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STABILITY OF AN l-VARIABLE CUBIC FUNCTIONAL
EQUATION

VEDIYAPPAN GOVINDAN1, SANDRA PINELAS2, JUNG RYE LEE3,
AND CHOONKIL PARK4

Abstract. Using the direct and fixed point methods, we obtain the solution and
prove the Hyers-Ulam stability of the l-variable cubic functional equation

f

(
l∑

i=1
xi

)
+

l∑
j=1

f

−lxj +
l∑

i=1,i̸=j

xi


= − 2(l + 1)

l∑
i=1,i̸=j ̸=k

f(xi + xj + xk) + (3l2 − 2l − 5)
l∑

i=1,i̸=j

f(xi + xj)

− 3(l3 − l2 − l + 1)
l∑

i=1
f(xi),

l ∈ N, l ≥ 3, in random normed spaces.

1. Introduction

The theory of random normed space (briefly, RN-space) is important as a gener-
alization of deterministic result of normed spaces and also in the study of random
operator equations. It is a practical tool for handling situations where classical theo-
ries fail to explain. Random theory has much application in several fields, for example,
population dynamics, computer programming, nonlinear dynamical system, nonlinear
operators, statistical convergence and so forth. The Cauchy additive equation

f(x + y) = f(x) + f(y)
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has been studied by many authors [7, 9, 13, 15,19]. The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping (see [5, 8, 11,12,20]). A Hyers-
Ulam stability problem for the quadratic functional equation was proved by Skof [23]
for mappings f : X → Y , where X is a normed space and Y is a Banach space.
Cholewa [4] noticed that the theorem of Skof [23] is still true if the relevant domain
X is replaced by an Abelian group. Jun and Kim [14] introduced the following cubic
functional equation

(1.1) f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x),

and they established the solution and the Hyers-Ulam stability for the functional
equation. The function f(x) = x3 satisfies the functional equation (1.1), which is
called a cubic functional equation (see [3, 6, 10, 16, 21, 22]). Czerwik [5] proved the
Hyers-Ulam stability of the additive, quadratic and cubic functional equation.

Using the direct and fixed point methods, we obtain the solution and prove the
Hyers-Ulam stability of the l-variable cubic functional equation

f

(
l∑

i=1
xi

)
+

l∑
j=1

f

−lxj +
l∑

i=1,i ̸=j

xi

(1.2)

= − 2(l + 1)
l∑

i=1,i ̸=j ̸=k

f(xi + xj + xk) + (3l2 − 2l − 5)
l∑

i=1,i ̸=j

f(xi + xj)

− 3(l3 − l2 − l + 1)
l∑

i=1
f(xi),

l ∈ N, l ≥ 3, in random normed spaces.

2. Preliminaries

In this section, we present some notations and basic definitions used in this article.

Definition 2.1. A mapping T : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm if T satisfies the following condition:

a) T is commutative and associative;
b) T is continuous;
c) T (a, 1) = a for all a ∈ [0, 1];
d) T (a, b) ≤ T (c, d) when a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are Tp(a, b) = ab, Tm(a, b) = min{a, b} and
TL(a, b) = max{a+b−1, 0} (The Lukasiewicz t-norm). Recall [7] that if T is a t-norm
and {xn} is a given sequence of numbers in [0, 1], then T n

i=1xn+i is defined recurrently
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by T 1
i=1xi = xi and T n

i=1xi = T
(
T n−1

i=1 xi, xn

)
for n ≥ 2, T ∞

i=1xi is defined as T ∞
i=1xn+i.

It is known that, for the Lukasiewicz t-norm, the following holds:

lim
n→∞

(TL)∞
i=1xn+i = 1 ⇔

∞∑
n=1

(1 − xn) < ∞.

Definition 2.2. A random normed space (briefly, RN-space) is a triple, where X is a
vector space. T is a continuous t-norm and µ is a mapping from X into D+ satisfying
the following conditions:
(RN1) µx(t) = ϵ0(t) for all t > 0 if and only if x = 0;
(RN2) µax(t) = µx

(
t

|α|

)
for all x ∈ X and α ∈ R with α ̸= 0;

(RN3) µx+y(t + s) ≥ T (µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Definition 2.3. Let (X, µ, T ) be an RN-space.
1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any

ϵ > 0 and λ > 0, there exists a positive integer N such that µxn−x(ϵ) > 1 − λ
for all n > N .

2) A sequence {xn} in X is called a Cauchy sequence if, for any ϵ > 0 and λ > 0,
there exists a positive integer N such that µxn−xm(ϵ) > 1−λ for all n ≥ m ≥ N .

3) The RN-space (X, µ, T ) is said to be complete if every Cauchy sequence in X is
convergent to a point in X. For more details we can go through [1, 2, 4, 13, 18].

Throughout this paper, assume that X is a vector space and (Y, µ, T ) is a complete
random normed space. All over this paper we use the following notation for a given
mapping f : X → Y

Df(x1, . . . , xl) =f

(
l∑

i=1
xi

)
+

l∑
j=1

f

−lxj +
l∑

i=1,i ̸=j

xi


+ 2(l + 1)

l∑
i=1,i ̸=j ̸=k

f(xi + xj + xk) − (3l2 − 2l − 5)
l∑

i=1,i ̸=j

f(xi + xj)

+ 3(l3 − l2 − l + 1)
l∑

i=1
f(xi),

for all x1, x2, x3, . . . , xl ∈ X.

3. Solution of the l-Variable Cubic Functional Equation in (1.2)

In this section, we investigate the solution of the l-variable cubic functional equation
(1.2).

Lemma 3.1. If a mapping f : X → Y satisfies (1.2), then the mapping f : X → Y
is cubic.
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Proof. Letting x1 = x2 = · · · = xl = 0 in (1.2), we get

2f(0) = −2(l + 1)
(

1 + 3(l − 3) + 3(l − 3)(l − 4)
2 + (l − 3)(l − 4)(l − 5)

6

)
f(0)

+ (3l2 − 2l − 5)
(

3 + 3(l − 3) + (l − 3)(l − 4)
2

)
f(0)

− 3l(l3 − l2 − l + 2)f(0).(3.1)

It follows from (3.1) that f(0) = 0. Setting x1 = x3 = · · · = xl = 0 and x2 = x in
(1.2), we have

lf(x) + f(−lx) = −2(l + 1)
(

1 + 2(l − 3) + (l − 3)(l − 4)
2

)
f(x)

+ (3l2 − 2l − 5)
(

1 + 2(l − 3) + (l − 3)(l − 4)
2

)
f(x)

− 3(l − 1)(l3 − l2 − l + 1)f(x),(3.2)

for all x ∈ X. It follows from (3.2) that

(3.3) f(−x) = −f(x),

for all x ∈ X. Letting x2 = x3 = · · · = xl = 0 and x1 = x in (1.2), we get

lf(x) + f(−lx) =(3l2 − 2l − 5)
(

1 + 2(l − 3) + l2 − 7l + 12
2

)
f(x)

− 3(l − 1)(l3 − l2 − l + 1)f(x)

− 2(l + 1)
(

1 + 2(l − 3) + l2 − 7l + 12
2

)
f(x),(3.4)

for all x ∈ X. It follows from (3.4) and the oddness of f that

(3.5) f(lx) = l3f(x),

for all x ∈ X. Letting x1 = x2 = x and x3 = x4 = · · · = xl = 0, we get

(l − 1)f(x) + 2f((−l + 1)x)

= − 2(l + 1)(l − 2)f(2x) − 2(l + 1)
(

2(n − 3) + 2(l − 3)(l − 4)
2

)
f(x)

+ (3l2 − 2l − 5)f(2x) + 2(3l2 − 2l − 5)(n − 2)f(x) − 6(l3 − l2 − l + 1)f(x),(3.6)

for all x ∈ X. It follows from (3.6), (3.5) and the oddness of f that

(3.7) f(2x) = 8f(x),
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for all x ∈ X. Setting x1 = x2 = x3 = x and x4 = x5 = · · · = xl = 0 in (1.2), we have

(l − 2)f(3x) + 3f((−l + 2)x)
= − 2(l + 1)f(3x) − 6(l + 1)f(2x) − 3(l + 1)(l − 3)(l − 4)f(x)

+ 3(3l2 − 2l − 5)f(2x) + 3(3l2 − 2l − 5)(n − 3)f(x) − 9(l3 − l2 − l + 1)f(x),(3.8)

for all x ∈ X. It follows from (3.8) that

(3.9) f(3x) = 27f(x),

for all x, y ∈ X. Setting x1 = x3 = x4 = x and x2 = x5 = · · · = xl = 0 in (1.2), we get

(l − 2)f(2x + y) + 2f(−2x + y) + f(2x − 3y)

= − 2(l + 1)
(
f(2x + y) + (l − 3)f(2x) + 2(l − 3)f(x + y)

)
− 2(l + 1)

(
(l − 3)(l − 4)

)
f(x) + (l − 3)(l − 4)f(y)

+ (3l2 − 2l − 5)
(
f(2x) + 2(l − 3)f(x) + (n − 3)f(y) + 2f(x + y)

)
(3.10)

− 3(l3 − l2 − l + 1)(2f(x) + f(y)),

for all x, y ∈ X. It follows from (3.10) and the oddness of f that

f(2x + y) − 2f(2x − y) + f(2x − 3y)
= − 8f(2x + y) + 128f(x) + 32f(x + y) − 96f(x) − 48f(y),(3.11)

for all x, y ∈ X. Replacing y by −y in (3.11), we get

f(2x − y) − 2f(2x + y) + f(2x + 3y)
= − 8f(2x − y) + 128f(x) + 32f(x − y) − 96f(x) + 48f(y),(3.12)

for all x, y ∈ X. Adding (3.11) and (3.12), we have

f(2x + 3y) + f(2x + 3y) − f(2x − y) − f(2x + y)
= − 8f(2x + y) − 8f(2x + y) + 32f(x + y) + 32f(x − y) + 64f(x),(3.13)

for all x, y ∈ X. It follows from (3.13) and (1.1) that

(3.14) 7f(2x + y) + 7f(2x − y) = 14(f(x + y) + f(x − y)) + 84f(x),

for all x, y ∈ X. It follows from (3.14) that

f(2x + y) + f(2x − y) = 2(f(x + y) + f(x − y)) + 12f(x),

for all x, y ∈ X. Therefore, the mapping f : X → Y is cubic. □
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4. Hyers-Ulam Stability of the l-Variablel Cubic Functional
Equation (1.2): Direct Approach

In this setion, we prove the Hyers-Ulam stability of the l-variablel cubic functional
equation (1.2) in RN-spaces by using the direct method.

Theorem 4.1. Let j = ±1 and f : X → Y be a mapping for which there exists a
function η : X l → D+ with the condition

lim
k→∞

T ∞
i=0

(
ηl(k+i)x1,l(k+i)x2,l(k+i)x3,...,l(k+i)xl

(
l(k+i+1)jt

))
(4.1)

= lim
k→∞

ηl(kj)x1,l(kj)x2,l(kj)x3,...,l(kj)xl

(
lkjt

)
= 1,

such that f(0) = 0 and
(4.2) µDf(x1,x2,...,xl)(t) ≥ η(x1,x2,...,xl)(t),
for all x1, x2, x3, . . . , xn ∈ X and all t > 0. Then there exists a unique cubic mapping
C : X → Y satisfying the functional equation (1.2) and

(4.3) µC(x)−f(x)(t) ≥ T ∞
i=0

ηm(i+1)jx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
l(i+1)jt

) ,

for all x ∈ X and all t > 0. The mapping C(x) is defined by
(4.4) µC(x)(t) = lim

k→∞
µ f(lkj x)

l3kj

(t),

for all x ∈ X and all t > 0.

Proof. Assume j = 1. Setting (x1, x2, . . . , xn) = (x, 0, . . . , 0︸ ︷︷ ︸
(l−1)−times

) in (4.3), we have

(4.5) µf(lx)−l3f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t),

for all x ∈ X and all t > 0. It follows from (4.4) and (RN2) that

µ f(lx)
l3

−f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
l3t
)

,

for all x ∈ X and all t > 0. Replacing x by lkx in (4.5), we catch

µ f(lk+1x)
l3(k+1) − f(lkx)

l3k

(t) ≥ ηlkx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
l3kl3t

)
≥ ηx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

(
l3kl

αk
t

)
,(4.6)

for all x ∈ X and all t > 0. It follows from

f (lnx)
l3n

− f(x) =
n−1∑
k=0

f
(
lk+1x

)
l3(k+1) −

f
(
lkx
)

l3k
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and (4.6) that

µ f(lnx)
l3n −f(x)

(
t

n−1∑
k=0

αk

l3kl3

)
≥ T n−1

k=0

ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t)

 = ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t),

µ f(lnx)
l3n −f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

 t∑n−1
k=0

αk

l3kl3

 ,(4.7)

for all x ∈ X and all t > 0. Replacing x by lmx in (4.7), we get

(4.8) µ f(ln+mx)
ln+m − f(lmx)

l3m

(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

 t∑n+m
k=m

αk

l3kl3

 .

Since ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
t∑n+m

k=m
αk

l3kl3

)
→ 1 as m, n → ∞,

{
f(lnx)

l3n

}
is a Cauchy sequence in

(Y, µ, T ). Since (Y, µ, T ) is complete, this sequence converges to some point C(x) ∈ Y .
Fix x ∈ X and put m = 0 in (4.8). Then we have

µ f(lnx)
l3n −f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

 t∑n−1
k=0

αk

l3kl3


and so, for every δ > 0, we have

µC(x)−f(x)(t + δ) ≥ T
(

µ
C(x)− f(lnx)

l3n
(δ), µ f(lnx)

l3n −f(x)(t)
)

≥ T

µ
C(x)− f(lnx)

l3n
(δ), ηx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

 t∑n−1
k=0

αk

l3kl3


 .(4.9)

Taking limit as n → ∞ and using (4.9), we have

(4.10) µC(x)−f(x)(t + δ) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
(l3 − α)t

)
.

Since δ is arbitrary, by taking δ → 0 in (4.10), we have

(4.11) µC(x)−f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
(l3 − α)t

)
.

Replacing (x1, x2, . . . , xl) by (2nx1, 2nx2, . . . , 2nxl) in (4.2), we have

µDf(lnx1,lnx2,...,lnxl)(t) ≥ ηlnx1,lnx2,...,lnxl

(
l3nt

)
,

for all x1, x2, . . . , xl ∈ X and all t > 0. Since
lim

k→∞
T ∞

i=0

(
ηl(k+i)x1,l(k+i)x2,...,l(k+i)xl

(
l3(k+i+1)jt

))
= 1,
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we conclude that C fulfills (1.2).
To prove the uniqueness of the cubic mapping C, assume that there exists another

cubic mapping D from X to Y , which satisfies (4.11). Fix x ∈ X. Clearly, C(lnx) =
l3nC(x) and D(lnx) = l3nD(x) for all x ∈ X. It follows from (4.11) that

µC(x)−D(x)(t) = lim
n→∞

µC(lnx)
l3n − D(lnx)

l3n
(t),

µC(x)−D(x)(t) ≥ min
{

µC(lnx)
l3n − f(lnx)

l3n

(
t

2

)
, µD(lnx)

l3n − f(lnx)
l3n

(
t

2

)}
≥ ηlnx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

(
l3n
(
l3 − α

)
t
)

≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
l3n (l3 − α) t

αn

)
.

Since limn→∞
(

l3n(l3−α)t
αn

)
= ∞, we get

lim
n→∞

ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

((
l3n(l3 − α)t

αn

))
= 1.

Therefore, it follows that µC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x).
For j = −1, we can prove the theorem by a similar way. This completes the

proof. □

The following corollary is an immediate consequence of Theorem 4.1, concerning
the stability of (1.2).

Corollary 4.1. Let ξ and ρ be nonnegative real numbers. Let f : X → Y be a
mapping satisfying the inequality

µDf(x1,x2,...,xl)(t) ≥


ηξ(t),
ηξ
∑n

i=1 ∥xi∥ρ(t), s ̸= 3,

ηξ(∏n

i=1 ∥xi∥ρ+
∑n

i=1 ∥xi∥nρ)(t), p ̸= 3
n
,

for all x1, x2, . . . , xn ∈ X and all t > 0. Then there exists a unique cubic mapping
C : X → Y such that

µf(x)−C(x)(t) ≥


η ξ

|l3−1|
(t),

η ξ∥x∥ρ

|l3−1ρ|
(t),

η ξ∥x∥nρ

|l3−1nρ|
(t),

for all x ∈ X and all t > 0.
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5. Hyers-Ulam Stability of the l-Variablel Cubic Functional
Equation (1.2): Fixed Point Approach

In this section, we prove the Hyers-Ulam stability of the functional equation (1.2)
in random normed spaces by using the fixed point approach.

Theorem 5.1. Let f : X → Y be a mapping for which there exists a function
η : X l → D+ with the condition

lim
k→∞

ηδk
i x1,δk

i x2,...,δk
i xl

(δk
i t) = 1,

for all x1, x2, . . . , xl ∈ X, t > 0 and δi =

l, i = 0,
1
l
, i = 1,

satisfying the functional

inequality
µDf(x1,x2,...,xl)(t) ≥ ηx1,x2,...,xl

(t),
for all x1, x2, . . . , xl ∈ X and t > 0. If there exists L = L(i) such that the function

x 7→ β(x, t) = ηx
l

,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t)

has the property that

(5.1) β(x, t) ≤ L
1
δ3

i

β(δix, t),

for all x ∈ X and t > 0. Then there exists a unique cubic mapping C : X → Y
satisfying the functional equation (1.2) and

µC(x)−f(x)

(
L1−i

1 − L
t

)
≥ β(x, t),

for all x ∈ X and t > 0.

Proof. Let Ω := {f : X → Y : f is a function} and d be a generalized metric on Ω
such that

d(g, h) = inf
{
k ∈ (0, ∞)/µ(g(x)−h(x))(kt) ≥ β(x, t) : x ∈ X, t > 0

}
.

It is easy to see that (Ω, d) is complete (see [17]). Define T : Ω → Ω by Tg(x) =
1
δ3

i
g(δix) for all x ∈ X. Now, for g, h ∈ Ω we have d(g, h) ≤ K, which implies

µ(g(x)−h(x))(Kt) ≥β(x, t),

µ(T g(x)−T h(x))

(
Kt

δi

)
≥β(x, t),

d(Tg(x), Th(x)) ≤KL,

d(Tg, Th) ≤Ld(g, h),
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for all g, h ∈ Ω. Therefore, T is a strictly contractive mapping on Ω with Lipschitz
constant L. It follows from (4.5) that

µf(lx)−l3f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t),

for all x ∈ X. It follows from (4.5) that
µ f(lx)

l3
−f(x)(t) ≥ ηx,0, . . . , 0︸ ︷︷ ︸

(l−1)−times

(l3t),

for all x ∈ X. Using (5.1) for the case i = 0, we get
µ f(lx)

l3
−f(x)(t) ≥ Lβ(x, t),

for all x ∈ X. Hence, we obtain
(5.2) d(µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X. Replacing x by x
l

in (4), we get

µ f(x)
l

−f(x
l )(t) ≥ ηx

l
,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(
l3t
)

,

for all x ∈ X. By using (5.1) for the case i = 1, it reduce to
µl3f(x

l )−f(x)(t) ≥ β(x, t) ⇒ µT f(x)−f(x)(t) ≥ β(x, t),

for all x ∈ X. Hence, we get
(5.3) d (µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X. From (5.2) and (5.3), we can conclude
d (µT f,f ) ≤ L = L1−i < ∞,

for all x ∈ X.
The remaining proof is similar to the proof of Theorem 4.1. Since C is a unique

fixed point of T in the set ∆ = {f ∈ Ω | d(f, C) < ∞}, C is a unique mapping such
that

µf(x)−C(x)

(
L1−i

1 − L
t

)
≥ β(x, t),

for all x ∈ X and t > 0. This completes the proof. □

From Theorem 5.1, we obtain the following corollary concerning the stability for
the functional equation (1.2).

Corollary 5.1. Suppose that a mapping f : X → Y satisfies the inequality

µDf(x1,x2,...,xl)(t) ≥


ηξ(t),
ηξ
∑n

i=1 ∥xi∥ρ(t), ρ ̸= 3,

ηξ(∏n

i=1 ∥xi∥ρ+
∑n

i=1 ∥xi∥nρ)(t), p ̸= 3
n
,
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for all x1, x2, . . . , xn ∈ X and t > 0, where ρ, ξ are constants with ξ > 0. Then there
exists a unique cubic mapping C : X → Y such that

µf(x)−C(x)(t) ≥


η ξ

|l3−1|
(t),

η ξ∥x∥ρ

|l3−1ρ|
(t),

η ξ∥x∥nρ

|l3−1nρ|
(t),

for all x ∈ X and t > 0.

Proof. Set

µDf(x1,x2,...,xl)(t) ≥


ηξ(t),
ηξ
∑n

i=1 ∥xi∥ρ(t),
ηξ(∏n

i=1 ∥xi∥ρ+
∑n

i=1 ∥xi∥nρ)(t),

for all x1, x2, . . . , xn ∈ X and t > 0. Then

η(δk
i x1,δk

i x2,...,δk
i xl)(δ

k
i t) =


ηξδ

3k
i (t)

η
ξ
∑n

i=1 ∥xi∥ρδ
(3−ρ)k
i

(t)
η

ξ

(∏n

i=1 ∥xi∥ρδ
(3−ρ)k
i +

∑n

i=1 ∥xi∥nρδ
(3−nρ)k
i

)(t)

→


1 as k → ∞,
1 as k → ∞,
1 as k → ∞.

But we have that β(x, t) = ηx
l

,0, . . . , 0︸ ︷︷ ︸
(l−1)−times

(t) has the property L 1
δ3

i
β(δix, t) for all x ∈ X

and t > 0.
Now,

β(x, t) =


ηξ(t),
η ξ∥x∥ρ

l3s
(t),

η ξ∥x∥nρ

l3ns
(t),

L
1
δ3

i

β(δix, t) =


ηδ−3

i β(x)(t),
ηδρ−3

i β(x)(t),
ηδnρ−3

i β(x)(t).

Using Theorem 4.1, we prove the following six cases.
L = l−3 if i = 0; L = l if i = 1; L = lρ−3 for ρ < 1 if i = 0; L = l3−ρ for s > 1 if

i = 1; L = lnρ−3 for ρ < 1
n

if i = 0; L = l3−nρ for ρ > 1
n

if i = 1.
Case 1. L = l−3 if i = 0

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η(
ξ

l3−l

)(t).
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Case 2. L = l3 if i = 1

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η(
ξ

1−l3

)(t).

Case 3. L = lρ−3 for ρ < 1 if i = 0

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η( ξ∥x∥ρ

(l3−l3ρ)

)(t).

Case 4. L = l3−ρ for ρ > 1 if i = 1

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η( ξ∥x∥ρ

(l3ρ−l3)

)(t).

Case 5. L = lnρ−3 for ρ < 1
n

if i = 0

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η( ξ∥x∥nρ

(l3−l3nρ)

)(t).

Case 6. L = l3−nρ for ρ > 1
n

if i = 1

µf(x)−C(x)(t) ≥ L
1
δ3

i

β(δix, t)(t) ≥ η( ξ∥x∥nρ

(l3nρ−l3)

)(t).

Hence, the proof is complete. □
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