings on a near ring N is used for the mappings $\sigma, \tau: N \rightarrow N$ satisfying $\sigma(x y)=\sigma(x) \sigma(y)$

[^0]and $\tau(x y)=\tau(x) \tau(y)$ for all $x, y \in N$. A near ring N is called zero-symmetric if $0 x=0$, for all $x \in N$ (recall that left distributivity yields that $x 0=0$). A near ring N is said to be 3 -prime if $x N y=\{0\}$ for $x, y \in N$ implies that $x=0$ or $y=0$. A near ring N is called 2 -torsion free if $(N,+)$ has no element of order 2 . A nonempty subset U of N is called a semigroup right (resp. semigroup left) ideal if $U N \subseteq U$ (resp. $N U \subseteq U)$ and if U is both a semigroup right ideal and a semigroup left ideal, it is called a semigroup ideal.

Let $n \geq 2$ be a fixed positive integer and $N^{n}=\underbrace{N \times N \times \cdots \times N}_{n-\text { times }}$. A map Δ : $N^{n} \rightarrow N$ is said to be permuting (symmetric) on a near ring N if the relation $\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\Delta\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}\right)$ holds for all $x_{i} \in N, i=1,2, \ldots, n$, and for every permutation $\pi \in S_{n}$, where S_{n} is the permutation group on $\{1,2, \ldots, n\}$. An additive mapping $F: N \rightarrow N$ is said to be a right (resp. left) generalized derivation with associated derivation d if $F(x y)=F(x) y+x d(y)($ resp. $F(x y)=d(x) y+x F(y))$, for all $x, y \in N$ and F is said to be a generalized derivation with associated derivation d on N if it is both a right generalized derivation and a left generalized derivation on N with associated derivation d.

Ozturk et al. [9] and Park et al. [6] studied bi-derivations and tri-derivations in near rings. Further, Ceven et al. [4] and Ozturk et al. [8] defined (σ, τ) bi-derivations and (σ, τ) tri-derivations in near rings. Let σ, τ be automorphisms on a near ring N. A symmetric bi-additive (additive in both arguments) mapping $d: N \times N \rightarrow N$ is said to be a (σ, τ) bi-derivation if $d\left(x x^{\prime}, y\right)=d(x, y) \sigma\left(x^{\prime}\right)+\tau(x) d\left(x^{\prime}, y\right)$ holds for all $x, x^{\prime}, y \in$ N. A symmetric tri-additive (additive in each argument) mapping $d: N \times N \times N \rightarrow N$ is said to be a (σ, τ) tri-derivation if $d\left(x x^{\prime}, y, z\right)=d(x, y, z) \sigma\left(x^{\prime}\right)+\tau(x) d\left(x^{\prime}, y, z\right)$ holds for all $x, x^{\prime}, y, z \in N$.

Motivated by these concepts, we define (σ, τ) - n-derivation and generalized (σ, τ)-nderivation for any arbitrary mappings σ and τ of a near ring N in place of automorphisms.
Definition 1.1 (($\sigma, \tau)$ - n-derivation). Let $\sigma, \tau: N \rightarrow N$ be mappings on N. An n-additive (additive in each argument) mapping $d: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ is called a (σ, τ) - n-derivation of N if the following equations

$$
\begin{aligned}
d\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) d\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right), \\
d\left(x_{1}, x_{2} x_{2}^{\prime}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{2}^{\prime}\right)+\tau\left(x_{2}\right) d\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}\right), \\
& \vdots \\
d\left(x_{1}, x_{2}, \ldots, x_{n} x_{n}^{\prime}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{n}^{\prime}\right)+\tau\left(x_{n}\right) d\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}\right)
\end{aligned}
$$

hold for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{n}, x_{n}^{\prime} \in N$.
Definition 1.2 (Right generalized (σ, τ) - n-derivation). An n-additive (additive in each argument) mapping $F: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ is called a right generalized
(σ, τ) - n-derivation associated with (σ, τ) - n-derivation d on N if the relations

$$
\begin{aligned}
F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) & =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) d\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
F\left(x_{1}, x_{2} x_{2}^{\prime}, \ldots, x_{n}\right) & =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{2}^{\prime}\right)+\tau\left(x_{2}\right) d\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}\right) \\
& \vdots \\
F\left(x_{1}, x_{2}, \ldots, x_{n} x_{n}^{\prime}\right) & =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{n}^{\prime}\right)+\tau\left(x_{n}\right) d\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}\right)
\end{aligned}
$$

hold for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{n}, x_{n}^{\prime} \in N$.
Definition 1.3 (Left generalized (σ, τ) - n-derivation). An n-additive (additive in each argument) mapping $F: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ is called a left generalized (σ, τ)-nderivation associated with (σ, τ) - n-derivation d on N if the relations

$$
\begin{aligned}
F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
F\left(x_{1}, x_{2} x_{2}^{\prime}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{2}^{\prime}\right)+\tau\left(x_{2}\right) F\left(x_{1}, x_{2}^{\prime}, \ldots, x_{n}\right) \\
& \vdots \\
F\left(x_{1}, x_{2}, \ldots, x_{n} x_{n}^{\prime}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{n}^{\prime}\right)+\tau\left(x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}\right)
\end{aligned}
$$

hold for all $x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, \ldots, x_{n}, x_{n}^{\prime} \in N$.
A mapping $F: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ is called a generalized (σ, τ) - n-derivation associated with (σ, τ) - n-derivation d on N if F is both a right generalized (σ, τ) - n derivation and a left generalized (σ, τ) - n-derivation associated with (σ, τ) - n-derivation d on N.

Example 1.1. Let S be a zero-symmetric left near ring and

$$
N=\left\{\left.\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y, z, 0 \in S\right\} .
$$

Then N is a zero-symmetric left near ring with respect to matrix addition and matrix multiplication. Define mappings $F, d: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ by

$$
\begin{aligned}
& F\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & z_{1} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & z_{2} \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & z_{n} \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & z_{1} z_{2} \ldots z_{n} \\
0 & 0 & 0
\end{array}\right), \\
& d\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & z_{1} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & z_{2} \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & z_{n} \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
0 & x_{1} x_{2} \ldots x_{n} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Define $\sigma, \tau: N \rightarrow N$ by

$$
\sigma\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & y^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \tau\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & x y & 0 \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) .
$$

It is easy to check that F is a nonzero right (but not left) generalized (σ, τ)-n-derivation associated with a nonzero (σ, τ)-n-derivation d of N, where σ and τ are any arbitrary mappings on N.

Example 1.2. Let N be a zero-symmetric left near ring as in Example 1.1. Define mappings $F, d: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ by

$$
\begin{aligned}
& F\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & z_{1} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & z_{2} \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & z_{n} \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & x_{1} x_{2} \ldots x_{n} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& d\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & z_{1} \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & z_{2} \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & z_{n} \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & z_{1} z_{2} \ldots z_{n} \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Define $\sigma, \tau: N \rightarrow N$ by

$$
\sigma\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & x^{2} & 0 \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right) \text { and } \tau\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & y \\
0 & 0 & z^{2} \\
0 & 0 & 0
\end{array}\right) .
$$

It can be easily seen that F is a nonzero left (but not right) generalized (σ, τ)-nderivation associated with a nonzero (σ, τ)-n-derivation d of N for any arbitrary mappings σ and τ on N.

Example 1.3. Let S be a zero-symmetric left near ring and

$$
N=\left\{\left.\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & z & 0
\end{array}\right) \right\rvert\, x, y, z, 0 \in S\right\} .
$$

It is easy to see that N is a zero-symmetric left near ring with respect to matrix addition and matrix multiplication. Define mappings $F, d: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ by

$$
\begin{aligned}
& F\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & 0 \\
0 & z_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & 0 \\
0 & z_{2} & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & 0 \\
0 & z_{n} & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & y_{1} y_{2} \ldots y_{n} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& d\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & 0 \\
0 & z_{1} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & 0 \\
0 & z_{2} & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & 0 \\
0 & z_{n} & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & z_{1} z_{2} \ldots z_{n} & 0
\end{array}\right) .
\end{aligned}
$$

Define $\sigma, \tau: N \rightarrow N$ by

$$
\sigma\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & 0 \\
0 & z & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & x^{2} & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } \tau\left(\begin{array}{ccc}
0 & x & y \\
0 & 0 & 0 \\
0 & z & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & x & 0 \\
0 & 0 & 0 \\
0 & y z & 0
\end{array}\right) .
$$

It can be easily verified that F is a nonzero right as well as left generalized (σ, τ)-nderivation associated with a nonzero (σ, τ) - n-derivation d of N, where σ and τ are any arbitrary mappings on N.

Obviously this notion covers the notion of a generalized n-derivation (in case $\sigma=$ $\tau=I$), notion of an n-derivation (in case $F=d, \sigma=\tau=I$), notion of a left n-centralizer (in case $d=0, \sigma=I$), notion of a (σ, τ)-n-derivation (in case $F=d$) and the notion of a left σ-n-multiplier (in case $d=0$). Thus, it is interesting to investigate the properties of this general notion. In [7], Bresar has proved that if R is a 2 -torsion free semiprime ring and $F: R \rightarrow R$ is an additive map on R such that $F(x) x+x F(x)=0$ for all $x \in R$, then $F=0$. Further, Vukman [5] proved that if there exist a derivation $d: R \rightarrow R$ and an automorphism $\alpha: R \rightarrow R$, where R is 2 -torsion free semiprime ring such that $[d(x) x+x d(x), x]=0$ for all $x \in R$, then d and $\alpha-I, I$ denotes the identity mapping on R, map R into its centre. Motivated by the mentioned results we prove that if a 3 -prime near ring N with a generalized (σ, τ) - n-derivation F satisfies certain identity, then N is a commutative ring and F is a left σ - n-multiplier on N.

2. Some Preliminaries

Lemma 2.1. ([1, Lemmas 1.2]). Let N be 3-prime near ring.
(i) If $z \in Z \backslash\{0\}$, then z is not a zero divisor.
(ii) If $Z \backslash\{0\}$ and x is an element of N for which $x z \in Z$, then $x \in Z$.

Lemma 2.2. ([1, Lemmas 1.3 and Lemma 1.4]). Let N be 3-prime near ring and U be a nonzero semigroup ideal of N.
(i) If $x, y \in N$ and $x U y=\{0\}$, then $x=0$ or $y=0$.
(ii) If $x \in N$ and $x U=\{0\}$ or $U x=\{0\}$, then $x=0$.

Lemma 2.3. ([1, Lemma 1.5]). If N is a 3-prime near ring and Z contains a nonzero semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative ring.

Lemma 2.4. If N is a 3-prime near ring admitting a generalized (σ, τ) - n-derivation F associated with a $(\sigma, \tau)-n$-derivation d of N such that σ and τ are multiplicative mappings on N, then

$$
\begin{aligned}
& \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right\} \sigma\left(z_{1}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right) \sigma\left(z_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(z_{1}\right), \\
& \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{2}\right)+\tau\left(x_{2}\right) F\left(x_{1}, y_{2}, \ldots, x_{n}\right)\right\} \sigma\left(z_{2}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{2}\right) \sigma\left(z_{2}\right)+\tau\left(x_{2}\right) F\left(x_{1}, y_{2}, \ldots, x_{n}\right) \sigma\left(z_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{n}\right)+\tau\left(x_{n}\right) F\left(x_{1}, x_{2}, \ldots, y_{n}\right)\right\} \sigma\left(z_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{n}\right) \sigma\left(z_{n}\right)+\tau\left(x_{n}\right) F\left(x_{1}, x_{2}, \ldots, y_{n}\right) \sigma\left(z_{n}\right),
\end{aligned}
$$

for all $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n} \in N$.
Proof. For all $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \ldots, x_{n}, y_{n}, z_{n} \in N$

$$
\begin{aligned}
F\left(x_{1} y_{1} z_{1}, x_{2}, \ldots, x_{n}\right)= & F\left(x_{1} y_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(z_{1}\right)+\tau\left(x_{1} y_{1}\right) d\left(z_{1}, x_{2}, \ldots, x_{n}\right) \\
= & \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right\} \sigma\left(z_{1}\right) \\
& +\tau\left(x_{1}\right) \tau\left(y_{1}\right) d\left(z, u_{2}, \ldots, u_{n}\right)
\end{aligned}
$$

and

$$
\begin{align*}
F\left(x_{1} y_{1} z_{1}, x_{2}, \ldots, x_{n}\right)= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1} z_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1} z_{1}, x_{2}, \ldots, x_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right) \sigma\left(z_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(z_{1}\right) \\
& +\tau\left(x_{1}\right) \tau\left(y_{1}\right) d\left(z_{1}, x_{2}, \ldots, x_{n}\right) . \tag{2.2}
\end{align*}
$$

Combining (2.1) and (2.2), we get

$$
\begin{aligned}
& \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right\} \sigma\left(z_{1}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right) \sigma\left(z_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(z_{1}\right) .
\end{aligned}
$$

Similarly, we can prove other relations for $i=2,3, \ldots, n$.
Remark 2.1. If σ is an onto map on N, then Lemma 2.4 becomes

$$
\begin{aligned}
&\left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right)+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right)\right\} a \\
&= d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{1}\right) a+\tau\left(x_{1}\right) F\left(y_{1}, x_{2}, \ldots, x_{n}\right) a, \\
&\left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{2}\right)+\tau\left(x_{2}\right) F\left(x_{1}, y_{2}, \ldots, x_{n}\right)\right\} a \\
&= d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{2}\right) a+\tau\left(x_{2}\right) F\left(x_{1}, y_{2}, \ldots, x_{n}\right) a, \\
& \vdots \\
&\left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{n}\right)+\tau\left(x_{n}\right) F\left(x_{1}, x_{2}, \ldots, y_{n}\right)\right\} a \\
&= d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(y_{n}\right) a+\tau\left(x_{n}\right) F\left(x_{1}, x_{2}, \ldots, y_{n}\right) a,
\end{aligned}
$$

for all $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}, a \in N$.
Lemma 2.5. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ be nonzero semigroup ideals of N. Let σ and τ be mappings on N such that $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If d is a nonzero (σ, τ) - n-derivation on N, then $d\left(U_{1}, U_{2}, \ldots, U_{n}\right) \neq\{0\}$.

Proof. Assume that

$$
\begin{equation*}
d\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0, \quad \text { for all } u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{2.3}
\end{equation*}
$$

Replacing u_{1} by $u_{1} r_{1}$, where $r_{1} \in N$ in (2.3) and using (2.3), we get

$$
\tau\left(u_{1}\right) d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=0
$$

Since $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$, we have $U_{1} d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=\{0\}$. Applying Lemma 2.2 (ii), we obtain $d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=0$ for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$ and $r_{1} \in N$. Replacing u_{2} by $u_{2} r_{2}$, where $r_{2} \in N$ in the last expression and another application of Lemma 2.2(ii) yields that $d\left(r_{1}, r_{2}, \ldots, u_{n}\right)=0$. Proceeding inductively, we conclude that $d\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$ for all $r_{1}, r_{2}, \ldots, r_{n} \in N$, a contradiction which completes the proof.

Lemma 2.6. Let N be a 3 -prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ be nonzero semigroup ideals of N. Let σ, τ be multiplicative mappings on U_{i} such that $U_{1} \subseteq \sigma\left(U_{1}\right)$. If d is a nonzero (σ, τ) - n-derivation on N such that $d\left(U_{1}, U_{2}, \ldots U_{n}\right) \sigma(a)=\{0\}$ or $\sigma(a) d\left(U_{1}, U_{2}, \ldots U_{n}\right)=\{0\}$ for all $a \in N$, then $\sigma(a)=0$.

Proof. Suppose that $d\left(U_{1}, U_{2}, \ldots, U_{n}\right) \sigma(a)=\{0\}$. Then

$$
\begin{equation*}
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma(a)=0, \quad \text { for all } u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{2.4}
\end{equation*}
$$

Replacing u_{1} by $u_{1} u_{1}^{\prime}$ in (2.4) and using it again yields that

$$
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(u_{1}^{\prime}\right) \sigma(a)=0, \quad \text { for all } u_{1}, u_{1}^{\prime} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}
$$

Equivalently,

$$
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(U_{1}\right) \sigma(a)=\{0\}, \quad \text { for all } u_{1}, \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}
$$

Since $U_{1} \subseteq \sigma\left(U_{1}\right)$, we obtain

$$
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) U_{1} \sigma(a)=\{0\}, \quad \text { for all } u_{1}, \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} .
$$

Applying Lemma 2.2 (i) and Lemma 2.5, we obtain $\sigma(a)=0$. Similarly, we can prove the result for later case.

Lemma 2.7. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ be nonzero semigroup ideals of N. Let σ be a onto map on N such that $U_{1} \subseteq \sigma\left(U_{1}\right)$ and $U_{1} \cap Z \neq \emptyset$. If d is a (σ, σ) - n-derivation on N, then $d\left(Z, U_{2}, U_{3}, \ldots, U_{n}\right) \subseteq Z$.

Proof. Suppose that $z \in U_{1} \cap Z$. Then

$$
d\left(z x_{1}, x_{2}, \ldots, x_{n}\right)=d\left(x_{1} z, x_{2}, \ldots, x_{n}\right), \quad \text { for all } x_{1} \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}
$$

and

$$
\begin{aligned}
& d\left(z, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right)+\sigma(z) d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
= & \sigma\left(x_{1}\right) d\left(z, x_{2}, \ldots, x_{n}\right)+d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma(z) .
\end{aligned}
$$

Substituting $x_{1}^{\prime} \in U_{1}$ and $z^{\prime} \in U_{1} \cap Z$ for $\sigma\left(x_{1}\right)$ and $\sigma(z)$ respectively, we get

$$
d\left(z, x_{2}, \ldots, x_{n}\right) x_{1}^{\prime}=x_{1}^{\prime} d\left(z, x_{2}, \ldots, x_{n}\right), \quad \text { for all } x_{1}^{\prime} \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}
$$

Replacing x_{1}^{\prime} by $x_{1}^{\prime} r$ for $r \in N$ in above expression and using it again, we find that $x_{1}^{\prime}\left[d\left(z, x_{2}, \ldots, x_{n}\right), r\right]=0$. Hence, $d\left(Z, U_{2}, U_{3}, \ldots, U_{n}\right) \subseteq Z$ by Lemma 2.2 (ii).

Lemma 2.8. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ be nonzero semigroup ideals of N. Let σ, τ be mappings on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ and $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If F is a nonzero right generalized (σ, τ) - n-derivation associated with a (σ, τ)-n-derivation d on N, then $F\left(U_{1}, U_{2}, \ldots, U_{n}\right) \neq\{0\}$.

Proof. Let

$$
\begin{equation*}
F\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0, \quad \text { for all } u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{2.5}
\end{equation*}
$$

Replacing u_{1} by $u_{1} r_{1}$, where $r_{1} \in N$ in (2.5) and using (2.5), we get

$$
\tau\left(u_{1}\right) d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=\{0\} .
$$

Since $U_{1} \subseteq \tau\left(U_{1}\right)$, we have

$$
U_{1} d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=\{0\}, \quad \text { for all } u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \text { and } r_{1} \in N
$$

Applying Lemma 2.2(ii), we find

$$
\begin{equation*}
d\left(r_{1}, u_{2}, \ldots, u_{n}\right)=0, \quad \text { for all } u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \text { and } r_{1} \in N \tag{2.6}
\end{equation*}
$$

Now replacing u_{2} by $u_{2} r_{2}$ in (2.6) for $r_{2} \in N$ and another application of Lemma 2.2 (ii) yields that $d\left(r_{1}, r_{2}, u_{3}, \ldots, u_{n}\right)=0$ for all $u_{3} \in U_{3}, \ldots, u_{n} \in U_{n}$ and $r_{1}, r_{2} \in N$. Proceeding inductively, we get $d\left(r_{1}, r_{2}, \ldots, r_{n}\right)=0$ for all $r_{1}, r_{2}, \ldots, r_{n} \in N$, i.e., $d=0$. Therefore, our hypothesis reduces to

$$
F\left(r_{1} u_{1}, u_{2}, \ldots, u_{n}\right)=F\left(r_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(u_{1}\right)=0
$$

for all $u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$ and $r_{1} \in N$ which implies that

$$
\begin{equation*}
F\left(r_{1}, u_{2}, \ldots, u_{n}\right)=0, \quad \text { for all } u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \text { and } r_{1} \in N . \tag{2.7}
\end{equation*}
$$

Replacing u_{2} by $r_{2} u_{2}$ in (2.7), we get $F\left(r_{1}, r_{2}, \ldots, u_{n}\right) U_{2}=\{0\}$ and Lemma 2.2 (ii) gives $F\left(r_{1}, r_{2}, u_{3}, \ldots, u_{n}\right)=0$ for all $u_{3} \in U_{3}, \ldots, u_{n} \in U_{n}$ and $r_{1}, r_{2} \in N$. Proceeding inductively, we obtain $F=0$ on N, a contradiction.

3. Main Results

Theorem 3.1. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Suppose that σ, τ are multiplicative mappings on U_{i} for $i=1,2, \ldots, n$, such that $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$, and σ is onto on N. If N admits a generalized (σ, τ)-n-derivation F associated with a (σ, τ)-n-derivation d such that $F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{1}^{\prime} \in U_{1}, x_{2} \in$ $U_{2}, \ldots, x_{n} \in U_{n}$, then F is a left σ-n-multiplier on N.

Proof. By hypothesis

$$
\begin{aligned}
F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
& =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right),
\end{aligned}
$$

for all $x_{1}, x_{1}^{\prime} \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}$. Replacing x_{1}^{\prime} by $x_{1}^{\prime} z$ for $z \in U_{1}$ in the above relation, we get

$$
\begin{aligned}
& \left\{d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)\right\} F\left(z, x_{2}, \ldots, x_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime} z\right)+\tau\left(x_{1}\right)\left\{d\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \sigma(z)+\tau\left(x_{1}^{\prime}\right) F\left(z, x_{2}, \ldots, x_{n}\right)\right\} .
\end{aligned}
$$

Applying Lemma 2.4 and using the hypothesis, we obtain

$$
\begin{aligned}
& d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right) F\left(z, x_{2}, \ldots, x_{n}\right)+\tau\left(x_{1}\right) d\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \sigma(z) \\
& +\tau\left(x_{1}\right) \tau\left(x_{1}^{\prime}\right) F\left(z, x_{2}, \ldots, x_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime} z\right)+\tau\left(x_{1}\right) d\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \sigma(z)+\tau\left(x_{1}\right) \tau\left(x_{1}^{\prime}\right) F\left(z, x_{2}, \ldots, x_{n}\right),
\end{aligned}
$$

which reduces to

$$
d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)\left(F\left(z, x_{2}, \ldots, x_{n}\right)-\sigma(z)\right)=0
$$

for all $x_{1}, x_{1}^{\prime}, z \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}$. This implies that

$$
d\left(x_{1}, x_{2}, \ldots, x_{n}\right) U_{1}\left(F\left(z, x_{2}, \ldots, x_{n}\right)-\sigma(z)\right)=\{0\}
$$

By Lemma 2.2 (i), we obtain $d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ or $F\left(z, x_{2}, \ldots, x_{n}\right)=\sigma(z)$ for all $z \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}$.

If $F\left(z, x_{2}, \ldots, x_{n}\right)=\sigma(z)$ for all $z \in U_{1}$, replacing z by $z t$, we get

$$
\tau(z) d\left(t, x_{2}, \ldots, x_{n}\right)=0
$$

Putting $u \in U_{1}$ in place of $\tau(z)$ and using Lemma 2.2 (ii), we obtain $d\left(t, x_{2}, \ldots, x_{n}\right)=0$ for all $t \in U_{1}$. Therefore, in both cases we arrive at $d\left(U_{1}, U_{2}, \ldots, U_{n}\right)=\{0\}$. Now arguing in the similar manner as we have done in Lemma 2.5, we can get $d=0$ on N, which completes the proof.
Theorem 3.2. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ be nonzero semigroup ideals of N. Suppose that σ is a multiplicative mapping on U_{i} for $i=1,2, \ldots, n$, such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If N admits a nonzero generalized $(\sigma, \sigma)-n$ derivation F associated with a (σ, σ)-n-derivation d such that $F\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subseteq$ $Z(N)$, then N is a commutative ring.
Proof. If $d \neq 0$, then for all $u_{1}, u_{1}^{\prime} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$

$$
\begin{equation*}
F\left(u_{1} u_{1}^{\prime}, u_{2}, \ldots, u_{n}\right)=d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(u_{1}^{\prime}\right)+\sigma\left(u_{1}\right) F\left(u_{1}^{\prime}, u_{2}, \ldots, u_{n}\right) \in Z(N) \tag{3.1}
\end{equation*}
$$

Now commuting (3.1) with the element $\sigma\left(u_{1}\right)$ and using Lemma 2.4, we get

$$
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(u_{1}^{\prime}\right) \sigma\left(u_{1}\right)=\sigma\left(u_{1}\right) d\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(u_{1}^{\prime}\right)
$$

Since σ is an onto map on N, replacing $\sigma\left(u_{1}^{\prime}\right)$ by $r_{1} \in N$ in above expression, we find that

$$
\begin{equation*}
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) r_{1} \sigma\left(u_{1}\right)=\sigma\left(u_{1}\right) d\left(u_{1}, u_{2}, \ldots, u_{n}\right) r_{1} \tag{3.2}
\end{equation*}
$$

Substituting $r_{1} r_{2}$ where $r_{2} \in N$ in place of r_{1} in (3.2) and using it again, we obtain

$$
d\left(u_{1}, u_{2}, \ldots, u_{n}\right) N\left[\sigma\left(u_{1}\right), r_{2}\right]=\{0\} .
$$

By 3-primeness of N, we get $d\left(u_{1}, u_{2}, \ldots, u_{n}\right)=0$ or $\left[\sigma\left(u_{1}\right), r\right]=0$ for all $u_{1} \in U_{1}, u_{2} \in$ $U_{2}, \ldots, u_{n} \in U_{n}$ and $r \in N$.

Case 1. Suppose there exists $x_{0} \in U_{1}$ such that $d\left(x_{0}, u_{2}, \ldots, u_{n}\right)=0$ for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Then

$$
F\left(u_{1} x_{0}, u_{2}, \ldots, u_{n}\right)=F\left(u_{1}, u_{2}, \ldots, u_{n}\right) \sigma\left(x_{0}\right) \in Z(N),
$$

for all $u_{1} \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Since $F\left(u_{1}, u_{2}, \ldots, u_{n}\right) \neq 0$, then $\sigma\left(x_{0}\right) \in Z(N)$ by Lemma 2.1 (ii).

Case 2. Suppose there exists $x_{0} \in U_{1}$ such that $\left[\sigma\left(x_{0}\right), r\right]=0$ for all $r \in N$, then $\sigma\left(x_{0}\right) \in Z(N)$.

In both cases, we obtain $\sigma\left(U_{1}\right) \subseteq Z(N)$ which implies that $U_{1} \subseteq Z(N)$. Hence, by Lemma 2.3, we conclude that N is a commutative ring.

Assume that $d=0$, then another application of Lemma 2.1 (ii) and Lemma 2.8, our hypothesis gives $U_{1} \subseteq Z(N)$ and N is a commutative ring by Lemma 2.3.

The following example shows that the 3 -primeness hypothesis in Theorem 3.2 can not be omitted.

Example 3.1. Let us consider Example 1.3. Consider

$$
U=\left\{\left.\left(\begin{array}{ccc}
0 & x & 0 \\
0 & 0 & 0 \\
0 & z & 0
\end{array}\right) \right\rvert\, x, y, z, 0 \in S\right\} .
$$

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left near ring N. If we choose $U_{1}=U_{2}=\cdots=U_{n}=U$, then $F\left(U_{1}, U_{2}, \ldots, U_{n}\right) \subseteq Z(N)$. However, N is not commutative.

Theorem 3.3. Let N be a 3-prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Suppose that σ, τ are multiplicative mappings on U_{i} for $i=1,2, \ldots, n$, such that $U_{i} \subseteq \sigma\left(U_{i}\right), U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$, and σ is onto on N. If N admits a generalized (σ, τ) - n-derivation F associated with a $(\sigma, \tau)-n$-derivation d such that $F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right)=F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for all $x_{1}, x_{1}^{\prime} \in U_{1}, x_{2} \in$ $U_{2}, \ldots, x_{n} \in U_{n}$, then N is commutative ring.

Proof. By hypothesis,

$$
\begin{align*}
F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) & =d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right)+\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
& =F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right), \tag{3.3}
\end{align*}
$$

for all $x_{1}, x_{1}^{\prime} \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}$. Substituting $x_{1} x_{1}^{\prime}$ for x_{1}^{\prime} in (3.3) and using Remark 2.1, we obtain

$$
\begin{aligned}
F\left(x_{1}\left(x_{1} x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)= & F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& +\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

Also, using the definition of F, we get

$$
\begin{aligned}
F\left(x_{1}\left(x_{1} x_{1}^{\prime}\right), x_{2}, \ldots, x_{n}\right)= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1} x_{1}^{\prime}\right)+\tau\left(x_{1}\right) F\left(x_{1} x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) \\
= & d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right) \sigma\left(x_{1}^{\prime}\right) \\
& +\tau\left(x_{1}\right) F\left(x_{1}^{\prime}, x_{2}, \ldots, x_{n}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
\end{aligned}
$$

By comparing the last two equations, we can easily arrive at

$$
\begin{equation*}
d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}^{\prime}\right) F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right) \sigma\left(x_{1}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

Since σ is onto on N, we get

$$
d\left(x_{1}, x_{2}, \ldots, x_{n}\right) r_{1} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sigma\left(x_{1}\right) r_{1}
$$

Now substituting $r_{1} r_{2}$ for r_{1} in above expression and using it again, we find that

$$
d\left(x_{1}, x_{2}, \ldots, x_{n}\right) N\left[F\left(x_{1}, x_{2}, \ldots, x_{n}\right), r_{2}\right]=\{0\}
$$

for all $x_{1}, \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in U_{n}$ and $r_{2} \in N$. Since N is 3-prime, we have $d\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ or $F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in Z(N)$ for all $x_{1}, \in U_{1}, x_{2} \in U_{2}, \ldots, x_{n} \in$ U_{n}. Using the same argument as used in the proof of the Lemma 2.5 and Theorem 3.2 , we conclude that N is a commutative ring.

Theorem 3.4. Let N be a 3-prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an automorphism and τ be a homomorphism on N such that $U_{1} \subseteq \sigma\left(U_{1}\right)$ and $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If N admits a left generalized (σ, τ)-nderivation F associated with a (σ, τ)-n-derivation d such that $F\left([x, y], u_{2}, \ldots, u_{n}\right)=$ $\pm \tau([x, y])$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, then N is a commutative ring.
Proof. By hypothesis

$$
\begin{equation*}
F\left([x, y], u_{2}, \ldots, u_{n}\right)= \pm \tau([x, y]), \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.5}
\end{equation*}
$$

Replacing y by $x y$ in (3.5) and using $[x, x y]=x[x, y]$, we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])+\tau(x) F\left([x, y], u_{2}, \ldots, u_{n}\right)= \pm(\tau(x) \tau(x y)-\tau(x) \tau(y x))
$$

which reduces to

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.6}
\end{equation*}
$$

This implies that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y)=d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)
$$

Substituting $y z$ in place of y, where $z \in N$ in the last expression and using it again, we find that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)[\sigma(x), \sigma(z)]=0
$$

Since $U_{1} \subseteq \sigma\left(U_{1}\right)$, then Lemma 2.2 (i) yields that $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ or $\sigma(x) \in Z(N)$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Since σ is an automorphism on N, then $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ or $x \in Z(N)$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Using Lemma 2.7, we get $d\left(U_{1}, U_{2}, \ldots, U_{n}\right) \in Z(N)$ which forces that N is a commutative ring by Theorem 3.2 which completes the proof.

Theorem 3.5. Let N be a 2 -torsion free 3-prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an automorphism on N and τ be a homomorphism on N such that $U_{1} \subseteq \sigma\left(U_{1}\right)$ and $U_{i} \subseteq \tau\left(U_{i}\right)$ for $i=1,2, \ldots, n$. Then N admits no left generalized (σ, τ)-n-derivation F associated with a nonzero (σ, τ)-n-derivation d satisfying one of the following conditions:
(i) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau([x, y])$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$;
(ii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau(x \circ y)$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$;
(iii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Proof. (i) Assume that

$$
\begin{equation*}
F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau([x, y]), \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} . \tag{3.7}
\end{equation*}
$$

Replacing y by $x y$ in (3.7), we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\tau(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm(\tau(x) \tau(x y)-\tau(x) \tau(y x)),
$$

which implies that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\tau(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau(x) \tau([x, y]) .
$$

Using the hypothesis, we find that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n},
$$

which implies that

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)=-d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y) \tag{3.8}
\end{equation*}
$$

Substituting $y z$ for y in (3.8) where $z \in N$, we have

$$
\begin{aligned}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(z) \sigma(x) & =-d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y) \sigma(z) \\
& =d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y)(-\sigma(z)) \\
& =\left(-d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)\right)(-\sigma(z)) \\
& =d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)(-\sigma(x))(-\sigma(z)) \\
& =d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(-x) \sigma(-z),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
0 & =d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)(\sigma(z) \sigma(x)-\sigma(-x) \sigma(-z)) \\
& =d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)(-\sigma(z) \sigma(-x)+\sigma(-x) \sigma(z)) .
\end{aligned}
$$

Since $U_{1} \subseteq \sigma\left(U_{1}\right)$, Lemma 2.2 (i) yields that
(3.9) $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ or $\sigma(-x) \in Z(N), \quad$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Suppose there exists $x_{0} \in U_{1}$ such that $\sigma\left(-x_{0}\right) \in Z(N)$. Since $-U_{1}$ is a nonzero semigroup left ideal of N, replacing x and y by $-x_{0}$ in (3.8), we get

$$
2 d\left(-x_{0}, u_{2}, \ldots, u_{n}\right) \sigma\left(-x_{0}\right) \sigma\left(-x_{0}\right)=0
$$

for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Using 2-torsion freeness of N, we conclude that $d\left(-x_{0}, u_{2}, \ldots, u_{n}\right) N \sigma\left(-x_{0}\right) N \sigma\left(-x_{0}\right)=\{0\}$ for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. By $3-$ primeness of N, we arrive at $d\left(-x_{0}, u_{2}, \ldots, u_{n}\right)=0$ or $\sigma\left(-x_{0}\right)=0$ for all $u_{2} \in$ $U_{2}, \ldots, u_{n} \in U_{n}$. Since σ is an automorphism of N, by (3.9) we get $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, so $d\left(U_{1}, U_{2}, \ldots, U_{n}\right)=\{0\}$, which contradicts Lemma 2.5.
(ii) Suppose that

$$
\begin{equation*}
F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau(x \circ y), \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.10}
\end{equation*}
$$

Replacing y by $x y$ in (3.10), we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\tau(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau(x) \tau(x \circ y)
$$

which reduces to

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)=-d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y) \tag{3.11}
\end{equation*}
$$

Since (3.11) is same as (3.8), arguing in the similar manner as in (i), we find a contradiction with our hypothesis.

Using the same techniques, we can prove the result for (iii).
Theorem 3.6. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an homomorphism on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If N admits a left generalized (σ, σ) - n-derivation F associated with a (σ, σ) - n-derivation d such that $F\left([x, y], u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y \in U_{1}, u_{2} \in$ $U_{2}, \ldots, u_{n} \in U_{n}$, then F is a right $\sigma-n$-multiplier on N or N is commutative.

Proof. By hypothesis

$$
\begin{equation*}
F\left([x, y], u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.12}
\end{equation*}
$$

Replacing y by $x y$ in (3.12), we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])+\sigma(x) F\left([x, y], u_{2}, \ldots, u_{n}\right)=\sigma(x)[\sigma(x), y]_{\sigma, \sigma}
$$

which reduces to

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.13}
\end{equation*}
$$

As (3.13) is same as (3.6), arguing in the similar manner as in Theorem 3.4, we obtain the result.

Theorem 3.7. Let N be a 2-torsion free 3-prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be a homomorphism on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. Then N admits no left generalized (σ, σ) - n-derivation F associated with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:
(i) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$;
(ii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Proof. (i) Suppose that

$$
\begin{equation*}
F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} . \tag{3.14}
\end{equation*}
$$

Replacing y by $x y$ in (3.14), we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\sigma(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=\sigma(x)[\sigma(x), y]_{\sigma, \sigma},
$$

which reduces to

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} . \tag{3.15}
\end{equation*}
$$

Since (3.15) is same as (3.8), arguing as in the proof of Theorem 3.5, we find that $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$ or N is a commutative ring. If N is a commutative ring, then our hypothesis becomes

$$
2 F\left(x y, u_{2}, \ldots, u_{n}\right)=0,
$$

for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. By 2-torsion freeness of N, we have $F\left(x y, u_{2}, \ldots, u_{n}\right)=0$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. This implies that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)+\sigma(x) F\left(y, u_{2}, \ldots, u_{n}\right)=0 .
$$

Replacing y by $y z$ in last expression, we obtain $d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(z)=0$ for all $x, y, z \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$ which implies that $d\left(x, u_{2}, \ldots, u_{n}\right) \sigma\left(U_{1}\right) \sigma(z)=\{0\}$ for all $x, z \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Since $U_{1} \subseteq \sigma\left(U_{1}\right)$, we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) U_{1} \sigma(z)=\{0\},
$$

for all $x, z \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Using Lemma 2.2 (i), we have $d\left(x, u_{2}, \ldots, u_{n}\right)=$ 0 for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$ or $\sigma\left(U_{1}\right)=U_{1}=\{0\}$. Since $U_{1} \neq\{0\}$, we conclude that $d\left(U_{1}, U_{2}, \ldots, U_{n}\right)=\{0\}$ which contradicts Lemma 2.5.
(ii) Assume that
(3.16) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}, \quad$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Substituting $x y$ for y in (3.16), we have

$$
\begin{aligned}
F\left(x(x \circ y), u_{2}, \ldots, u_{n}\right) & =\sigma(x) \sigma(x y)+\sigma(x y) \sigma(x), \\
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\sigma(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right) & =\sigma(x)(\sigma(x) \circ y)_{\sigma, \sigma},
\end{aligned}
$$

which implies that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} .
$$

Arguing in the similar manner as we have done above, we obtain $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, we again get a contradiction.

Theorem 3.8. Let N be a 3 -prime near-ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an homomorphism on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If N admits a left generalized $(\sigma, \sigma)-n$-derivation F associated with a nonzero (σ, σ) -n-derivation d such that $F\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$ for all $x, y \in$ $U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, then N is a commutative ring.

Proof. Suppose that for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$

$$
\begin{equation*}
F\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right] . \tag{3.17}
\end{equation*}
$$

Replacing y by $x y$ in (3.17), we get

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])+\sigma(x) F\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(x y)\right] .
$$

In view of our hypothesis, the above expression gives

$$
\begin{aligned}
& d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x y)-d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y x)+\sigma(x) d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \\
& -\sigma(x) \sigma(y) d\left(x, u_{2}, \ldots, u_{n}\right) \\
= & d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x y)-\sigma(x y) d\left(x, u_{2}, \ldots, u_{n}\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)=\sigma(x) d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \tag{3.18}
\end{equation*}
$$

Replacing y by $y u$ in the last equation and using it, we can easily arrive at

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)[\sigma(x), \sigma(u)]=0
$$

Since $U_{1} \subseteq \sigma\left(U_{1}\right)$, by Lemma 2.2 (i), we conclude that

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right)=0 \quad \text { or } \quad \sigma(x) \in Z\left(U_{1}\right), \quad \text { for all } x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.19}
\end{equation*}
$$

Suppose there exists $x_{0} \in U$ such that $\sigma\left(x_{0}\right) \in Z\left(U_{1}\right)$. Then $\sigma\left(x_{0}\right) v=v \sigma\left(x_{0}\right)$ for all $v \in U_{1}$ and replacing v by $v n$, where $n \in N$ and using it, we conclude that $U\left[\sigma\left(x_{0}\right), n\right]=\{0\}$ for all $n \in N$ by Lemma 2.2 (ii), we conclude that $\sigma\left(x_{0}\right) \in Z(N)$. In this case, (3.19) becomes

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right)=0 \quad \text { or } \quad \sigma(x) \in Z(N) \quad \text { for all } x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.20}
\end{equation*}
$$

In all cases, the equation (3.17) becomes

$$
\begin{equation*}
F\left([x, y], u_{2}, \ldots, u_{n}\right)=0, \quad \text { for all } x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n} \tag{3.21}
\end{equation*}
$$

This equation is a special case of Theorem 3.4 with $\tau=0$, which is already treated previously.

Theorem 3.9. Let N be a 2-torsion free 3-prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an automorphism on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. Then N admits no left generalized (σ, σ) - n-derivation F associated with a nonzero (σ, σ)-n-derivation d satisfying one of the following conditions:
(i) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=d\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y)$;
(ii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$,
for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Proof. (i) By hypothesis, for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$

$$
\begin{equation*}
F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=d\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y) . \tag{3.22}
\end{equation*}
$$

Substituting $x y$ for y in (3.22) and using $(x \circ x y)=x(x \circ y)$, we obtain

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\sigma(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=d\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(x y) .
$$

Using the hypothesis, we find that

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)=-\sigma(x) d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \tag{3.23}
\end{equation*}
$$

Replacing y by $y z$ where $z \in N$ in the last expression and using the same steps that we introduced previously, we obtain $d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)(-\sigma(z) \sigma(-x)+\sigma(-x) \sigma(z))=0$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}, z \in N$. Since $\sigma\left(U_{1}\right)=U_{1}$ and invoking Lemma 2.2 (i) and Lemma 2.3, we conclude that $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ or $\sigma(-x) \in Z(N)$.

Suppose there exists $x_{0} \in U$ such that $\sigma\left(-x_{0}\right) \in Z(N)$. Since $-U_{1}$ is a nonzero semigroup left ideal of N, replacing x and y by $-x_{0}$ in (3.23), we get

$$
2 d\left(-x_{0}, u_{2}, \ldots, u_{n}\right) \sigma\left(-x_{0}\right) \sigma\left(-x_{0}\right)=0, \quad \text { for all } u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}
$$

Using 2-torsion freeness of N, we conclude that

$$
d\left(-x_{0}, u_{2}, \ldots, u_{n}\right) N \sigma\left(-x_{0}\right) N \sigma\left(-x_{0}\right)=\{0\},
$$

for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. By 3-primeness of N, we arrive at $d\left(-x_{0}, u_{2}, \ldots, u_{n}\right)=0$ or $\sigma\left(-x_{0}\right)=0$ for all $u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Since σ is an automorphism of N, by (3.9) we get $d\left(x, u_{2}, \ldots, u_{n}\right)=0$ for all $x \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, so $d\left(U_{1}, U_{2}, \ldots, U_{n}\right)=$ $\{0\}$, which contradicts Lemma 2.5.
(ii) By hypothesis, we have for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$

$$
\begin{equation*}
F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right] . \tag{3.24}
\end{equation*}
$$

Substituting $x y$ for y in (3.24) and using $(x \circ x y)=x(x \circ y)$, we obtain

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\sigma(x) F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(x y)\right]
$$

which reduces to

$$
\begin{equation*}
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) \sigma(x)=-\sigma(x) d\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y) . \tag{3.25}
\end{equation*}
$$

(3.25) is same as (3.23), arguing in the similar manner as above, we conclude that $d\left(U_{1}, U_{2}, \ldots, U_{n}\right)=\{0\}$, which leads to a contradiction.

Theorem 3.10. Let N be a 3 -prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N. Let σ be an homomorphism on N such that $U_{i} \subseteq \sigma\left(U_{i}\right)$ for $i=1,2, \ldots, n$. If F is a left generalized (σ, σ)-n-derivation associated with a nonzero (σ, σ)-n-derivation d on N such that $d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[F\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$, then F is a right $\sigma-n$-multiplier on N or N is a commutative ring.

Proof. Assume that

$$
\begin{equation*}
d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[F\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right], \tag{3.26}
\end{equation*}
$$

for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Replacing y by $x y$ in (3.26), we get

$$
d\left(x[x, y], u_{2}, \ldots, u_{n}\right)=\left[F\left(x, u_{2}, \ldots, u_{n}\right), \sigma(x y)\right],
$$

which implies that

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])+\sigma(x) d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[F\left(x, u_{2}, \ldots, u_{n}\right), \sigma(x) \sigma(y)\right] .
$$

Using (3.26), the last equation becomes

$$
d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])+\sigma(x) F\left(x, u_{2}, \ldots, u_{n}\right) \sigma(y)=F\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x) \sigma(y)
$$

For $x=y,(3.26)$ gives $F\left(x, u_{2}, \ldots, u_{n}\right) \sigma(x)=\sigma(x) F\left(x, u_{2}, \ldots, u_{n}\right)$ which implies that $d\left(x, u_{2}, \ldots, u_{n}\right) \sigma([x, y])=0$. As this equation is same as (3.6), arguing in the similar manner as in Theorem 3.4, we obtain the result.

Theorem 3.11. Let N be a 2-torsion free 3-prime near ring and $U_{1}, U_{2}, \ldots, U_{n}$ are nonzero semigroup ideals of N such that U_{1} is closed under addition. Let σ be a onto homomorphism on N such that $U_{1} \subseteq \sigma\left(U_{1}\right)$. Then N admits no generalized (σ, σ)-n-derivation F associated with a (σ, σ)-n-derivation d such that $U_{1} \cap Z \neq \emptyset$, $d\left(U_{1} \cap Z, U_{2}, U_{3}, \ldots, U_{n}\right) \neq\{0\}$ and $d\left(x \circ y, u_{2}, \ldots, u_{n}\right)=F\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y)$ for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$.

Proof. Suppose that

$$
\begin{equation*}
d\left(x \circ y, u_{2}, \ldots, u_{n}\right)=F\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y) \tag{3.27}
\end{equation*}
$$

for all $x, y \in U_{1}, u_{2} \in U_{2}, \ldots, u_{n} \in U_{n}$. Let $z \in U_{1} \cap Z$ such that $d\left(z, u_{2}, u_{3}, \ldots, u_{n}\right) \neq 0$ and replacing y by $z y$ in (3.27), we get

$$
d\left(z, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)+\sigma(z) d\left(x \circ y, u_{2}, \ldots, u_{n}\right)=F\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(z) \sigma(y)
$$

Substituting arbitrary element $z^{\prime} \in U_{1} \cap Z$ for $\sigma(z)$ in above expression and using (3.27), we obtain $d\left(z, u_{2}, \ldots, u_{n}\right) \sigma(x \circ y)=0$. By Lemma 2.7, it is clear that $d\left(z, u_{2}, \ldots, u_{n}\right) \in$ $Z \backslash\{0\}$ which means that $d\left(z, u_{2}, \ldots, u_{n}\right) N \sigma(x \circ y)=\{0\}$. By 3-primeness of N, we conclude that $\sigma(x \circ y)=0$ for all $x, y \in U_{1}$ which implies that $\sigma(x) \circ \sigma(y)=0$. Now replacing $\sigma(x)$ and $\sigma(y)$ by x^{\prime} and y^{\prime} for all $x^{\prime}, y^{\prime} \in U_{1}$ respectively, we have $x^{\prime} \circ y^{\prime}=0$. In particular $x^{\prime 2}=0$ for all $x^{\prime} \in U_{1}$. Since U_{1} is closed under addition, we have $u\left(u+u^{\prime}\right)^{2}=0$ for all $u, u^{\prime} \in U_{1}$ this gives $u u^{\prime} u=0$ for all $u, u^{\prime} \in U_{1}$, i.e., $u U_{1} u=\{0\}$. Thus, $U_{1}=\{0\}$, which contradicts our hypothesis.

The following example shows that the 3-primeness hypothesis in Theorems 3.4 to 3.11 can not be omitted.

Example 3.2. Let S be a zero-symmetric left near-ring which is not abelian. Consider

$$
N=\left\{\left.\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, y, 0 \in S\right\}
$$

and

$$
U=\left\{\left.\left(\begin{array}{lll}
0 & x & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, x, 0 \in S\right\} .
$$

Then clearly U is a nonzero semigroup ideal of a non 3-prime zero-symmetric left near ring N. Define mappings $F, d: \underbrace{N \times N \times \cdots \times N}_{n-\text { times }} \rightarrow N$ by

$$
\begin{aligned}
& F\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & x_{1} x_{2} \ldots x_{n} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& d\left(\left(\begin{array}{ccc}
0 & x_{1} & y_{1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & x_{2} & y_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \ldots,\left(\begin{array}{ccc}
0 & x_{n} & y_{n} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{ccc}
0 & 0 & y_{1} y_{2} \ldots y_{n} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Define $\sigma, \tau: N \rightarrow N$ by

$$
\tau\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0 & x & -y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \sigma=i d_{N} .
$$

If we choose $U_{1}=U_{2}=\cdots=U_{n}=U$, then it is easy to see that F is a nonzero generalized (σ, σ) - n-derivation associated with a nonzero (σ, σ)-n-derivation d and also a nonzero generalized (σ, τ) - n-derivation associated with a nonzero (σ, τ) - n-derivation d of N satisfying
(i) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=0$;
(ii) $F\left([x, y], u_{2}, \ldots, u_{n}\right)= \pm \tau([x, y])$;
(iii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau([x, y])$;
(iv) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=(\sigma(x) \circ y)_{\sigma, \sigma}$;
(v) $F\left([x, y], u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$;
(vi) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=[\sigma(x), y]_{\sigma, \sigma}$;
(vii) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)= \pm \tau(x \circ y)$;
(viii) $F\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$;
(ix) $d\left([x, y], u_{2}, \ldots, u_{n}\right)=\left[F\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$;
(x) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=\left[d\left(x, u_{2}, \ldots, u_{n}\right), \sigma(y)\right]$;
(xi) $F\left(x \circ y, u_{2}, \ldots, u_{n}\right)=d\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y)$;
(xii) $d\left(x \circ y, u_{2}, \ldots, u_{n}\right)=F\left(x, u_{2}, \ldots, u_{n}\right) \circ \sigma(y)$,
for all $x, y, u_{2}, \ldots, u_{n} \in U$. However, N is not a commutative ring.

References

[1] H. E. Bell, On derivations in near rings II, in: G. Saad and M. J. Thomsen (Eds.), Nearrings, Nearfields and K-Loops, Springer, Dordrecht, 191-197. https://doi.org/10.1007/ 978-94-009-1481-0_10
[2] A. Boua, A. Y. Abdelwanis and A. Chillali, Some commutativity theorems for near-rings with left multipliers, Kragujevac J. Math. 44(2) (2020), 205-216. https://doi.org/10.46793/ KgJMat2002.205B
[3] A. Boua and M. Ashraf, Some algebraic identities in 3-prime near-rings, Ukrainian Math. J. 72(1) (2020), 39-51. https://doi.org/10.1007/s11253-020-01762-5
[4] Y. Ceven and M. A. Ozturk, Some properties of symmetric bi- (σ, τ)-derivations in near-rings, Commun. Korean Math. Soc. 22(4) (2007), 487-491. https://doi.org/10.4134/CKMS. 2007. 22.4 .487
[5] J. Vukman, Identities with derivations and automorphisms on semiprime rings, Int. J. Math. Math. Sci. 7 (2005), 1031-1038. https://doi.org/DOI:10.1155/ijmms.2005.1031
[6] K. H. Park and Y. S. Jung, On permuting 3-derivations and commutativity in prime near rings, Commun. Korean Math. Soc. 25(1) (2010), 1-9. https://doi.org/10.4134/CKMS.2010.25.1. 001
[7] M. Bresar, On skew commuting mappings of rings, Bull. Aust. Math. Soc. 47(2) (1993), 291-296. https://doi.org/10.1017/S0004972700012521
[8] M. A. Öztürk and H. Yazarli, A note on permuting tri-derivation in near ring, Gazi University Journal of Science 24(4) (2011), 723-729.
[9] M. A. Öztürk and Y. B. Jun, On trace of symmetric bi-derivations in near rings, International Journal of Pure and Applied Mathematics 17 (2004), 95-102.
[10] G. Pilz, Near-Rings: The Theory and its Applications, North Holland, New York, 1977.
${ }^{1}$ Department of Mathematics, Aligarh Muslim University, Aligarh, INDIA
Email address: asma_ali2@rediffmail.com, inzamamulhuque057@gmail.com
${ }^{2}$ Department of Mathematics, Physics and Computer Science, Polydisciplinary Faculty, LSI, Taza, Sidi Mohammed Ben Abdellah University, Fez, Morocco
Email address: abedelkarimboua@yahoo.fr
${ }^{3}$ Department of Mathematics, Aligarh Muslim University, Aligarh, INDIA
Email address: asma_ali2@rediffmail.com, inzamamulhuque057@gmail.com

[^0]: Key words and phrases. 3-prime near ring, semigroup ideal, (σ, τ) - n-derivations, generalized (σ, τ) -n-derivations.

 2010 Mathematics Subject Classification. Primary: 16N60. Secondary: 16W25, 16Y30.
 DOI 10.46793/KgJMat2306.891A
 Received: March 06, 2020.
 Accepted: January 18, 2021.

