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APPROXIMATING SOLUTIONS OF MONOTONE VARIATIONAL
INCLUSION, EQUILIBRIUM AND FIXED POINT PROBLEMS OF

CERTAIN NONLINEAR MAPPINGS IN BANACH SPACES

HAMMED ANUOLUWAPO ABASS1,2, CHINEDU IZUCHUKWU1,2,
AND OLUWATOSIN TEMITOPE MEWOMO1

Abstract. In this paper, motivated by the works of Timnak et al. [Filomat 31(15)
(2017), 4673–4693], Ogbuisi and Izuchukwu [Numer. Funct. Anal. 40(13) (2019)]
and some other related results in literature, we introduce an iterative algorithm
and employ a Bregman distance approach for approximating a zero of the sum of
two monotone operators, which is also a common solution of equilibrium problem
involving pseudomonotone bifunction and a fixed point problem for an infinite family
of Bregman quasi-nonexpansive mappings in the framework of a reflexive Banach
space. Using our iterative algorithm, we state and prove a strong convergence result
for approximating a common solution of the aforementioned problems. Furthermore,
we give some applications of the consequences of our main result to convex mini-
mization problem and variational inequality problem. Lastly, we display a numerical
example to show the applicability of our main result. The result presented in this
paper extends and complements many related results in the literature.

1. Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty closed and
convex subset of E. Let f : E → (−∞, +∞] be a proper, lower semicontinuous and
convex function, then the Fenchel conjugate of f denoted as f ∗ : E∗ → (−∞, +∞] is
defined as

f ∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ E}, x∗ ∈ E∗.
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For more information on Legendre functions, see [37]. Let the domain of f be denoted
as dom f = {x ∈ E : f(x) < +∞}, hence for any x ∈ int(dom f) and y ∈ E, we
define the right-hand derivative of f at x in the direction of y by

f 0(x, y) = lim
t→0+

f(x + ty)− f(x)
t

.

Let f : E → (−∞, +∞] be a function, then f is said to be:
(i) essentially smooth, if the subdifferential of f denoted as ∂f is both locally

bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂f)−1 is locally bounded on its domain and f is

strictly convex on every convex subset of dom ∂f ;
(iii) Legendre, if it is both essentially smooth and essentially strictly convex. See

[10,51] for more details on Legendre functions.
The function f is said to be:
(i) Gâteaux differentiable at x if limt→0+

f(x+ty)−f(x)
t

exists for any y. In this case,
f 0(x, y) coincides with ▽f(x) (the value of the gradient ▽f of f at x);

(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ int(dom f);
(iii) Frechet differentiable at x, if its limit is attained uniformly in ||y|| = 1.
f is said to be uniformly Frechet differentiable on a subset Q of E, if the above

limit is attained uniformly for x ∈ Q and ||y|| = 1. The function f is said to be
Legendre if it satisfies the following conditions.

(i) The int(dom f) is nonempty, f is Gâteaux differentiable on int(dom f) and
dom▽f = int(dom f).

(ii) The int(dom f ∗) is nonempty, f ∗ is Gâteaux differentiable on int(dom f ∗) and
dom▽f ∗ = int(dom f).

Let E be a Banach space and Bs := {z ∈ E : ||z|| ≤ s} for s > 0. Then, a function
f : E → R is said to be uniformly convex on bounded subsets of E, [55, page 203 and
221] if ρs(t) > 0 for all s, t > 0, where ρs : [0, +∞)→ [0, +∞] is defined by

ρs(t) = inf
x,y∈Bs,||x−y||=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(α(x) + (1− α)y)
α(1− α) ,

for all t ≥ 0, where ρs denote the gauge of uniform convexity of f . The function f is
also said to be uniformly smooth on bounded subsets of E [55, page 221], if limt↓0

σs

t

for all s > 0, where σs : [0, +∞)→ [0, +∞] is defined by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αf(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)
α(1− α) ,

for all t ≥ 0. The function f is said to be uniformly convex if the function δf :
[0, +∞)→ [0, +∞) defined by

δf(t) := sup
{1

2f(x) + 1
2f(y)− f

(
x + y

2

)
: ||y − x|| = t

}
,

satisfies limt↓0
δf(t)

t
= 0.
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Recall that the function f is said to be totally convex at a point x ∈ Domf , if the
function vf : int(dom f)× [0, +∞)→ [0, +∞) defined by

vf (x, t) := inf{Df (y, x) : y ∈ int(dom f), ||y − x|| = t},
is positive whenever t > 0. For details on uniformly convex and totally convex
functions, see [12,15,18].

Definition 1.1 ([12]). Let f : E → (−∞, +∞] be a convex and Gâteaux differentiable
function. The function Df : E × E → [0, +∞) defined by

Df (x, y) := f(x)− f(y)− ⟨▽f(y), x− y⟩
is called the Bregman distance with respect of f .

It is well-known that Bregman distance Df does not satisfy the properties of a
metric because Df fail to satisfy the symmetric and triangular inequality property.
However, the Bregman distance satisfies the following so-called three point identity:
for any x ∈ dom f and y, z ∈ int(dom f)

Df (x, y) + Df (y, z)−Df (x, z) = ⟨▽f(z)−▽f(y), x− y⟩.(1.1)
For more information on Bregman functions and Bregman distances, see [38, 45]. Let
T : Q→ Q be a mapping, a point x ∈ Q is called a fixed point of T , if Tx = x. We
denote by F (T ) the set of all fixed points of T . Moreso, a point p ∈ Q is called an
asymptotic fixed point of T if Q contains a sequence {xn} which converges weakly
to p such that limn→+∞ ||Txn − xn|| = 0. The notion of asymptotic fixed point was
introduced by [40]. We denote by F̂ (T ) the set of asymptotic fixed points of T .

Let Q be a nonempty closed and convex subset of E. An operator T : Q → Q is
said to be:

(i) Bregman relatively nonexpansive, if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x), for all p ∈ F (T ), x ∈ Q and ˆF (T ) = F (T );
(ii) Bregman quasi-nonexpansive mapping if F (T ) ̸= ∅ and

Df (p, Tx) ≤ Df (p, x), for all x ∈ Q and p ∈ F (T );

(iii) Bregman Strongly Nonexpansive (BSNE) with F̂ (T ) ̸= ∅, if

Df (p, Tx) ≤ Df (p, x), for all x ∈ C, p ∈ ˆF (T )
and for any bounded sequence {xn}n≥1 ⊂ Q,

lim
n→+∞

(Df (p, xn)−Df (p, Txn)) = 0

implies that limn→+∞ Df(Txn, xn) = 0. For more information on these classes of
mappings, see [29,30].

Let B : E → 2E∗ be a set-valued mapping, the domain and range of B are denoted
by dom B = {x ∈ E : Bx ̸= ∅} and ran B = ∪x∈BBx, respectively. The graph of
B is denoted as G(B) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Bx}. Recall that B is called a
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monotone mapping, if for any x, y ∈ dom B, we have ξ ∈ Bx and ζ ∈ By implies
⟨ξ−ζ, x−y⟩ ≥ 0. B is said to be maximal monotone if it is monotone and its graph is
not contained in the graph of any other monotone mapping. Let f : E → (−∞, +∞]
be a proper, lower semicontinuous and convex function and B be a maximal monotone
mapping from E to E∗. For any λ > 0, the mapping Resf

λB : E → dom B defined by

Resf
λB = (▽f + λB)−1 ◦ ▽f,

is called the f -resolvent of B. It is well known that B−1(0) = F (Resf
λB) for each

λ > 0.
Let Q be a nonempty closed and convex subset of a reflexive Banach space E, the

mapping A : E → 2E∗ is called Bregman Inverse Strongly Monotone (BISM) on the
set Q if

Q ∩ (dom f) ∩ (int(dom f)) ̸= ∅,

and for any x, y ∈ Q ∩ (int(dom f)), ξ ∈ Ax and ζ ∈ Ay, we have that
⟨ξ − ζ,▽f ∗(▽f(x)− ξ)−▽f ∗(▽f(y)− ζ)⟩ ≥ 0.

Let A : E → E∗ be a single-valued monotone mapping and B : E → 2E∗ be a
multivalued monotone mapping. Then, the Monotone Variational Inclusion Problem
(MVIP) (also known as the problem of finding a zero of sum of two monotone mappings)
is to find x ∈ E such that

0∗ ∈ A(x) + B(x).(1.2)

We denote by Ω, the solution set of problem (1.2).
It is well known that many interesting problems arising from mechanics, economics,

applied sciences, optimization such as equilibrium and variational inequality problems
can be solved using MVIP.

Suppose A = 0 in (1.2), we obtain the following Monotone Inclusion Problem (MIP),
which is to find x ∈ E such that

0∗ ∈ B(x).(1.3)
Many algorithms have been introduced by several authors for solving the MVIP and
related optimization problems in Hilbert, Banach, Hadamard and p-uniformly convex
metric spaces, see [1,7–9,17,28,31,34,35,44,53]. For instance, Reich and Sabach [27,42]
introduced some iterative algorithms and proved two strong convergence results for
approximating a common solution of a finite family of MIP (1.3) in a reflexive Banach
space. Recently, Timnak et al. [51] introduced a new Halpern-type iterative scheme
for finding a common zero of finitely many maximal monotone mappings in a reflexive
Banach space and prove the following strong convergence theorem.

Theorem 1.1. Let E be a reflexive Banach space and f : E → R be a strongly
coercive Bregman function which is bounded on bounded subsets and uniformly convex
and uniformly smooth on bounded subset of E. Let Ai : E → 2E∗

, i = 1, 2, . . . , be



MONOTONE VARIATIONAL INCLUSION AND EQUILIBRIUM PROBLEMS 781

N maximal monotone operators such that Z := ∩N
i=1A

−1
i (0∗) ̸= ∅. Let {αn}n∈N and

{βn}n∈N be two sequences in (0, 1) satisfying the following control conditions:
(i) limn→+∞ αn = 0 and ∑+∞

n=1 αn =∞;
(ii) 0 < lim infn→+∞ βn ≤ lim supn→+∞ βn < 1.
Let {xn}n∈N be a sequence generated by

u ∈ E, x1 ∈ E chosen arbitrarily,

yn = ▽f ∗[βn▽ f(xn) + (1− βn)▽ f(Resf
rN AN

) · · · (Resf
r1A1(xn))],

xn+1 = ▽f ∗[αn▽ f(u) + (1− αn)▽ f(yn)],
(1.4)

for n ∈ N, where ▽f is the gradient of f . If ri > 0, for each i = 1, 2, . . . , N , then the
sequence {xn}n∈N defined in (1.4) converges strongly to projf

Zu as n→ +∞.

Very recently, Ogbuisi and Izuchukwu [33] introduced the following iterative al-
gorithm to obtain a strong convergence result for approximating a zero of sum of
two maximal monotone operators which is also a fixed point of a Bregman strongly
nonexpansive mapping in the framework of a reflexive Banach space. Let u, x0 ∈ Q
be arbitrary and the sequence {xn} be generated by

Q0 = Q,

yn = ▽f ∗(αn▽ f(u) + βn▽ f(xn) + γn▽ f(T (xn))),
un = (Resf

λB ◦ Af
λ)yn,

Qn+1 = {z ∈ Qn : Df (z, un) ≤ αnDf (z, u) + (1− αn)Df (z, xn)},
xn+1 = P f

Qn+1(x0), n ≥ 0,

(1.5)

with conditions limn→∞ αn = 0, αn + βn + γn = 1 and 0 < a < βn, γn < b < 1. Then,
{xn} converges strongly to P f

F (T )∩Γx0, where Γ := (A + B)−1(0).
Equilibrium Problem (EP) involving monotone bifunctions and related optimization

problems have been studied extensively by many authors, (see [2, 3, 11, 19, 22, 23, 36,
39, 46, 47, 49, 50] and other references contained in). Very recently, Eskandani et al.
[18] introduced an EP involving a pseudomonotone bifunction in the framework of a
reflexive Banach space.

Let C be a nonempty closed and convex subset of a reflexive Banach space E, the
EP for a bifunction g : C ×C → R satisfying condition g(x, x) = 0 for every x ∈ C is
defined as follows: find x∗ ∈ C such that

g(x∗, y) ≥ 0, for all y ∈ C.(1.6)
We denote by ∆, the set of solutions of (1.6).

Recall that a bifunction g is called monotone on C, if for all x, y ∈ C, g(x, y) +
g(y, x) ≤ 0 and the mapping A : C → E∗ is pseudomonotone if and only if the
bifunction g(x, y) = ⟨A(x), y− x⟩ is pseudomonotone on C (see [18]). To solve an EP
involving a pseudomonotone bifunction, we need the following assumptions:

L1. g is pseudomonotone, i.e., for all x, y ∈ C:
g(x, y) ≥ 0 implies g(y, x) ≤ 0;
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L2. g is Bregman-Lipschitz type continuous, i.e., there exist two positive constants
c1, c2 such that

g(x, y) + g(y, z) ≥ g(x, z)− c1Df (y, x)− c2Df (z, y), for all x, y, z ∈ C;

L3. g is weakly continuous on C × C, i.e., if x, y ∈ C and {xn} and {yn} are two
sequences in C converging weakly to x and y respectively, then g(xn, yn)→ g(x, y);

L4. g(x, ·) is convex, lower semicontinuous and subdifferential on C for every fixed
x ∈ C;

L5. for each x, y, z ∈ C, lim supt↓0 g(tx + (1− t)y, z) ≤ g(y, z).
Using assumptions L1-L5, Eskandani et al. [18] introduced an hybrid iterative

algorithm to approximate a common element of the set of solutions of finite family
of EPs involving pseudomonotone bifunctions and the set of common fixed points
for a finite family of Bregman relatively nonexpansive mappings in the framework of
reflexive Banach spaces. They proved the following strong convergence theorem.

Theorem 1.2. Let C be a nonempty closed convex subset of a reflexive Banach
space E and f : E → R be a super coercive Legendre function which is bounded,
uniformly Frechet differentiable and totally convex on bounded subset of E. Let for
i = 1, 2, . . . , N, gi : C × C → R be a bifunction satisfying L1-L5. Assume that for
each 1 ≤ r ≤M, Tr : C → CB(C) be a multivalued Bregman relatively nonexpansive
mapping, such that Γ = (∩M

r=1F (Tr)) ∩ (∩N
i=1EP (gi)) ̸= ∅. Suppose that {xn} is a

sequence generated by x1 ∈ C and

wi
n = argmin{λngi(xn, w) + Df (w, xn) : w ∈ C}, i = 1, . . . , N,

zi
n = argmin{λngi(wi

n, z) + Df (z, xn) : z ∈ C}, i = 1, . . . , N,

in ∈ Argmax{Df (zi
n, xn), i = 1, 2, . . . , N}, zn := zin

n ,

yn = ▽f ∗(βn,0▽ f(zn) + ∑M
r=1 βn,r ▽ f(zn,r)), zn,r ∈ Trzn,

xn+1 =
←−
P f

C(▽f ∗(αn▽ f(un) + (1− αn)▽ f(zn,r)),

where CB(C) denotes the family of a nonempty, closed and convex subsets of C,
{αn}, {βn,r}, {λn} and {un} satisfy the following conditions:

(i) {αn} ⊂ (0, 1), limn→+∞ αn = 0,
∑+∞

n=1 αn =∞;
(ii) {βn,r} ⊂ (0, 1), ∑M

r=0 βn,r = 1, lim infn→+∞ βn,0βn,r > 0 for all 1 ≤ r ≤M and
n ∈ N;

(iii) {λn} ⊂ [a, b] ⊂ (0, p), where p = min{ 1
c1

, 1
c2
}, c1 = max1≤i≤N ci,1;

c2 = max1≤i≤N ci,2 and ci,1, ci,2 are the Bregman-Lipschitz coefficients of gi for all
1 ≤ i ≤ N ;

(iv) {un} ⊂ E, limn→+∞ un = u for some u ∈ E.
Then, the sequence {xn} converges strongly to

←−
P f

Γ u.

Remark 1.1. We will like to emphasize that approximating a common solution of MVIP
and EP have some possible applications to mathematical models whose constraints
can be expressed as MVIP and EP. In fact, this happens in practical problems like
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signal processing, network resource allocation, image recovery, to mention a few, (see
[20]).

Inspired by the works of Eskandani et al. [18], Timnak et al. [51], Ogbuisi and
Izuchukwu [33] and other related results in literature, we introduce a Halpern type
iteration process to approximate a zero of sum of two monotone operators, which is
also a common solution of equilibrium problem involving pseudomonotone bifunction
and fixed point problem for an infinite family of Bregman quasi-nonexpansive map-
pings in the framework of a reflexive Banach space. We state and prove a strong
convergence result for finding a common solution of the aforementioned problems
and give applications to the consequences of our main results. Finally, we display a
numerical example to show the applicability of our main result. The result presented
in this paper improve and generalize some known results in the literature.

2. Preliminaries

We give some known and useful results which will be needed in the proof of our
main theorem. In the sequel, we denote strong and weak convergence by → and ⇀,
respectively.
Definition 2.1. A function f : E → R is said to be super coercive if

lim
x→+∞

f(x)
||x||

= +∞

and strongly coercive if

lim
||xn||→+∞

f(xn)
||xn||

= +∞.

Definition 2.2. Let Q be a nonempty subset of a real Banach space E and {Tn}+∞
n=1

a sequence of mappings from Q into E such that ∩+∞
n=1F (Tn) ̸= ∅. Then {Tn}+∞

n=1 is
said to satisfy the AKTT-condition if for each bounded subset K of Q,

+∞∑
n=1

sup{||Tn+1z − Tnz|| : z ∈ K} < +∞.

Lemma 2.1 ([6]). Let C be a nonempty subset of a real Banach space E and {Tn}∞
n=1

be a sequence of mappings from C into E which satisfies the AKTT condition. Then,
for each x ∈ C, {Tnx}+∞

n=1 is convergent. Furthermore, if we define a mapping T :
C → E by

Tx := lim inf
n→+∞

Tnx, for all x ∈ C,

then, for each bounded subset K of C,
lim sup
n→+∞

{||Tnz − Tz|| : z ∈ K} = 0.

In this sequel, we write that ({Tn}+∞
n=1, T ) satisfies the AKTT-condition if {Tn}+∞

n=1
satisfies the AKTT-condition and F (T ) = ∩+∞

n=1F (Tn).
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Lemma 2.2 ([51]). Let E be a Banach space, s > 0 a constant, ρs the gauge of
uniform convexity of g and g : E → R a convex function which is uniformly convex
on bounded subset of E. Then

(i) for any x, y ∈ Bs and α ∈ (0, 1), we have
g(αx + (1− α)y) ≤ αg(x) + (1− α)g(y)− α(1− α)ρs(||x− y||),

(ii) for any x, y ∈ Bs

ρs(||x− y||) ≤ Dg(x, y).
Here, Bs := {z ∈ E : ||z|| ≤ s}.

Lemma 2.3 ([14]). Let E be a reflexive Banach space, f : E → R a strongly coercive
Bregman function and V a function defined by

V (x, x∗) = f(x)− ⟨x, x∗⟩+ f ∗(x∗), x ∈ E, x∗ ∈ E∗.

The following assertions also hold:
Df (x,▽f ∗(x∗)) =V (x, x∗), for all x ∈ E and x∗ ∈ E∗,

V (x, x∗) + ⟨▽g∗(x∗)− x, y∗⟩ ≤V (x, x∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.4 ([14]). Let E be a Banach space and f : E → R a Gâteaux differentiable
function which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N
be bounded sequences in E. Then

lim
n→+∞

Df (yn, xn) = 0⇒ lim
n→+∞

||yn − xn|| = 0.

Lemma 2.5 ([18]). Let C be a nonempty closed convex subset of a reflexive Banach
space E and f : E → R a Legendre and super coercive function. Suppose that
g : C×C → R is a bifunction satisfying L1-L4. For arbitrary sequence {xn} ⊂ C and
{λn} ⊂ (0, +∞), let {wn} and {zn} be sequences generated bywn = argminy∈C{λng(xn, y) + Df (y, xn)},

zn = argminy∈C{λng(wn, y) + Df (y, xn)}.

Then, for all x∗ ∈ ∆, we have that
Df (x∗, zn) ≤ Df (x∗, xn)− (1− λnc1)Df (wn, xn)− (1− λnc2)Df (zn, wn),

where c1 and c2 are the Bregman-Lipschitz coefficients of g.

Lemma 2.6 ([42]). Let f : E → R be a Gâteaux differentiable and totally convex
function. If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the sequence {xn}
is also bounded.

Lemma 2.7 ([55]). Let f : E → R be a continuous convex function which is bounded
on bounded subsets of E. Then, the following are equivalent:

(i) f is super coercive and uniformly convex on bounded subset of E;
(ii) dom f ∗ = E∗, f ∗ is bounded and uniformly smooth on bounded subsets of E∗;
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(iii) dom f ∗ = E∗, f ∗ is Fréchet differentiable and ▽f ∗ is uniformly norm-to-norm
continuous on bounded subset of E∗.

Lemma 2.8 ([55]). Let f : E → R be a continuous convex function which is super
coercive. Then, the following are equivalent:

(i) f is bounded and uniformly smooth on bounded subsets of E;
(ii) f is Fréchet differentiable and ▽f is uniformly norm-to-norm continuous on

bounded subset of E;
(iii) dom f ∗ = E∗, f ∗ is super coercive and uniformly convex on bounded subsets

of E∗.

Lemma 2.9 ([33]). Let B : E → 2E∗ be a maximal monotone operator and A : E →
E∗ be a BISM mapping such that (A + B)−1(0∗) ̸= ∅. Let f : E → R be a Legendre
function, which is uniformly Fréchet differentiable and bounded on bounded subset of
E. Then

Df (u, Resf
λB ◦ Af (x)) + Df (Resf

λB(x), x) ≤ Df (u, x),

for any u ∈ (A + B)−1(0∗), x ∈ E and λ > 0.

Lemma 2.10 ([33]). Let B : E → 2E∗ be a maximal monotone operator and A : E →
E∗ be a BISM mapping such that (A + B)−1(0∗) ̸= ∅. Let f : E → R be a Legendre
function, which is uniformly Fréchet differentiable and bounded on bounded subset of
E. Then

(i) (A + B)−1(0∗) = F (Resf
λB ◦ Af

λ);
(ii) Resf

λB ◦ Af
λ is a BSNE operator with F (Resf

λB ◦ Af
λ) = F̂ (Resf

λB ◦ Af
λ).

Definition 2.3. Let E be a reflexive Banach space and C a nonempty closed and
convex subset of E. A Bregman projection of x ∈ int(dom f) onto C ⊂ int(dom f) is
the unique vector P f

C(x) ∈ C satisfying

Df (P f
C(x), x) = inf{Df (y, x) : y ∈ C}.

Lemma 2.11 ([41]). Let C be a nonempty closed and convex subset of a reflexive
Banach space E and x ∈ E. Let f : E → R be a Gâteaux differentiable and totally
convex function. Then

(i) z = P f
C(x) if and only if ⟨▽f(x)−▽f(z), y − z⟩ ≤ 0 for all y ∈ C;

(ii) Df (y, P f
C(x)) + Df (P f

C(x), x) ≤ Df (y, x) for all y ∈ C.

Lemma 2.12 ([52]). Let C be a nonempty convex subset of a reflexive Banach space
E and f : C → R be a convex and subdifferential function on C. Then f attains its
minimum at x ∈ C if and only if 0 ∈ ∂f(x) + NC(x), where NC(x) is the normal cone
of C at x, that is

NC(x) := {x∗ ∈ E∗ : ⟨x− z, x∗⟩ ≥ 0 for all z ∈ C}.
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Lemma 2.13 ([16]). If f and g are two convex functions on E such that there is a
point x0 ∈ dom f ∩ dom g where f is continuous, then

∂(f + g)(x) = ∂f(x) + ∂g(x), for all x ∈ E.(2.1)

Lemma 2.14 ([48]). Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− σn)an + σnδn, n > 0,

where {σn} is a sequence in (0, 1) and {δn} is a real sequence such that
(i) ∑+∞

n=1 σn = +∞;
(ii) lim supn→+∞ δn ≤ 0 or ∑+∞

n=1 |σnδn| < +∞.
Then limn→+∞ an = 0.

3. Main Results

In what follows, Ω and ∆ denote the solution set of MVIP (1.2) and EP (1.6) respec-
tively.

Algorithm 3.1. Choose u, x1 ∈ E. Assume that the control parameters {µn}, {βn}
and {αn} satisfy the following conditions:

(i) αn ∈ (0, 1), limn→+∞ αn = 0 and ∑+∞
n=1 αn = +∞;

(ii) βn ∈ (0, 1) and 0 < lim infn→+∞ βn ≤ lim supn→+∞ βn < 1;
(iii) 0 < µ ≤ µn ≤ µ < min

{
1

2c1
, 1

2c2

}
, where c1, c2 are positive constants.

Let {xn} be a sequence generated by

un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)),
yn = (Resf

λB ◦ Af
λ)un,

zn = argmina∈Q{µng(yn, a) + Df (a, yn)},
wn = argmina∈Q{µng(zn, a) + Df (a, yn)},
xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(3.1)

Theorem 3.2. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E
a nonempty closed convex set. For n ∈ N, let Tn : E → E be an infinite family
of Bregman quasi-nonexpansive mapping such that ({Tn}+∞

n=1, T ) satisfy the AKTT-
condition and F (T ) = F̂ (T ). Let A : E → E∗ be a BISM mapping, B : E → 2E∗

a maximal monotone operator and g : Q × Q → R a bifunction satisfying L1-L5.
Assume that f : E → R is a strongly coercive Legendre function, which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that
Q ⊂ int(dom f) with Γ := ∩+∞

n=1F (Tn)∩Ω∩∆ ̸= ∅. Then, the sequence {xn} generated
by Algorithm 3.1 converges strongly to v = P f

Γ u, where P f
Γ is the Bregman projection

from E to Γ.

Proof. Let p ∈ Γ, then we have from (3.1), Lemma 2.5 and Lemma 2.10 (ii) that
Df (p, wn) ≤Df (p, yn)− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
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=Df (p, Resf
λB ◦ Af

λ(un))− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
≤Df (p, un)− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
=Df (p,▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)))
− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
≤βnDf (p, xn) + (1− βn)Df (p, Tnxn)
− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
≤βnDf (p, xn) + (1− βn)Df (p, xn)
− (1− µnc1)Df (zn, yn)− (1− µnc2)Df (wn, zn)
≤Df (p, xn).(3.2)

Now, we conclude from (3.1) and (3.2) that

Df (p, xn+1) = Df (p,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))
≤ αnDf (p, u) + (1− αn)Df (p, wn)
≤ αnDf (p, u) + (1− αn)Df (p, un)
≤ αnDf (p, u) + (1− αn)Df (p, xn)

≤ max
{
Df (p, u), Df (p, xn)}

...

≤ max
{
Df (p, u), Df (p, x1)}.(3.3)

From Lemma 2.8, we have that f ∗ is bounded on bounded subset of E∗. Hence,
▽f ∗ is also bounded on bounded subset of E∗. From Lemma 2.6, the following
sequences {xn}+∞

n=1, {(Tnxn)}+∞
n=1, {(▽f ∗un)}+∞

n=1, {(▽f ∗wn)}+∞
n=1, {(▽f ∗zn)}+∞

n=1 and
{(▽f ∗yn)}+∞

n=1 are all bounded. In view of Lemma 2.7 and Lemma 2.8, dom f ∗ = E∗

and f ∗ is super coercive and uniformly convex on bounded subset of E∗. Let s ≥
sup{||xn||, || ▽ (Tnxn)|| : n ∈ N} be large enough and let ρ∗

s : [0, +∞)→ [0, +∞) be
the gauge of uniform convexity of f ∗. Now, we have from Lemma 2.2 and (3.1) that

Df (p, un) =Df (p,▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)))
=f(p) + f(βn▽ f(xn) + (1− βn)▽ f(Tnxn))
− ⟨p, βn▽ f(xn) + (1− βn)▽ f(Tnxn)⟩
≤βnf(p) + (1− βn)f(p) + βnf ∗(▽f(xn)) + (1− βn)f ∗(▽f(Tnxn)
− βn(1− βn)ρ∗

s(|| ▽ f(xn)−▽f(Tnxn)||)
− ⟨p, βn▽ f(xn) + (1− βn)▽ f(Tnxn)⟩
≤βnDf (p, xn) + (1− βn)Df (p, Tnxn)
− βn(1− βn)ρ∗

s(|| ▽ f(xn)−▽f(Tnxn)||)
≤Df (p, xn)− βn(1− βn)ρ∗

s(|| ▽ f(xn)−▽f(Tnxn)||).(3.4)
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From (3.1), (3.2) and (3.4) and Lemma 2.3, we obtain that

Df (p, xn+1) =Df (p,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))
=Vp(p, αn▽ f(u) + (1− αn)▽ f(wn))
≤Vp(p, αn▽ f(u) + (1− αn)▽ f(wn))− αn(▽f(u)−▽f(p))
− ⟨▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn))− p,−αn(▽f(u)−▽f(p))⟩

=V (p, αn▽ f(u) + (1− αn)▽ f(wn)) + αn⟨xn+1 − p,▽f(u)−▽f(p)⟩
=Df (p,▽f ∗(αn▽ f(p) + (1− αn)▽ f(wn)))

+ αn⟨xn+1 − p,▽f(u)−▽f(p)⟩
≤αnDf (p, p) + (1− αn)Df (p, wn) + αn⟨xn+1 − p,▽f(u)−▽f(p)⟩
≤(1− αn)Df (p, xn)− (1− αn)(1− µnc1)Df (zn, yn)
− (1− αn)(1− µnc2)Df (wn, zn)
− βn(1− βn)ρ∗

s(|| ▽ f(xn)−▽f(Tnxn))||
+ αn⟨xn+1 − p,▽f(u)−▽f(p)⟩.(3.5)

We now consider two cases to prove a strong convergence result.
CASE 1. Assume that the sequence {Df (p, xn)} is a monotone decreasing sequence,

then {Df(p, xn)} is convergent. Clearly, we have that Df(p, xn) −Df(p, xn+1) → 0,
as n→ +∞.

Now, we have from (3.5), Lemma 2.4, conditions (i)-(iii) of (3.1) that

lim
n→+∞

||zn − yn|| = 0.(3.6)

Also,

lim
n→+∞

||wn − zn|| = 0(3.7)

and

lim
n→+∞

ρ∗
s(|| ▽ f(xn)−▽f(Tnxn)||) = 0.(3.8)

Applying the property of ρ∗
s on (3.8), we obtain that

lim
n→+∞

|| ▽ f(xn)−▽f(Tnxn)|| = 0.

Since ▽f ∗ is uniformly norm-to-norm continuous on bounded subset of E∗, we obtain
that

lim
n→+∞

||xn − Tnxn|| = 0.(3.9)

Since ({Tn}+∞
n=1, T ) satisfies the AKTT condition, we then conclude that

||xn − Txn|| ≤ ||xn − Tnxn||+ ||Tnxn − Txn||
≤ ||xn − Tnxn||+ sup{||Tnx− Tx|| : x ∈ K},(3.10)
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where K = rB = {x ∈ E : ||x|| ≤ r}. By applying Lemma 2.1, (3.9) and (3.10), we
have that

lim
n→+∞

||xn − Txn|| = 0.(3.11)

From (3.9), the boundedness of ▽f and the uniform continuity of f on bounded
subsets of E, we have that

Df (Tnxn, xn) = f(Tnxn)− f(xn)− ⟨Tnxn − xn,▽fxn⟩ → 0, n→ +∞.(3.12)

From Lemma 2.9, (3.1), (3.2) and (3.3), we have that

Df (yn, un) ≤ Df (p, un)−Df (p, yn)
≤ βnDf (p, xn) + (1− βn)Df (p, Tnxn)−Df (p, un)
≤ βnDf (p, xn) + (1− βn)Df (p, xn)−Df (p, wn)
= Df (p, xn) + αnDf (p, u)−Df (p, xn+1).

Using condition (i) and Lemma 2.4, we have that

lim
n→+∞

||yn − un|| = 0.(3.13)

From (3.1) and (3.12), we have that

Df (xn, un) = Df (xn,▽f ∗(βnf(xn) + (1− βn)▽ f(Tnxn)))
≤ βnDf (xn, xn) + (1− βn)Df (xn, Tnxn)→ 0, n→ +∞.

Hence, we have from Lemma 2.4 that

lim
n→+∞

||un − xn|| = 0.(3.14)

From (3.13) and (3.14), we have that

lim
n→+∞

||yn − xn|| = 0.(3.15)

From (3.6) and (3.15), we obtain that

lim
n→+∞

||zn − xn|| = 0.(3.16)

From (3.7) and (3.16), we have that

lim
n→+∞

||wn − xn|| = 0.(3.17)

Using (3.1), we have that

Df (wn, xn+1) = Df (wn,▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)))
≤ αnDf (wn, u) + (1− αn)Df (wn, wn)→ 0, n→ +∞.

We have from Lemma 2.4 that

lim
n→+∞

||xn+1 − wn|| = 0.(3.18)
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We conclude from (3.17) and (3.18) that
lim

n→+∞
||xn+1 − xn|| = 0.(3.19)

Since {xn} is bounded in E, there exists a subsequence {xnk
} of {xn} such that

xnk
⇀ x∗. From (3.14), (3.15), (3.16) and (3.17), we have that {unk

}, {znk
}, {ynk

} and
{wnk

} converges weakly to x∗. Also, from (3.11), we obtain that x∗ ∈ ˆF (T ) = F (T ).
Next, we show that x∗ ∈ Ω. Since

zn = argmina∈Q{µng(yn, a) + Df (a, yn)},
then by Lemma 2.12 and 2.13 and condition L4, we obtain that

0 ∈ ∂µng(yn, zn) +▽Df (zn, yn) + NC(zn).

Therefore, there exist θ̄n ∈ ∂g(yn, zn) and θn ∈ NC(zn) such that
µnθ̄n +▽f(zn)−▽f(yn) + θn = 0.(3.20)

Observe that θn ∈ NC(zn) and ⟨q − zn, θn⟩ ≤ 0 for all q ∈ Q. Since θ̄n ∈ ∂g(yn, zn),
we have

g(yn, q)− g(yn, zn) ≥ ⟨q − zn, θn⟩,(3.21)
for all q ∈ Q. Using (3.20) and (3.21), we obtain that

µn[g(yn, q)− g(yn, zn)] ≥ ⟨zn − q,▽f(zn)−▽f(yn)⟩, for all q ∈ C,

this implies that

[g(yn, q)− g(yn, zn)] ≥ 1
µn

⟨zn − q,▽f(zn)−▽f(yn)⟩, for all q ∈ C.(3.22)

Using (3.6), (3.15), (3.16), condition L3 and letting n→∞ in (3.22), we conclude that
g(x∗, q) ≥ 0, for all q ∈ Q. Hence x∗ ∈ ∆. We will also show that 0∗ ∈ A(x∗) + B(x∗).
From (3.13) and Lemma 2.10, we have that x∗ ∈ F̂ (Resf

λB ◦ Af
λ) = F (Resf

λB ◦ Af
λ) =

(A + B)−1(0∗). That is 0∗ ∈ A(x∗) + B(x∗). Hence, x∗ ∈ Ω. We conclude that x∗ ∈ Γ.
We prove that {xn} converges strongly to v = P f

Γ u.
Since {xn} is bounded, there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x∗

and
lim sup
n→+∞

⟨xn+1 − v,▽f(u)−▽f(v)⟩ = lim
k→∞
⟨xnk+1 − v,▽f(u)−▽f(v)⟩.(3.23)

Since x∗ ∈ Γ, we obtain from Lemma 2.11 and (3.23) that
lim sup
n→+∞

⟨xn+1 − v,▽f(u)−▽f(v)⟩ = ⟨x∗ − v,▽f(u)−▽f(v)⟩ ≤ 0.(3.24)

From (3.5), we have that
Df (v, xn+1) ≤ (1− αn)Df (v, xn) + αn⟨xn+1 − v,▽f(u)−▽f(v)⟩.(3.25)

On applying Lemma 2.14 in (3.25), we conclude that Df (xn, v)→ 0, n→∞. There-
fore, {xn} converges strongly to v = P f

Γ u.
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CASE 2. Suppose that {Df(p, xn)} is not a monotone decreasing sequence. Let
τ : N→ N be a mapping defined for n ≥ n0 for some sufficiently large n0 by

τ(n) = max{j ∈ N : j ≤ n, Df (p, xnk
) ≤ Df (p, xnj+1)}.

Then τ is a non-decreasing sequence such that τ(n) → +∞ and Df(p, xτ(n)) ≤
Df (p, xτ(n)+1) for n ≥ n0.

We have from (3.5), conditions (i), (ii), (iii) that

lim
τ(n)→+∞

||zτ(n) − yτ(n)|| = 0 = lim
τ(n)→+∞

||wτ(n) − zτ(n)||(3.26)

and

lim
τ(n)→+∞

|| ▽ f(xτ(n))−▽(Tτ(n)xτ(n))|| = 0.(3.27)

Following the same argument as in CASE 1, we have

lim
τ(n)→+∞

||uτ(n) − xτ(n)|| = 0,

lim
τ(n)→+∞

||yτ(n) − xτ(n)|| = 0,

lim
τ(n)→+∞

||xτ(n+1) − xτ(n)|| = 0

and

lim sup
τ(n)→+∞

⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩ = ⟨x∗ − v,▽f(u)−▽f(v)⟩ ≤ 0.(3.28)

It follows from (3.5) that

Df (v, xτ(n)+1) ≤ (1− ατ(n))Df (v, xτ(n)) + ατ(n)⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩.
(3.29)

Since ατ(n) > 0, we obtain that

Df (v, xτ(n)) ≤ ⟨xτ(n)+1 − v,▽f(u)−▽f(v)⟩.

Hence, we deduce from (3.28) that Df (v, xτ(n)) = 0. This implies that {xτ(n)} converges
strongly to v. Thus, {xn} converges strongly to v ∈ Γ. □

We give the following consequences of our main result. In the next result, we
consider a fixed point problem of relatively nonexpansive mapping and an EP involving
a pseudomonotone bifunction.

Corollary 3.1. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E be
a nonempty closed convex set. Let T : E → E be a Bregman relatively nonexpansive
mapping with F (T ) = F̂ (T ) and g : Q × Q → R be a bifunction satisfying L1-L5.
Assume that f : E → R is a strongly coercive Legendre function, which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E such that
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Q ⊂ int(dom f) with Γ := F (T )∩∆ ̸= ∅. Let the sequence {xn} be generated iteratively
by 

un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Txn)),
zn = argmina∈Q{µng(un, a) + Df (a, un)},
wn = argmina∈Q{µng(zn, a) + Df (a, un)},
xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(3.30)

If conditions (i)-(iii) in (3.1) still hold, then the sequence {xn} converges strongly to
x∗ = P f

Γ u.

Here, we consider a common solution of fixed point problem for an infinite family of
Bregman quasi-nonexpansive mappings which is a zero of sum of monotone operators.

Corollary 3.2. Let E be a reflexive Banach space and E∗ be its dual space. For n ∈ N,
let Tn : E → E be an infinite family of Bregman quasi-nonexpansive mapping such
that ({Tn}+∞

n=1, T ) satisfy the AKTT-condition and F (T ) = F̂ (T ). Let A : E → E∗

be a BISM mapping and B : E → 2E∗ be a maximal monotone operator. Assume
that f : E → R is a strongly coercive Legendre function, which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E such that Γ :=
∩+∞

n=1F (Tn) ∩ Ω ̸= ∅. Let the sequence {xn} be generated iteratively by
un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Tnxn)),
yn = (Resf

λB ◦ Af
λ)un,

xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(yn)), n ≥ 1.

(3.31)

If conditions (i)-(ii) in (3.1) still hold, then the sequence {xn} converges strongly to
v = PΓu.

Remark 3.1. In our result, we employed a Halpern type iterative algorithm due to its
flexibility in defining the algorithm parameters, which is important from the numerical
implementation perspective. The iteration process employed in this result has an
advantage over the ones used in [18, 33] and some known results in the literature in
the sense that we do not use any projection of a point on the intersection of closed and
convex sets which creates some difficulties in practical computation of the iterative
sequence. In fact, the results presented in Corollary 3.1 and 3.2 coincide with the
results of [18] and [33], and in one way or the other extend their result based on their
choice of iterative algorithm.

4. Applications and Numerical Example

4.1. Convex Minimization Problem (CMP). Let Q be a nonempty closed and
convex subset of a reflexive Banach space E and g : E → (−∞, +∞] be a proper,
convex and lower semi-continuous function which attains its minimum over E. Let
Tn : Q→ E be an infinite family of Bregman quasi-nonexpansive mapping such that
({Tn}+∞

n=1, T ) satisfy the AKTT-condition with F (T ) = ˆF (T ) and f : E → R be a
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strongly coercive Legendre function, which is bounded, uniformly Frechet differentiable
and totally convex on bounded subsets of E. Then, the CMP is to find x ∈ F (T )
such that

g(x) = min
y∈E

g(y).(4.1)

It is generally known that (4.1) can be formulated as follows: find x ∈ F (T ) such that
0∗ ∈ ∂g(x),(4.2)

where ∂g = {ξ ∈ E∗ : ⟨ξ, y − x⟩ ≤ g(y) − g(x) for all x ∈ E}. It is known that
∂g is a maximal monotone operator whenever g is a proper, convex and lower semi-
continuous function. Hence, by taking ∂g = B and A = 0 in Theorem 3.1, we obtain a
strong convergence result for approximation solutions of EP involving pseudomonotone
bifunction and CMP (4.1).

4.2. Variational Inequality Problem. Let C be a nonempty closed and convex
subset of a reflexive Banach space E with E∗ its dual. Let A : C → E∗ be a mapping
and the function g defined as g(x, y) = ⟨y − x, Ax⟩. Then, the classical Variational
Inequality Problem (VIP) is to find z ∈ C such that

⟨y − z, Az⟩ ≥ 0, for all y ∈ C.(4.3)
VIP is one of the most important problems in optimization as it is used in studying
differential equations, minimax problems, and has certain applications to mechanics
and economic theory, see [4,5,21,24,25]. We denote by V I(C, A), the set of solutions
of VIP (4.3).

Lemma 4.1 ([18]). Let C be a nonempty closed convex subset of a reflexive Banach
space E, A : C → E∗ be a mapping and f : E → R be a Legendre function. Then

←−
P f

C(▽f ∗[▽f(x)− µA(y)]) = argminw∈C{µ⟨w − y, A(y)⟩}+ Df (w, x)},
for all x ∈ E, y ∈ C and µ ∈ (0, +∞).

Theorem 4.1. Let E be a reflexive Banach space with E∗ its dual and Q ⊆ E be a
nonempty closed convex set. Let T : E → E be a Bregman relatively nonexpansive
mapping with F (T ) = ˆF (T ). Let A is a pseudomonotone and L-Lipschitz continuous
mapping from Q to E∗. Assume that f : E → R is a strongly coercive Legendre
function, which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E such that Q ⊂ int(dom f) with Γ := {F (T ) ∩ V I(Q, A)} ̸= ∅.
Let the sequence {xn} be generated iteratively by

un = ▽f ∗(βn▽ f(xn) + (1− βn)▽ f(Txn)),
zn =

←−
P f

Q(▽f ∗(▽f(xn)− µnA(un))),
wn =

←−
P f

Q(▽f ∗(▽f(xn)− µnA(zn))),
xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)), n ≥ 1.

(4.4)
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Suppose that conditions (i)-(ii) in (3.1) hold and {µn} ⊂ [a, b] ⊂ (0, p), where p =
min 2τ

L
and τ is given by (1.2) holds, then the sequence {xn} converges strongly to

v = P f
Γ u.

4.3. Numerical Example. We now display a numerical example of our algorithm
to show its applicability.

Let X = R and C = [0, 1]. Now, define f : R→ R by f(x) = 2x4

27 , then▽f(x) = 8x3

27 .

Thus, by the definition of Fenchel conjugate of f , we obtain that f ∗(x∗) = 9
8x∗ 4

3 and
▽f ∗(x∗) = 36

24x∗ 1
3 . Note that f satisfies the assumptions in Theorem 3.1 (see [13]), and

that ▽f = (▽f ∗)−1. Let B : R → R be defined by B(x) = 7x − 2 and A : R → R
be defined byA(x) = 5x, then A and B are BISM and maximal monotone mappings
respectively. Therefore, we compute their resolvents as follows:

Resf
λ(Af

λx) = (▽f + λB)−1▽ f(▽f ∗(▽f − λA)(x))
= (▽f + λB)−1((▽f − λA)(x))
= (▽f + λB)−1(x3 − 5λx).

Now, define g : C × C → R by g(x, y) = M(x)(y − x), where

M(x) =

0, 0 ≤ x ≤ 1
100 ,

sin(x− 1
100), 1

100 ≤ x ≤ 1,

then g satisfies assumptions L1-L5 with c1 = 1 = c2 (see [18]). Also, define Tn : R→ R
by Tn = 1

n
x for all x ∈ R. Take αn = 1

100n+1 and βn = n+1
2n+7 . Then, all assumptions of

Theorem 3.1 are satisfied. Hence, Algorithm 3.1 becomes



un = ▽f ∗(βnf(xn) + (1− βn)▽ f(xn

n
)),

yn = (▽f + λB)−1(u3
n − 5λun),

zn = yn − µnM(yn),
wn = yn − µnM(zn),
xn+1 = ▽f ∗(αn▽ f(u) + (1− αn)▽ f(wn)).

Case 1: x1 = 2, u = 0.5, λ = 10 and n+1
4n+5 .

Case 2: x1 = 0.5, u = 2, λ = 0.1 and n+1
4n+5 .

Case 3: x1 = 0.5, u = 2, λ = 0.1 and 2n+1
6n+7 .

Case 4: x1 = 3, u = −7, λ = 2 and 2n+1
6n+7 .
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