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CONTROLLED INTEGRAL FRAMES FOR HILBERT C∗-MODULES

HATIM LABRIGUI1 AND SAMIR KABBAJ1

Abstract. The notion of controlled frames for Hilbert spaces were introduced
by Balazs, Antoine and Grybos to improve the numerical efficiency of iterative
algorithms for inverting the frame operator. Controlled frame theory has a great
revolution in recent years. This theory have been extended from Hilbert spaces to
Hilbert C∗-modules. In this paper we introduce and study the extension of this
notion to integral frame for Hilbert C∗-modules. Also we give some characterizations
between integral frame in Hilbert C∗-modules.

1. Introduction and preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer
[9] in 1952 to study some deep problems in nonharmonic Fourier series. After the
fundamental paper [7] by Daubechies, Grossman and Meyer, frames theory began to
be widely used, particularly in the more specialized context of wavelet frames and
Gabor frames [12].

Hilbert C∗-module arose as generalization of the Hilbert space notion. The basic
idea was to consider modules over C∗-algebras instead of linear spaces and to allow
the inner product to take values in the C∗-algebras [17]. Continuous frames defined
by Ali, Antoine and Gazeau [1]. Gabardo and Han in [11] called these kinds frames
or frames associated with measurable spaces. For more details, the reader can refer
to [4, 13–16,20–32].
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The goal of this article is the introduction and the study of the concept of controlled
integral frames for Hilbert C∗-modules. Also we give some characterizations between
integral frame in Hilbert C∗-modules.

In the following we briefly recall the definitions and basic properties of C∗-algebra
and Hilbert A-modules. Our references for C∗-algebras are [6,8]. For a C∗-algebra A,
if a ∈ A is positive we write a ≥ 0 and A+ denotes the set of positive elements of A.

Definition 1.1 ([6]). Let A be a unital C∗-algebra and H be a left A-module, such
that the linear structures of A and H are compatible. H is a pre-Hilbert A-module
if H is equipped with an A-valued inner product ⟨·, ·⟩A : H × H → A, such that is
sesquilinear, positive definite and respects the module action. In the other words

(i) ⟨x, x⟩A ≥ 0 for all x ∈ H, and ⟨x, x⟩A = 0 if and only if x = 0;
(ii) ⟨ax + y, z⟩A = a⟨x, z⟩A + ⟨y, z⟩A for all a ∈ A and x, y, z ∈ H;
(iii) ⟨x, y⟩A = ⟨y, x⟩∗

A for all x, y ∈ H.
For x ∈ H, we define ||x|| = ||⟨x, x⟩A|| 1

2 . If H is complete with || · ||, it is called a
Hilbert A-module or a Hilbert C∗-modules over A.

For every a in C∗-algebra A, we have |a| = (a∗a) 1
2 and the A-valued norm on H is

defined by |x| = ⟨x, x⟩
1
2
A for all x ∈ H.

Let H and K be two Hilbert A-modules, a map T : H → K is said to be adjointable
if there exists a map T ∗ : K → H such that ⟨Tx, y⟩A = ⟨x, T ∗y⟩A for all x ∈ H and
y ∈ K.

We reserve the notation End∗
A(H,K) for the set of all adjointable operators from

H to K and End∗
A(H,H) is abbreviated to End∗

A(H).

The following lemmas will be used to prove our mains results.

Lemma 1.1 ([19]). Let H be a Hilbert A-modules. If T ∈ End∗
A(H), then

⟨Tx, Tx⟩A ≤ ∥T∥2⟨x, x⟩A, x ∈ H.

Lemma 1.2 ([3]). Let H and K be two Hilbert A-modules and T ∈ End∗
A(H,K).

Then the following statements are equivalent:
(i) T is surjective;
(ii) T ∗ is bounded below associted to the norm, i.e., there is m > 0 such that

m∥x∥ ≤ ∥T ∗x∥ for all x ∈ K;
(iii) T ∗ is bounded below associted to the inner product, i.e., there is m′ > 0 such

that m′⟨x, x⟩A ≤ ⟨T ∗x, T ∗x⟩A for all x ∈ K.

Lemma 1.3 ([2]). Let H and K be two Hilbert A-modules and T ∈ End∗
A(H,K).

(i) If T is injective and T has closed range, then the adjointable map T ∗T is
invertible and

∥(T ∗T )−1∥−1IH ≤ T ∗T ≤ ∥T∥2IH.

(ii) If T is surjective, then the adjointable map TT ∗ is invertible and
∥(TT ∗)−1∥−1IK ≤ TT ∗ ≤ ∥T∥2IK.
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Lemma 1.4 ([33]). Let (Ω, µ) be a measure spaces, X and Y are two Banach spaces,
λ : X → Y be a bounded linear operator and f : Ω → X is a measurable function,
then

λ
(∫

Ω
fdµ

)
=
∫

Ω
(λf)dµ.

Theorem 1.1 ([5]). Let X be a Banach spaces, U : X → X a bounded operator and
∥I − U∥ < 1. Then U is invertible.

2. Controlled Integral Frames for Hilbert C∗-Modules

Let X be a Banach spaces, (Ω, µ) a measure space, and f : Ω → X be a measurable
function. Integral of Banach-valued function f has been defined by Bochner and
others. Most properties of this integral are similar to those of the integral of real-
valued functions (see [10, 33]). Since every C∗-algebra and Hilbert C∗-module are
Banach spaces, we can use this integral and its properties.

Let (Ω, µ) be a measure space, H and K be two Hilbert C∗-modules over a unital C∗-
algebra and {Hw}w∈Ω is a family of submodules of H. End∗

A(H,Hw) is the collection
of all adjointable A-linear maps from H into Hw.

We define the following:

l2(Ω, {Hw}ω∈Ω) =
{

x = {xw}w∈Ω : xw ∈ Hw,
∥∥∥∥∫

Ω
⟨xw, xw⟩Adµ(w)

∥∥∥∥ < ∞
}

.

For any x = {xw}w∈Ω and y = {yw}w∈Ω, the A-valued inner product is defined by
⟨x, y⟩A =

∫
Ω⟨xw, yw⟩Adµ(w) and the norm is defined by ∥x∥ = ∥⟨x, x⟩A∥ 1

2 .
In this case, the l2(Ω, {Hw}ω∈Ω) is a Hilbert C∗-modules (see [17]).
In what follows, let GL+(H) be the set of all positive bounded linear invertible

operators on H with bounded inverse and let F be a function from Ω to H.
The following definitions was introduced by Mohamed Rossafi, Frej Chouchene and

Samir Kabbaj in the paper entitled Integral frame in Hilbert C∗-module (see arXiv
preprint- arXiv:2005.09995v2 [math.FA] 30 Nov 2020).

Definition 2.1. Let H be a Hilbert A-modules and (Ω, µ) be a measure space. A
mapping F : Ω → H is called an integral frame associted to (Ω, µ) if

� for all x ∈ H, w → ⟨x, Fω⟩A is a measurable function on Ω;
� there exists a pair of constants 0 < A, B such that

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Definition 2.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. A
mapping F : Ω → H is called a ∗-integral frame associted to (Ω, µ) if

� for all x ∈ H, w → ⟨x, Fω⟩A is a measurable function on Ω;
� there exist two non-zero elements A, B in A such that

A⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩AB∗, x ∈ H.
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3. Main Results

Definition 3.1. Let H be a Hilbert A-modules and (Ω, µ) be a measure space. A
C-controlled integral frame in C∗-module H is a map F : Ω → H such that there
exist 0 < A ≤ B < ∞ such that

(3.1) A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

The elements A and B are called the C-controlled integral frame bounds. If A = B, we
call this a C-controlled integral tight frame. If A = B = 1, it’s called a C-controlled
integral parseval frame. If only the right hand inequality of (3.1) is satisfied, we call
F a C-controlled integral Bessel mapping with bound B.

Example 3.1. Let H =
{

X =
(

a 0 0
0 0 b

)
| a, b ∈ C

}
and A =

{(
x 0
0 y

)
| x, y ∈ C

}
which is a C∗-algebra. We define the inner product:

H × H → A,
(A, B) 7→ A(B)t.

This inner product makes H a C∗-module over A. Let C be an operator defined by

C : H → H,

X → αX,

where α is a reel number strictly greater than zero. It’s clair that C ∈ Gl+(H). Let
Ω = [0, 1] endowed with the Lebesgue’s measure. It’s clear that it is a measure space.

We consider

F : [0, 1] → H,

w → Fw =
(

w 0 0
0 0 w

2

)
.

In addition, for X ∈ H, we have∫
Ω
⟨X, Fw⟩A⟨CFw, X⟩Adµ(ω) =

∫
Ω

αw2
(

|a|2 0
0 |b|2

4

)
dµ(ω) = α

3

(
|a|2 0
0 |b|2

4

)
.

It’s clear that
1
4∥X∥2

A ≤
(

|a|2 0
0 |b|2

4

)
≤
(

|a|2 0
0 |b|2

)
= ∥X∥2

A.

Then we have
α

12∥X∥2
A ≤

∫
Ω
⟨X, Fw⟩A⟨CFw, X⟩Adµ(ω) ≤ α

3 ∥X∥2
A,

which show that F is a C-controlled integral frame for the C∗-module H.
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Definition 3.2. Let F be a C-controlled integral frame for H associted to (Ω, µ).
We define the frame operator SC : H → H for F by

SCx =
∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x ∈ H.

Proposition 3.1. The frame operator SC is positive, selfadjoint, bounded and invert-
ible.

Proof. For all x ∈ H, by Lemma 1.4, we have

⟨SCx, x⟩A =
〈∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x

〉
A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω).

By left hand of inequality (3.1), we have
0 ≤ A⟨x, x⟩A ≤ ⟨SCx, x⟩A.

Then SC is a positive operator, also, it’s sefladjoint. From (3.1), we have
A⟨x, x⟩A ≤ ⟨SCx, x⟩A ≤ B⟨x, x⟩A, x ∈ H.

So,
A.I ≤ SC ≤ B.I

Then SC is a bounded operator. Moreover,

0 ≤ I − B−1SC ≤ B − A

B
.I,

Consequently,

∥I − B−1SC∥ = sup
x∈H,∥x∥=1

∥⟨(I − B−1SC)x, x⟩A∥ ≤ B − A

B
< 1.

The Theorem 1.1 shows that SC is invertible. □

Corollary 3.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let
F : Ω → H be a mapping. Assume that S is the frame operator for F . Then the
following statements are equivalent:

(1) F is an integral frame associted to (Ω, µ) with integral frame bounds A and B;
(2) we have A.I ≤ S ≤ B.I

Proof. (1) ⇒ (2) Let F be an integral frame associted to (Ω, µ) with integral frames
bounds A and B, then

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Since
Sx =

∫
Ω
⟨x, Fω⟩AFωdµ(ω),

we have

⟨Sx, x⟩A =
〈∫

Ω
⟨x, Fω⟩AFωdµ(ω), x

〉
A

=
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(ω),
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then
⟨Ax, x⟩A ≤ ⟨Sx, x⟩A ≤ ⟨Bx, x⟩A , x ∈ H.

So,
A.I ≤ S ≤ B.I.

(2) ⇒ (1) Let x ∈ H, then

(3.2)
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)

∥∥∥∥ = ∥⟨Sx, x⟩A∥ ≤ ∥Sx∥∥x∥ ≤ B∥x∥2.

Also,
(3.3) ∥⟨Sx, x⟩A∥ ≥ ∥⟨Ax, x⟩A∥ = A∥x∥2.

By (3.2) and (3.3) we obtain

A∥x∥2 ≤
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)

∥∥∥∥ ≤ B∥x∥2,

which ends the proof. □

Theorem 3.1. Let H be a Hilbert A-module, C ∈ GL+(H) and (Ω, µ) be a measure
space and F be a mapping for Ω to H. Then F is a C-controlled integral frame for
H associted to (Ω, µ) if and only if there exist 0 < A ≤ B < ∞ such that

A∥x∥2 ≤
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥∥∥∥ ≤ B∥x∥2 x ∈ H.

Proof. (⇒) obvious.
(⇐) Supposes there exists 0 < A ≤ B < ∞, such that (3.1) holds. On one hand,

for all x ∈ H we have

A∥x∥2 ≤
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω)

∥∥∥∥ = ∥⟨SCx, x⟩A∥ = ∥⟨S
1
2
Cx, S

1
2
Cx⟩A∥ = ∥S

1
2
Cx∥2.

By Lemma 1.2, there exists 0 < m such that

(3.4) m⟨x, x⟩A ≤ ⟨S
1
2
Cx, S

1
2
Cx⟩A = ⟨SCx, x⟩A.

On other hand, for all x ∈ H we have

B∥x∥2 ≥
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥∥∥∥2
= ∥⟨SCx, x⟩A∥ = ∥⟨S

1
2
Cx, S

1
2
Cx⟩A∥ = ∥S

1
2
Cx∥2.

By Lemma 1.2, there exist 0 < m′ such that

(3.5) ⟨S
1
2
Cx, S

1
2
Cx⟩A = ⟨SCx, x⟩A ≤ m′⟨x, x⟩A.

From (3.4) and (3.5), we conclude that F is a C-controlled integral frame. □

Remark 3.1. If F is a mapping from Ω to H, then F is an integral frame associted to
(Ω, µ) if and only if there exist 0 < A ≤ B < ∞ such that

A∥x∥2 ≤ ∥
∫

Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w)∥ ≤ B∥x∥2, x ∈ H.
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Corollary 3.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let
F : Ω → H be a mapping and C ∈ GL+(H). Then the following statements are
equivalent.

(1) F is a C-controlled integral frame associted to (Ω, µ).
(2) We have A.I ≤ SC ≤ B.I, where SC is the frame operator for F , for A and B

given.

Proof. (1) ⇒ (2) Let F be a C-controlled integral frame associted to (Ω, µ) with
C-controlled integral frames bounds A and B, then

A⟨x, x⟩A ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩A, x ∈ H.

Since,
SCx =

∫
Ω
⟨x, Fω⟩ACFωdµ(ω).

We have

⟨SCx, x⟩A =
〈∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x

〉
A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω),

then
⟨Ax, x⟩A ≤ ⟨Sx, x⟩A ≤ ⟨Bx, x⟩A, x ∈ H.

So,
A.I ≤ S ≤ B.I.

(2) ⇒ (1) Let x ∈ H, then

(3.6)
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥∥∥∥ = ∥⟨SCx, x⟩A∥ ≤ ∥SCx∥∥x∥ ≤ B∥x∥2.

Also,

(3.7) ∥⟨SCx, x⟩A∥ ≥ ∥⟨Ax, x⟩A∥ = A∥x∥2.

By (3.6) and (3.7) we obtain

A∥x∥2 ≤
∥∥∥∥∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w)

∥∥∥∥ ≤ B∥x∥2,

which ends the proof. □

Proposition 3.2. Let C ∈ GL+(H) and F be a C-controlled integral frame for H

associted to (Ω, µ) with bounds A and B. Then F is an integral frame for H associted
to (Ω, µ) with bounds A∥C

1
2 ∥−2 and B∥C

−1
2 ∥2.

Proof. Let F be a C-controlled integral frame for H associted to (Ω, µ) with bounds
A and B.

On one hand we have

A⟨x, x⟩A ≤ ⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C
1
2 Sx, C

1
2 x⟩A ≤ ∥C

1
2 ∥2⟨Sx, x⟩A.
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So,

(3.8) A∥C
1
2 ∥−2⟨x, x⟩A ≤

∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w).

On other hand, for all x ∈ H, we have∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) = ⟨Sx, x⟩A

= ⟨C−1CSx, x⟩A
= ⟨(C−1CS) 1

2 x, (C−1CS) 1
2 x⟩A

≤ ∥C
−1
2 ∥2⟨(CS) 1

2 x, (CS) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨(SC) 1

2 x, (SC) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨SCx, x⟩A

≤ ∥C
−1
2 ∥2B⟨x, x⟩A.

Then
(3.9)

∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ ∥C

−1
2 ∥2B⟨x, x⟩A.

From (3.8) and (3.9) we conclude that F is an integral frame H associted to (Ω, µ)
with bounds A∥C

1
2 ∥−2 and B∥C

−1
2 ∥2. □

Proposition 3.3. Let C ∈ GL+(H) and F be an integral frame for H associted to
(Ω, µ) with bounds A and B. Then F is a C-controlled integral frame for H associted
to (Ω, µ) with bounds A∥C

−1
2 ∥2 and B∥C

1
2 ∥2.

Proof. Let F be an integral frame for H associted to (Ω, µ) with bounds A and B.
Then for all x ∈ H, we have

A⟨x, x⟩A ≤ ⟨Sx, x⟩A
= ⟨C−1CSx, x⟩A
= ⟨(C−1CS) 1

2 x, (C−1CS) 1
2 x⟩A

≤ ∥C
−1
2 ∥2⟨(CS) 1

2 x, (CS) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨(SC) 1

2 x, (SC) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨SCx, x⟩A.

So,
A∥C

−1
2 ∥−2⟨x, x⟩A ≤ ⟨SCx, x⟩A.

Hence, for all x ∈ H, we have
⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C

1
2 Sx, C

1
2 x⟩A ≤ ∥C

1
2 ∥2⟨Sx, x⟩A ≤ ∥C

1
2 ∥2B⟨x, x⟩A.

Therefore we conclude that F is a C-controlled integral frame for H associted to (Ω, µ)
with bounds A∥C

−1
2 ∥−2 and B∥C

1
2 ∥2. □
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Theorem 3.2. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let F be
a C-controlled integral frame for H associted to (Ω, µ) with the frame operator SC and
bounds A and B. Let K ∈ End∗

A(H) be a surjective operator such that KC = CK.
Then KF is a C-controlled integral frame for H with the operator frame KSCK∗.

Proof. Let F be a C-controlled integral frame for H associted to (Ω, µ), then

A⟨K∗x, K∗x⟩A ≤
∫

Ω
⟨K∗x, Fω⟩A⟨CFω, K∗x⟩Adµ(w) ≤ B⟨K∗x, K∗x⟩A, x ∈ H.

By Lemma 1.1 and Lemma 1.3, we obtain

A∥(KK∗)−1∥−1⟨x, x⟩A ≤
∫

Ω
⟨x, KFω⟩A⟨CKFω, x⟩Adµ(w) ≤ B∥K∗∥2⟨x, x⟩A, x ∈ H,

which shows that KF is a C-controlled integral frame.
Moreover, by Lemma 1.4, we have

KSCK∗x = K
∫

Ω
⟨K∗x, Fω⟩ACFωdµ(ω) =

∫
Ω
⟨x, KFω⟩ACKFωdµ(ω),

which ends the proof. □

4. Controlled ∗-Integral Frames

Definition 4.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. A
C-controlled ∗-integral frame in A-module H is a map F : Ω → H such that there
exist two strictly nonzero elements A,B in A such that

(4.1) A⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(w) ≤ B⟨x, x⟩AB∗, x ∈ H.

The elements A and B are called the C-controlled ∗-integral frame bounds. If A = B,
we call this a C-controlled ∗-integral tight frame. If A = B = 1, it’s called a C-
controlled ∗-integral parseval frame. If only the right hand inequality of (4.1) is
satisfied, we call F a C-controlled ∗-integral Bessel mapping with bound B.

Example 4.1. Let H = A = {(an)n∈N ⊂ C | ∑n≥0 |an| < ∞}. Endowed with the
product and the inner product defined as follow.

A × A → A,
((an)n∈N, (bn)n∈N) 7→ (an)n∈N.(bn)n∈N = (anbn)n∈N,

and
H × H → A,
((an)n∈N, (bn)n∈N) 7→ ⟨(an)n∈N, (bn)n∈N⟩A = (anbn)n∈N.

Let Ω = [0, +∞[ endowed with the Lebesgue’s measure which is a measure space
F : [0, +∞[ → H,

w 7→ Fw = (F w
n )n∈N,

where
F w

n = 1
n + 1 , if n = [w], and F w

n = 0, elsewhere,
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where [w] is the whole part of w.
On the other hand, we consider the measure space (Ω, µ), where µ is the Lebesgue

measure restricted to [0, +∞[, and the operator

C : H → H,

(an)n∈N → (αan)n∈N,

where α is a strictly positive real number.
It’s clear that C is an invertible and both operators and C and C−1 are bounded.

So, ∫
Ω
⟨(an)n∈N, Fw⟩A⟨CFw, (an)n∈N⟩Adµ(w)

=
∫ +∞

0

(
0, 0, . . . ,

a[w]

[w] + 1 , 0, . . .

)
α

(
0, 0, . . . ,

a[w]

[w] + 1 , 0, . . .

)
dµ(w)

=α
+∞∑
p=0

∫ p+1

p

(
0, 0, . . . ,

|a[w]|2

([w] + 1)2 , 0, . . .

)
dµ(w)

=α
+∞∑
p=0

(
0, 0, . . . ,

|a[p]|2

(p + 1)2 , 0, . . .

)

=α

(
|an|2

(n + 1)2

)
n∈N

=
√

α
(

1,
1
2 ,

1
3 , . . . ,

1
n

, . . .
)

⟨(an)n∈N, (an)n∈N⟩A
√

α
(

1,
1
2 ,

1
3 , . . . ,

1
n

, . . .
)

,

which shows that F is a C-controlled ∗-integral tight frame for H with bound A =√
α
(
1, 1

2 , 1
3 , . . . , 1

n
, . . .

)
∈ A.

Definition 4.2. Let F be a C-controlled ∗-integral frame for H associted to (Ω, µ).
We define the frame operator SC : H → H for F by

SCx =
∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x ∈ H.

Proposition 4.1. The frame operator SC is positive, selfadjoint, bounded and invert-
ible.

Proof. For all x ∈ H, by Lemma 1.4, we have

⟨SCx, x⟩A =
〈∫

Ω
⟨x, Fω⟩ACFωdµ(ω), x

〉
A

=
∫

Ω
⟨x, Fω⟩A⟨CFω, x⟩Adµ(ω).

By left hand of inequality (4.1), we deduce that SC is a positive operator, also, it’s
sefladjoint. From (4.1), we have

A⟨x, x⟩AA∗ ≤ ⟨SCx, x⟩A ≤ B⟨x, x⟩AB∗, x ∈ H.

The Theorem 2.5 in [18] shows that SC is invertible. □
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Proposition 4.2. Let C ∈ GL+(H) and F be a C-controlled ∗-integral frame for H

associted to (Ω, µ) with bounds A and B. Then F is a ∗-integral frame H associted
to (Ω, µ) with bounds ∥C

1
2 ∥−1A and ∥C

−1
2 ∥B.

Proof. Let F be a C-controlled ∗-integral frame for H associted to (Ω, µ), with bounds
A and B.

On one hand we have
A⟨x, x⟩AA∗ ≤ ⟨SCx, x⟩A = ⟨CSx, x⟩A = ⟨C

1
2 Sx, C

1
2 x⟩A ≤ ∥C

1
2 ∥2⟨Sx, x⟩A.

So,

(4.2) (∥C
1
2 ∥−1A)⟨x, x⟩A(∥C

1
2 ∥−1A)∗ ≤

∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w).

On other hand, for all x ∈ H, we have∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) = ⟨Sx, x⟩A

= ⟨C−1CSx, x⟩A
= ⟨(C−1CS) 1

2 x, (C−1CS) 1
2 x⟩A

≤ ∥C
−1
2 ∥2⟨(CS) 1

2 x, (CS) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨(SC) 1

2 x, (SC) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨SCx, x⟩A

≤ ∥C
−1
2 ∥2B⟨x, x⟩AB∗.

Then
(4.3)

∫
Ω
⟨x, Fω⟩A⟨Fω, x⟩Adµ(w) ≤ (∥C

−1
2 ∥B)⟨x, x⟩A(∥C

−1
2 ∥B)∗.

From (4.2) and (4.3) we conclude that F is a ∗-integral frame H associted to (Ω, µ)
with bounds A∥C

1
2 ∥−2 and B∥C

−1
2 ∥2. □

Proposition 4.3. Let C ∈ GL+(H) and F be an ∗-integral frame for H associted
to (Ω, µ) with bounds A and B. Then F is a C-controlled ∗-integral frame for H

associted to (Ω, µ) with bounds ∥C
−1
2 ∥−1A and ∥C

1
2 ∥B.

Proof. Let F be an integral frame for H associted to (Ω, µ) with bounds A and B.
Then for all x ∈ H, we have

A⟨x, x⟩AA∗ ≤ ⟨Sx, x⟩A
= ⟨C−1CSx, x⟩A
= ⟨(C−1CS) 1

2 x, (C−1CS) 1
2 x⟩A

≤ ∥C
−1
2 ∥2⟨(CS) 1

2 x, (CS) 1
2 x⟩A

= ∥C
−1
2 ∥2⟨(SC) 1

2 x, (SC) 1
2 x⟩A
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= ∥C
−1
2 ∥2⟨SCx, x⟩A.

So,
(∥C

−1
2 ∥−1A)⟨x, x⟩A(∥C

−1
2 ∥−1A)∗ ≤ ⟨SCx, x⟩A.

Hence, for all x ∈ H,

⟨SCx, x⟩A = ⟨CSx, x⟩A
= ⟨C

1
2 Sx, C

1
2 x⟩A

≤ ∥C
1
2 ∥2⟨Sx, x⟩A

≤ ∥C
1
2 ∥2B⟨x, x⟩AB∗

= (∥C
1
2 ∥B)⟨x, x⟩A(∥C

1
2 ∥B)∗.

Therefore, we conclude that F is a C-controlled ∗-integral frame H associted to (Ω, µ)
with bounds ∥C

−1
2 ∥−1A and ∥C

1
2 ∥B. □

Theorem 4.1. Let H be a Hilbert A-module and (Ω, µ) be a measure space. Let F
a C-controlled ∗-integral frame for H associted to (Ω, µ) with the frame operator SC

and bounds A and B. Let K ∈ End∗
A(H) a surjective operator such that KC = CK.

Then KF is a C-controlled ∗-integral frame for H with the operator frame KSCK∗.

Proof. By (4.1), we have

A⟨K∗x, K∗x⟩AA∗ ≤
∫

Ω
⟨K∗x, Fω⟩A⟨CFω, K∗x⟩Adµ(w) ≤ B⟨K∗x, K∗x⟩AB∗, x ∈ H.

By Lemma 1.1 and Lemma 1.3, we obtain

A∥(KK∗)−1∥−1⟨x, x⟩AA∗ ≤
∫

Ω
⟨x, KFω⟩A⟨CKFω, x⟩Adµ(w) ≤ B∥K∗∥2⟨x, x⟩AB∗,

which shows that KF is a C-controlled ∗-integral operator. Moreover, by Lemma 1.4,
we have

KSCK∗x = K
∫

Ω
⟨K∗x, Fω⟩ACFωdµ(ω) =

∫
Ω
⟨x, KFω⟩ACKFωdµ(ω),

which ends the proof. □
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