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DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND
PICARD TYPE THEOREM FOR SLOWLY MOVING PERIODIC

TARGETS

DUC THOAN PHAM 1, DANG TUYEN NGUYEN1, AND THI TUYET LUONG1

Abstract. In this paper, we show some Second main theorems for linearly non-
degenerate meromorphic mappings over the field P1

c of c-periodic meromorphic
functions having their hyper-orders strictly less than one in Cm intersecting slowly
moving targets in Pn(C). As an application, we give some Picard type theorems for
meromorphic mappings of Cm into Pn(C) under the growth condition hyper-order
less than one.

1. Introduction

In 2006, R. Halburd and R. Korhonen [5] considered the Second main theorem
for complex difference operator with finite order in complex plane. Later, difference
analogues of the Second main theorem for holomorphic curves or for meromorphic
mappings into Pn(C) were obtained independently by the authors such as P. M.
Wong, H. F. Law, P. P. W. Wong, R. Halburd, R. Korhonen, K. Tohge, T. B. Cao (see
[2, 6–8]). Recently, T. B. Cao and R. Korhonen [3] obtained a new natural difference
analogue of the Cartan’s theorem [1], in which the counting function N(r, ν0

W (f))
of Wronskian determinant of f is replaced by the counting function N(r, ν0

C(f)) of
Casorati determinant of f (it was called the finite difference Wronskian determinant
in [6]).

Key words and phrases. Second main theorem, meromorphic mappings, Nevanlinna theory, Caso-
rati determinant, moving targets.
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In particular, under the growth condition hyper-order < 1, R. Korhonen, N. Li-K.
Tohge [9] obtained the Second main theorem of holomorphic curves of C into Pn(C)
for slowly moving periodic targets which is similar to the Cartan’s theorem.

To state some results in this direction, we recall some notations in [3, 9].
Let c ∈ Cm, we denote by Mm the set of all meromorphic functions on Cm, by

Pc the set of all meromorphic functions of Mm periodic with period c, and by Pλ
c

the set of all meromorphic functions of Mm periodic with period c and having their
hyper-orders strictly less than λ. Obviously, Pλ

c ⊂ Pc ⊂ Mm.

Definition 1.1. Let f be a meromorphic mapping from Cm into Pn(C) with a reduced
representation f = (f0 : · · · : fn). Then the map f is said to be linearly nondegenerate
over a field K if the entire functions f0, . . . , fn are linearly independent over the field
K.

For c = (c1, . . . , cm) and z = (z1, . . . , zm), we write c + z = (c1 + z1, . . . , cm + zm).
Let f be a meromorphic mapping of Cm into Pn(C) with a reduced representation
f = (f0 : · · · : fn). Denote

f(z) ≡ f := f̄ [0], f(z + c) ≡ f̄ := f̄ [1], f(z + 2c) ≡ ¯̄f := f̄ [2], . . . , f(z + kc) ≡ f̄ [k].

Let

D(j) =
(

∂

∂z1

)α1(j)

· · ·
(

∂

∂zm

)αm(j)

be a partial differentiation operator of order at most j = ∑m
k=1 αk(j). Similarly as the

Wronskian determinant

W (f) = W (f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn

D(1)f0 D(1)f1 · · · D(1)fn
... ... . . . ...

D(n)f0 D(n)f1 · · · D(n)fn

∣∣∣∣∣∣∣∣∣∣
,

the Casorati determinant is defined by

C(f) = C(f0, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣
f0 f1 · · · fn

f̄0 f̄1 · · · f̄n
... ... . . . ...

f̄
[n]
0 f̄

[n]
1 · · · f̄ [n]

n

∣∣∣∣∣∣∣∣∣∣
.

Let H1, H2, . . . , Hq be (fixed) hyperplanes in Pn(C) given by
Hj = {[ω0 : · · · : ωn] ∈ Pn(C) : aj0ω0 + · · · + ajnωn = 0} (1 ≤ j ≤ q),

where the constants aj0, . . . , ajn ∈ C are not simultaneously zero.

Definition 1.2. Let N ⩾ n and q ⩾ N + 1. The family {Hj}q
j=1 is said to be in

N -subgeneral position in Pn(C) if any N + 1 of the vectors (aj0, . . . , ajn) (1 ≤ j ≤ q)
are linearly independent over C.

If they are in n-subgeneral position, we simply say that they are in general position.
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Let a1, . . . , aq (q ≥ n + 1) be q meromorphic mappings of Cm into Pn(C) with
reduced representations aj = (aj0 : · · · : ajn) (1 ≤ j ≤ q). The moving hyperplane Hj

associated with aj is defined by

Hj(z) = {[ω0 : · · · : ωn] ∈ Pn(C) : LHj
(z, aj(z)) := aj0(z)ω0 + · · · + ajn(z)ωn = 0},

with z ∈ Cm \ I(aj), where I(aj) is the locus of indeterminacy of aj.
Similarly to the above definition, we have the following.

Definition 1.3. Let k ≥ n and q ≥ k + 1 and let K be a field such that C ⊂
K. We say that the moving targets a1, . . . , aq (also say that the moving hyper-
planes H1(z), . . . , Hq(z)) are in k-subgeneral position over K if any k + 1 of vectors
(aj0(z), . . . , ajn(z)) (1 ≤ j ≤ q) are linearly independent over K.

If they are in n-subgeneral position over K, we also simply say that they are in
general position over K.

Let f, a be two meromorphic mappings of Cm into Pn(C) with reduced representa-
tions f = (f0, . . . , fn), a = (a0, . . . , an), respectively. We define (f, a) := ∑n

i=0 aifi.

Definition 1.4. We say that a is a small moving target or a slowly moving target
with respect to f if T (r, a) = o(T (r, f)) as r → ∞, where the notations T (r, a) and
T (r, f) are characteristic functions of a and f , respectively.

When the entire functions aj (0 ≤ j ≤ n) are periodic with period c then we say
that aj are moving periodic targets with period c.

Definition 1.5. Let n ∈ N, c ∈ Cm \ {0} and a ∈ C. An a-point z0 of a meromorphic
function f(z) is said to be n-successive with separation c, if the n mappings f(z + kc)
(k = 1, . . . , n) take the value a at z = z0 with multiplicity not less than that of f(z)
there. All the other a-points of f(z) are called n-aperiodic of pace c.

By Ñ [n,c](r, (f, a)), we denote the counting function of all n-aperiodic zeros of the
function (f, a) of pace c.

Note that Ñ[n,c](r, (f, a)) ≡ 0 when all zeros of (f, a) with taking their multiplicities
into account are located periodically with period c. This is also the case when the
moving target a is forward invariant by f with respect to the translation τc = z + c,
i.e., τc(f−1(a)) ⊂ f−1(a) and f−1(a) are considered to be multi-sets in which each
point is repeated according to its multiplicity. In fact, it follows by the definition that
any zero with a forward invariant preimage of the function (f, a) must be n-successive
with separation c, since

f−1(a) ⊂ τ−c(f−1(a)) ⊂ · · · ⊂ τ−(n−1)c(f−1(a)).

With these definitions, the Second main theorem of holomorphic curves for slowly
moving periodic hyperplanes is stated as follows.
Theorem A. ([9]) (Difference analogue of the Cartan’s Second main theorem) Let
n ≥ 1 and let g = (g0 : · · · : gn) be a holomorphic curve of C into Pn(C) with
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hyper-order ζ = ζ2(g) < 1, where g0, . . . , gn are linearly independent over P1
c. Let

aj(z) = (aj0 : · · · : ajn) (j ∈ {0, . . . , q}),
where ajk(z) are c-periodic entire functions satisfying T (r, ajk) = o(Tg(r)) for all
j, k ∈ {0, . . . , q}. If the moving hyperplanes

Hj(z) = {(ω0, . . . , ωn) : LHj
(z, aj(z)) = 0} (j ∈ {0, . . . , q})

are located in general position over P1
c, then∣∣∣∣∣∣ (q − n)Tg(r) ≤

q∑
j=0

Ñ [n,c]
g (r, LHj

) + o (Tg(r)) .

Here, by the notation ”|| P“ we mean the assertion P holds for all r ∈ [0, ∞) outside
of an exceptional set with finite logarithmic measure.

Firstly, by using the idea proposed by D. D. Thai, S. D. Quang [11], we will
extend Theorem A to meromorphic mappings of Cm into Pn(C). Namely, we have the
following.

Theorem 1.1. Let c ∈ Cm and f : Cm → Pn(C) be a linearly nondegenerate mero-
morphic mapping over P1

c with hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be q slowly
moving periodic targets with respect to f with period c, located in general position over
P1

c. Then we have ∣∣∣∣∣
∣∣∣∣∣ q

n + 2T (r, f) ≤
q∑

j=1
Ñ

[n,c]
(f,aj)(r) + o (T (r, f)) ,

where Ñ
[n,c]
(f,aj)(r) is the counting function of all n-aperiodic zeros of the function (f, aj).

We now consider A = {a1, . . . , aq} be the set of meromorphic mappings of Cm into
Pn(C).

Definition 1.6. We say that A is nondegenerate over a field K if dim(A)K = n + 1
and for each nonempty proper subset A1 of A

(A1)K ∩ (A \ A1)K ∩ A ̸= ∅,

where (A)K is the linear span of A over the field K.

With the above definitions, we have the following theorem.

Theorem 1.2. Let c ∈ Cm and let f : Cm → Pn(C) be a linearly nondegenerate
meromorphic mapping over P1

c with hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be
q slowly moving periodic targets with respect to f with period c such that (f, aj) ̸≡
0 (1 ≤ j ≤ q). Assume that A = {a1, . . . , aq} is nondegenerate over Mm. Then we
have ∣∣∣∣∣

∣∣∣∣∣ T (r, f) ≤
q∑

j=1
Ñ

[n,c]
(f,aj)(r) + o (T (r, f)) ,

where Ñ
[n,c]
(f,aj)(r) is the counting function of all n-aperiodic zeros of the function (f, aj).
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We would like note that if the mapping f is forward invariant over aj for all
j ∈ {1, . . . , q} with respect to the translation τc(z) = z+c , i.e., τ((f, aj)−1) ⊂ (f, aj)−1

(counting multiplicity) holds for all j, then Ñ
[n,c]
(f,aj)(r) = 0 for all j. It follows from

Theorem 1.2 that there exists no linearly nondegenerate meromorphic mapping over
Pc which is periodic with period c.

By considering the uniqueness problem for f(z) and f(z+c) intersecting hyperplanes,
the authors of [3,7] obtained an unicity theorem for linearly degenerate meromorphic
mappings over Pc. That result is an extension of Picard’s theorem under the growth
condition hyper-order less than 1.
Theorem B ([3]). Let f be a meromorphic mapping of Cm into Pn(C) with hyper-
order ζ2(f) < 1, and let τ(z) = z + c, where c ∈ Cm. Assume that τ((f, Hj)−1) ⊂
(f, Hj)−1 (counting multiplicity) holds for q distinct hyperplanes {Hj}q

j=1 in N -subge-
neral position in Pn(C). If q > 2N , then f(z) = f(z + c).

Finally, we would like to extend the above result to the case of slowly moving
periodic targets.

Theorem 1.3. Let f be a meromorphic mapping of Cm into Pn(C) with hyper-order
ζ2(f) < 1. Let A = {a1, . . . , aq} be the set of slowly moving periodic targets with
respect to f with period c which is nondegenerate over Mm and satisfying (f, aj) ̸≡
0 (1 ≤ j ≤ q). Assume that f is forward invariant over aj for all j ∈ {1, . . . , q}
with respect to the translation τc(z) = z + c. Then the image of f is contained in a
projective linear subspace over P1

c of dimension ≤
[

n
q−n

]
. Particularly, if q > 2n, then

f is periodic with period c, i.e., f(z) = f(z + c).

Theorem 1.4. Let f be a meromorphic mapping of Cm into Pn(C) with hyper-order
ζ2(f) < 1. Let c ∈ Cm and k ∈ N, k ≥ n. Let A = {a1, . . . , aq} be the set of slowly
moving periodic targets with respect to f with period c such that (f, aj) ̸≡ 0 (1 ≤ j ≤ q)
and satisfies condition: dim(A)Mm = n + 1 and for each a proper subset A1 of A with
|A1| ≥ k + 1 then (A1)Mm ∩ (A \A1) ̸= ∅. Assume that f is forward invariant over aj

for all j ∈ {1, . . . , q} with respect to the translation τc(z) = z +c. Then the image of f

is contained in a projective linear subspace over P1
c of dimension ≤

[
k

q−k

]
. Particularly,

if q > 2k then f is periodic with period c, i.e., f(z) = f(z + c).

Denote by R = R({ai}q
i=1) ⊂ Mm the smallest subfield which contains C and all

aik

ail
with ail ̸≡ 0. Obviously, R ⊂ P1

c ⊂ Mm. Since the proof of Theorem 1.4, we can
see that this theorem also holds when the field Mm is replaced by the field R or the
field P1

c . Therefore, when the moving targets are in k-subgeneral position over P1
c , it

is easy to see that they satisfy the hypothesis of Theorem 1.4. Immediately, we have
the following corollary which is an extension of Theorem B.

Corollary 1.1. Let c ∈ Cm and f : Cm → Pn(C) be a meromorphic mapping with
hyper-order ζ2(f) < 1. Let aj (1 ≤ j ≤ q) be q slowly moving periodic targets with
period c, located in k-subgeneral position over P1

c such that (f, aj) ̸≡ 0 (1 ≤ j ≤ q).
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Assume that f is forward invariant over aj for all j ∈ {1, . . . , q} with respect to the
translation τc(z) = z + c. Then the image of f is contained in a projective linear
subspace over P1

c of dimension ≤
[

n
q−k

]
. Particularly, if q ≥ 2k + 1, then f is periodic

with period c, i.e., f(z) = f(z + c).

2. Preliminaries

2.1. Divisor. We set ||z|| =
(
|z1|2 + · · · + |zn|2

)1/2
for z = (z1, . . . , zn) ∈ Cn and

define
Bm(r) := {z ∈ Cm : ||z|| < r}, Sm(r) := {z ∈ Cm : ||z|| = r} (0 < r < ∞).

Define
σm(z) :=

(
ddc||z||2

)m−1
and

ηm(z) := dclog||z||2 ∧
(
ddclog||z||2

)m−1
on Cm \ {0}.

Let F be a nonzero holomorphic function on a domain Ω in Cm. For a set
α = (α1, . . . , αm) of nonnegative integers, we set |α| = α1 + · · · + αm and DαF =

∂|α|F
∂α1 z1···∂αm zm

. We define the map νF : Ω → Z by

νF (z) := max {n : DαF (z) = 0 for all α with |α| < n} (z ∈ Ω).
We mean by a divisor on a domain Ω in Cm a map ν : Ω → Z such that for

each a ∈ Ω, there are nonzero holomorphic functions F and G on a connected
neighbourhood U ⊂ Ω of a such that ν(z) = νF (z) − νG(z) for each z ∈ U outside an
analytic set of dimension ≤ m − 2. Two divisors are regarded as the same if they are
identical outside an analytic set of dimension ≤ m − 2. For a divisor ν on Ω, we set
|ν| := {z : ν(z) ̸= 0}, which is a purely (m − 1)-dimensional analytic subset of Ω or
empty.

Take a nonzero meromorphic function φ on a domain Ω in Cn. For each a ∈ Ω, we
choose nonzero holomorphic functions F and G on a neighbourhood U ⊂ Ω such that
φ = F

G
on U and dim(F −1(0) ∩ G−1(0)) ≤ m − 2, and we define the divisors ν0

φ, ν∞
φ

by ν0
φ := νF , ν∞

φ := νG, which are independent of choices of F and G and so globally
well-defined on Ω.

2.2. Counting function. For a divisor ν on Cm, we define the counting function of
ν by

n(t) =


∫

|ν| ∩B(t)
ν(z)σm−1, if m ≥ 2,∑

|z|≤t
ν(z), if m = 1.

Define

N(r, ν) =
r∫

1

n(t)
t2m−1 dt (1 < r < ∞).
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Let φ : Cm → C be a meromorphic function. Define

Nφ(r) = N(r, νφ), N (M)
φ (r) = N (M)(r, νφ).

2.3. Characteristic function. Let f : Cm → Pn(C) be a meromorphic mapping. For
arbitrarily fixed homogeneous coordinates (w0 : · · · : wn) on Pn(C), we take a reduced
representation f = (f0 : · · · : fn), which means that each fi is a holomorphic function
on Cm and f(z) =

(
f0(z) : · · · : fn(z)

)
outside the analytic set {f0 = · · · = fn = 0}

of codimension greater or equal to 2. Set ∥f∥ =
(
|f0|2 + · · · + |fn|2

)1/2
.

The characteristic function of f is defined by

T (r, f) =
∫

Sm(r)

log∥f∥ηm −
∫

Sm(1)

log∥f∥ηm.

Note that T (r, f) is independent of the choice of the representation of f . The order
and hyper-order of f are respectively defined by

ζ(f) := lim sup
r→∞

log+ T (r, f)
log r

and ζ2(f) := lim sup
r→∞

log+ log+ T (r, f)
log r

,

where log+ x := max{log x, 0} for any x > 0.

2.4. Some lemmas. It is known that the holomorphic functions f0, . . . , fn on Cm are
linearly dependent over C if and only if their Wronskian determinant W (f0, . . . , fn)
vanishes identically [10]. The similar result was proved by T. B. Cao, R. Korhonen
[3] as follows.

Lemma 2.1 ([3]). (i) Let c ∈ Cm. A meromorphic mapping f : Cm → Pn(C) with a
reduced representation f = (f0 : · · · : fn) satisfies C(f) ̸≡ 0 if and only if f is linearly
nondegenerate over the field Pc.

(ii) Let c ∈ Cm. If a meromorphic mapping f : Cm → Pn(C) with a reduced
representation f = (f0 : · · · : fn) satisfies ζ2(f) < λ < +∞, then C(f) ̸≡ 0 if and only
if f is linearly nondegenerate over the field Pλ

c ⊂ Pc.

The lemma on the Logarithmic derivative [1, 4] plays an important role in the
Nevanlinna theory. Here, it is replaced by the following lemma due to T. B. Cao, R.
Korhonen [3].

Lemma 2.2 ([3]). Let f be a nonconstant meromorphic function on Cm such that
f(0) ̸= 0, ∞, and let ϵ > 0. If ζ2(f) := ζ < 1, then

m

(
r,

f(z + c)
f(z)

)
=
∫

Sm(r)
log+

∣∣∣∣∣f(z + c)
f(z)

∣∣∣∣∣ηm(z) = o

(
T (r, f)
r1−ζ−ϵ

)
,

where ϵ is some positive constant.
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Lemma 2.3. ([7, Lemma 8.3]). Let T : [0; +∞) → [0; +∞) be a non-decreasing
continuous function and let s ∈ (0; +∞). If the hyper-order ζ = lim sup

r→∞

log log T (r)
log r

< 1
and δ ∈ (0; 1 − ζ), then

|| T (r + s) = T (r) + o

(
T (r, f)

rδ

)
.

3. Proof of Theorem 1.1

We recall the Second main theorem of meromorphic mappings with hyper-order
ζ2(f) < 1 intersecting hyperplanes in N -subgeneral position in Pn(C).

Lemma 3.1 ([3]). Let c ∈ Cm and f : Cm → Pn(C) be a linearly nondegenerate
meromorphic mapping over Pc with hyper-order ζ = ζ2(f) < 1, and let Hj (1 ≤ j ≤ q)
be q (q > 2N − n + 1) hyperplanes in N-subgeneral position in Pn(C). Then we have∣∣∣∣∣∣(q − 2N + n − 1)T (r, f) ≤

q∑
j=1

N(r, ν0
(f,Hj)) − N

n
N(r, ν0

(C(f))) + o

(
T (r, f)
r1−ζ−ϵ

)
,

where ν0
(f,Hj) is the zero divisor of function Hj(f) and ϵ is some positive constant.

Proof of Theorem 1.1. Consider n + 2 meromorphic mappings aj0 , . . . , ajn+1 with re-
duced representations ajk

= (ajk0 : · · · : ajkn) (1 ≤ j0 < · · · < jn+1 ≤ q). We may
assume that ajk0 ̸= 0 for all 0 ≤ k ≤ n+1. We put ãjki = ajki

ajk0
, ãjk = (ãjk0 : · · · : ãjkn).

Take a reduced representation f = (f0 : · · · : fn) of f and define (f, ãjk
) = ∑n

i=0 fiãjki.
Since {aj}q

j=1 is in general position over P1
c , we have ãn+1 = ∑n

k=0 ckãjk
, where

ck ∈ R({aj}q
j=1) \ {0} and T (r, ck) = O

(
max
1≤j≤q

T (r, aj)
)

= o(T (r, f)).

Moreover, we can see that ck ∈ P1
c for all 0 ≤ k ≤ n.

Define f̃ = (c0(f, ãj0) : · · · : cn(f, ãjn)). Then f̃ is a linearly nondegenerate mero-
morphic mapping of Cm → Pn(C) over P1

c . Indeed, assume that ∑n
k=0 λkck(f, ãjk

) ≡ 0
with λk ∈ P1

c (0 ≤ k ≤ n). This implies that(
n∑

k=0
λkckãjk0

)
f0 + · · · +

(
n∑

k=0
λkckãjkn

)
fn ≡ 0.

Since f is linearly nondegenerate over P1
c , we have

n∑
k=0

λkckãjki = 0 (i = 0, . . . , n).

By det(ãjki)0≤k≤n,0≤i≤n ̸≡ 0, the above linearly equation system has solutions λkck ≡ 0
(0 ≤ k ≤ n). Hence, λk ≡ 0 (0 ≤ k ≤ n). This implies that f̃ is linearly nondegenerate
over P1

c .
Let z0 is a common zero of ck(f, ãjk

) (0 ≤ k ≤ n). There are two possibilities.
Case 1. If (f, ãjk

)(z0) = 0 for all 0 ≤ k ≤ n, then z0 is either in I(f) which is
an analytic subset of codim > 2 or z0 is a zero of det(ãjki)0≤k≤n,0≤i≤n, where I(f) is
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the locus of indeterminacy of f . Moreover, by the First main theorem and by the
assumption of the theorem, we get

Ndet(ãjki)0≤k≤n,0≤i≤n
(r) ≤ T (r, det(ãjki)0≤k≤n,0≤i≤n) + O(1)

= O
(

max
1≤j≤q

T (r, aj)
)

= o(T (r, f)).

Case 2. If there exists 0 ≤ k ≤ n such that ck(z0) = 0, we also have

Nck
(r) ≤ T (r, ck) = O

(
max
1≤j≤q

T (r, aj)
)

= o(T (r, f)).

We now take f̃ = (hc0(f, ãj0) : · · · : hcn(f, ãjn)) as a reduced representation of f̃ ,
where h is a meromorphic function on Cm. It is easy to see that

Nh(r) ≤
n∑

k=0

(
N1/ck

(r) + Najk0(r)
)

= O
(

max
1≤j≤q

T (r, aj)
)

= o(T (r, f))

and

N1/h(r) ≤
n∑

k=0
Nck

(r) + Ndet(ãjki)0≤k≤n,0≤i≤n
(r) = O

(
max
1≤j≤q

T (r, aj)
)

= o(T (r, f)).

Define Fk = (f, ãjk
) (0 ≤ k ≤ n). Then since the linearly equation system

n∑
t=0

ãjktft = Fk (0 ≤ k ≤ n),

we can see that ft = ∑n
i=0 btiFi (0 ≤ t ≤ n), where bti ∈ R({aj}q

j=1) ∩ P1
c . Put

A =
 ∑

0≤k,t≤n

|ãjkt|2
1/2

and B =
 ∑

0≤k,t≤n

|bti|2
1/2

.

Then

||f || ≤ B

(
n∑

t=0
|Ft|

)1/2

and
(

n∑
t=0

|Ft|
)1/2

≤ A||f ||.

Therefore, we have

T (r, f) =
∫

S(r)
log

(
n∑

t=0
|Ft|

)1/2

ηn + O
(

max
1≤j≤q

T (r, aj)
)

=
∫

S(r)
log

(
n∑

t=0
|Ft|

)1/2

ηn + o(T (r, f)).

On the other hand, we have
n∑

k=0
|(f, ãjk

)|2 ≤
(

n∑
k=0

|hck(f, ãjk
)|2
)(

n∑
k=0

∣∣∣∣ 1
ck

∣∣∣∣2
) ∣∣∣∣1h

∣∣∣∣2
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and
n∑

k=0
|hck(f, ãjk

)|2 ≤ |h|2
(

n∑
k=0

|ck|2
)(

n∑
k=0

|(f, ãjk
)|2
)

.

Hence, we have

(3.1)
T (r, f) = T (r, f̃) + O

(
max
1≤j≤q

T (r, aj)
)

− Nh(r) + N1/h(r)

= T (r, f̃) + o(T (r, f)).
It follows that

ζ2(f̃) = lim sup
r→∞

log+ log+ T (r, f̃)
log r

= lim sup
r→∞

log+ log+(T (r, f) + o(T (r, f)))
log r

≤ lim sup
r→∞

log+ log+(2T (r, f))
log r

≤ lim sup
r→∞

log+(2 + log+(T (r, f)))
log r

≤ lim sup
r→∞

log+ 2 + log+ log+(T (r, f)))
log r

= ζ2(f) < 1.

By applying Lemma 3.1 to the hyperplanes
H0 = {ω0 = 0}, . . . , Hn = {ωn = 0}, Hn+1 = {ω0 + · · · + ωn = 0},

for f̃ , we have

T (r, f̃) ≤
n∑

k=0
Nhck(f,ãjk

)(r) + Nh(f,ãjn+1 )(r) − N(r, ν0
(C(f))) + o

(
T (r, f̃)
r1−ζ−ϵ

)
.

This, by going through all points z0 ∈ Cm and by the definitions of Ñ [n,c](r, H(f)),
we obtain

(3.2)

T (r, f̃) ≤
n∑

k=0
Ñ

[n,c]
hck(f,ãjk

)(r) + Ñ
[n,c]
h(f,ãjn+1 )(r) + o

(
T (r, f̃)
r1−ζ−ϵ

)

≤
n+1∑
k=0

Ñ
[n,c]
(f,ajk

)(r) + O
(

max
1≤j≤q

T (r, aj)
)

+ o

(
T (r, f̃)
r1−ζ−ϵ

)

≤
n+1∑
k=0

Ñ
[n,c]
(f,ajk

)(r) + o(T (r, f)).

Combining inequality (3.1) with inequality (3.2), we get

(3.3) T (r, f) ≤
n+1∑
k=0

Ñ
[n,c]
(f,ajk

)(r) + o(T (r, f)).

We now take the sum of both of sides of (3.3) over all combinations (j0, . . . , jn+1)
with 1 ≤ j0 < · · · < jn+1 ≤ q, we get∣∣∣∣∣

∣∣∣∣∣ q

n + 2T (r, f) ≤
q∑

j=1
Ñ

[n,c]
(f,aj)(r) + o(T (r, f)).

The proof of Theorem 1.1 is completed. □
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4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following.

Lemma 4.1 ([11]). Assume that A = {a1, . . . , aq} is nondegenerate over Mm. There
exist subsets I1, . . . , Ik of (f, ãj)q

j=1 such that the following are satisfied:
(i) I1 is minimal over R, i.e., I1 is linearly dependent over R and each proper subset

of I1 is linearly independent over R;
(ii) Ii is linearly independent over R for all 2 ≤ i ≤ k;
(iii)

(⋃k
j=1 Ij

)
R

= ({(f, ãi)}q
i=1)R;

(iv) for each 2 ≤ i ≤ k, there exist meromorphic functions cα ∈ R \ {0} such that

∑
(f,ãα)∈Ii

cα(f, ãα) ∈

i−1⋃
j=1

Ij


R

,

where R = R({aj}q
j=1).

Proof of Theorem 1.2. Take subsets I1 = {(f, ã1), (f, ã2), . . . , (f, ãt1)} and
Ii = {(f, ãti−1+1), . . . , (f, ãti

)} (2 ≤ i ≤ k) as in Lemma 4.1. Since I1 is minimal,
there exist c1j ∈ R \ {0} such that

t1∑
j=1

c1j(f, ãj) = 0.

Put c1j = 0 for all j > t1. We have ∑tk
j=1 c1j(f, ãj) = 0. Lemma 4.1 yields that

{c1j(f, ãj)}t1
j=2 is linearly independent over R. It is easy to see that {ãj}t1

j=2 is linearly
independent over C. Since the assumption that f is linearly nondegenerate over P1

c ,
and using the arguments as in Theorem 1.1, we can see that {c1j(f, ãj)}t1

j=2 are linearly
independent over P1

c . Therefore, by Lemma 2.1, the Casorati determinant

C1 = C(c12(f, ã1), . . . , c1t1(f, ãt1))

=
t1−2∏
j=0

f̄
[j]
0 C

(
c12(f, ã2)

f0
, . . . ,

c1t1(f, ãt1)
f0

)

=
t1−t0−1∏

j=0
f̄

[j]
0 C̃1 ̸≡ 0,

where t0 = 1.
We now consider i ≥ 2. By the property of subset Ii, there exist meromorphic

functions cij ̸≡ 0, ti−1 + 1 ≤ j ≤ ti in R such that ∑ti
j=ti−1+1 cij(f, ãj) ∈

(⋃i−1
j=1 Ij

)
R
.

Therefore, there exist meromorphic functions cij ∈ R (1 ≤ j ≤ ti) such that cij ̸≡
0, ti−1 + 1 ≤ j ≤ ti and ∑ti

j=1 cij(f, ãj) = 0. Put cij = 0 for all j > ti, then∑tk
j=1 cij(f, ãj) = 0. Since cij(f, ãj)ti

j=ti−1+1 are linearly independent over R, they are
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linearly independent over P1
c , we have

Ci = C(citi−1+1(f, ãti−1+1), . . . , citi
(f, ãti

))

=
ti−ti−1−1∏

j=0
f̄

[j]
0 C

(
citi−1+1(f, ãti−1+1)

f0
, . . . ,

citi
(f, ãti

)
f0

)

=
ti−ti−1−1∏

j=0
f̄

[j]
0 C̃i ̸≡ 0.

Consider the tk × tk + 1 minor matrices T and T̃ given by

T =



c11(f, ã1) · · · c1tk
(f, ãtk

)
c11(f̄ , ã1) · · · c1tk

(f̄ , ãtk
)

... ... ...
c11(f̄ [t1−t0−1], ã1) · · · c1tk

(f̄ [t1−t0−1], ãtk
)

c21(f, ã1) · · · c2tk
(f, ãtk

)
c21(f̄ , ã1) · · · c2tk

(f̄ , ãtk
)

... ... ...
c21(f̄ [t2−t1−1], ã1) · · · c1tk

(f̄ [t2−t1−1], ãtk
)

c31(f, ã1) · · · c3tk
(f, ãtk

)
c31(f̄ , ã1) · · · c3tk

(f̄ , ãtk
)

... ... ...
ck1(f̄ [tk−tk−1−1], ã1) · · · cktk

(f̄ [tk−tk−1−1], ãtk
)


and

T̃ =



c11(f,ã1)
f0

· · · c1tk
(f,ãtk

)
f0

c11(f̄ ,ã1)
f̄0

· · · c1tk
(f̄ ,ãtk

)
f̄0... ... ...

c11(f̄ [t1−t0−1],ã1)
f̄

[t1]
0

· · · c1tk
(f̄ [t1],ãtk

)
f̄

[t1−t0−1]
0

c21(f,ã1)
f0

· · · c2tk
(f,ãtk

)
f0

c21(f̄ ,ã1)
f̄0

· · · c2tk
(f̄ ,ãtk

)
f̄0... ... ...

c21(f̄ [t2−t1−1],ã1)
f̄

[t2−t1−1]
0

· · · c1tk
(f̄ [t2−t1−1],ãtk

)
f̄

[t2−t1−1]
0

c31(f,ã1)
f0

· · · c3tk
(f,ãtk

)
f0

c31(f̄ ,ã1)
f̄0

· · · c3tk
(f̄ ,ãtk

)
f̄0... ... ...

ck1(f̄ [tk−tk−1−1],ã1)
f̄

[tk−tk−1−1]
0

· · · cktk
(f̄ [tk−tk−1−1],ãtk

)

f̄
[tk−tk−1−1]
0



.
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Denote by Di (resp. D̃i) the determinant of the matrix obtained by deleting the
(i + 1)-th column of the minor matrix T (resp. T̃). Since the sum of each row of
T (resp. T̃) is zero, we get

Di = (−1)iD0 = (−1)i
k∏

v=1
Cv = (−1)i

k∏
v=1

tv−tv−1−1∏
l=0

f̄
[l]
0 C̃v = (−1)i

k∏
v=1

tv−tv−1−1∏
l=0

f̄
[l]
0 D̃0

=
k∏

v=1

tv−tv−1−1∏
l=0

f̄
[l]
0 D̃i.

Since dim(A)R = n + 1, we can assume that ãi1 , . . . , ãin+1 is a basis of (A) over R.
Then det(ãijs)1≤j≤n+1, 0≤s≤n ̸≡ 0. By solving the linearly equation system

(f, ãij
) = ãij0f0 + · · · + ãijnfn (1 ≤ j ≤ n + 1),

we get fv = ∑n+1
j=1 Avt(f, ãij

) (0 ≤ v ≤ n), with Avt ∈ R.
Take a basic {(f, ãj1)}, . . . , (f, ãjd

)} of the space
(⋃k

i=1 Ii

)
R
. By

((f, ãj1)}, . . . , (f, ãjd
))R =

(
k⋃

i=1
Ii

)
R

= ({(f, ãj)}q
j=1)R,

we have fv = ∑d
t=1 Bvt(f, ãjt) (0 ≤ v ≤ n), with Btv ∈ R. Hence,

|fv(z)| ≤
d∑

t=1
|Bvt(z)| max

1≤i≤tk

{|(f, ãi)(z)|} (z ∈ Cm).

Define A(z) = ∑d
t=1

∑n
v=0 |Bvt(z)|, then we have

||f(z)|| ≤ A(z) max
1≤i≤tk

{|(f, ãi)(z)|}

and

(4.1)

∫
S(r)

log+ A(z)ηn ≤
d∑

t=1

n∑
v=0

log+ |Btv(z)|ηn + O(1)

≤
d∑

t=1

n∑
v=0

T (r, Bvt) + O(1)

= O( max
1≤j≤q

T (r, aj)) + O(1)

= o(T (r, f)).

We now fix z0 ∈ Cm and take i (1 ≤ i ≤ tk) such that

|(f, ãi)(z0)| = max
1≤i≤tk

{|(f, ãi)(z0)|}.



768 D. T. PHAM, D. T. NGUYEN, AND T. T. LUONG

Then

|D0(z0)| · ||f(z0)||∏tk
j=1 |(f, ãj)(z0)|

= |Di(z0)|∏tk
j=1,j ̸=i |(f, ãj)(z0)|

· ||f(z0)||
|(f, ãi)(z0)|

≤ A(z0)
|Di(z0)|∏tk

j=1,j ̸=i |(f, ãj)(z0)|
.

Therefore, we have

log |D0(z0)| · ||f(z0)||∏tk
j=1 |(f, ãj)(z0)|

≤ log+
(

A(z0)
|Di(z0)|∏tk

j=1,j ̸=i |(f, ãj)(z0)|

)

≤ log+
(

|Di(z0)|∏tk
j=1,j ̸=i |(f, ãj)(z0)|

)
+ log+ A(z0).

It implies that for each z ∈ Cm, we have

log |D0(z)| · ||f(z)||∏tk
j=1 |(f, ãj)(z)|

≤
tk∑

i=1
log+

(
|Di(z)|∏tk

j=1,j ̸=i |(f, ãj)(z)|

)
+ log+ A(z)

=
tk∑

i=1
log+

 |D̃i(z)|∏tk
j=1,j ̸=i

|(f,ãj)(z)|∏k

v=1

∏tv−tv−1−1
l=0 |f̄ [l]

0 |

+ log+ A(z).

Hence, we get
(4.2)

log ||f(z)|| ≤ log
∏tk

j=1 |(f, ãj)(z)|
|D0(z)| +

tk∑
i=1

log+

 |D̃i(z)|∏tk
j=1,j ̸=i

|(f,ãj)(z)|∏k

v=1

∏tv−tv−1−1
l=0 |f̄ [l]

0 (z)|

+ log+ A(z).

Note that each element of the matrix of the determinant

D̃i(z)∏tk
j=1,j ̸=i

(f,ãj)(z)∏k

v=1

∏tv−tv−1−1
l=0 f̄

[l]
0 (z)

has a form

cij

(f̄ [l],ãj)
f̄

[l]
0

(f,ãj)
f0

· f̄
[l]
0

f0
(1 ≤ i ≤ k, 1 ≤ j ≤ tk).
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On the other hand, by the definition of the counting functions and the Jensen’s
formula, we have

T

(
r,

(f, ãj)
f0

)
=
∫

S(r)
log |1 +

n∑
i=1

f̃iãji|ηm + O(1)

≤
∫

S(r)
log((1 +

n∑
i=1

|f̃i|)1/2(1 +
n∑

i=1
|ãji|)1/2)ηm

+ Nf0(r) +
n∑

i=1
Nai0(r) + O(1)

=
∫

S(r)
log(1 +

n∑
i=1

|f̃i|)1/2ηm + Nf0(r) +
∫

S(r)
log(1 +

n∑
i=1

|ãji|)1/2ηm

+
n∑

i=1
Nai0(r) + O(1)

≤T (r, f) + T (r, aj) + O(1)
=T (r, f) + o(T (r, f)).

Therefore, the hyper-order ζ2
(

(f,ãj)
f0

)
< 1 (1 ≤ j ≤ q). By Lemma 2.2, we have

∣∣∣∣∣∣
∣∣∣∣∣∣m
r, cij

(f̄ [l],ãj)
f̄

[l]
0

(f,ãj)
f0

· f̄
[l]
0

f0

 ≤ m (r, cij) + m

r,

(f̄ [l],ãj)
f̄

[l]
0

(f,ãj)
f0

+ m

r,
f̄

[l]
0

f0


≤ O( max

1≤j≤q
{T (r, aj)}) + o(T (r, f))

= o(T (r, f)).
Hence,

(4.3)

∣∣∣∣∣∣
∣∣∣∣∣∣ m

r,
D̃i(z)∏tk

j=1,j ̸=i
(f,ãj)(z)∏k

v=1

∏tv−tv−1−1
l=0 f̄

[l]
0 (z)

 ≤ o(T (r, f)).

By taking integrating both sides of inequality (4.2) and together this with (4.1) and
(4.3), we get
(4.4)∣∣∣∣∣
∣∣∣∣∣ T (r, f) ≤

∫
S(r)

log
∏tk

j=1 |(f, ãj)|
|D0|

ηm + o(T (r, f)) ≤ N

r, ν0∏tk
j=1(f,ãj )

D0

+o(T (r, f)).

Take z0 as a zero of
∏tk

j=1(f,ãj)
D0

. Then z0 is a zero or a pole of some (f, ãj) or a pole
of some csj.

Case 1. Assume that z0 is an n-successive with separation c of (f, ãj) with multi-
plicity vj > 0 for all j (1 ≤ j ≤ tk). Then ν0

(f̄ [v],ãj)(z0) ≥ ν0
(f,ãj)(z0) for all 1 ≤ v ≤ n
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and 1 ≤ j ≤ tk. Without loss of generality, we may assume that v1 ≤ v2 ≤ · · · ≤ vk.
For each 1 ≤ j ≤ tk, we have

Ci = (f, ãti−1+1) · · · (f, ãti
)citi−1+1 · · · citi

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
(f̄ ,ãti−1+1)
(f,ãti−1+1) · · · (f̄ ,ãti )

(f,ãti )
... . . . ...

(f̄ [ti−ti−1−1],ãti−1+1)
(f,ãti−1+1) · · · (f̄ [ti−ti−1−1],ãti )

(f,ãti )

∣∣∣∣∣∣∣∣∣∣∣∣∣
=: (f, ãti−1+1) · · · (f, ãti

)citi−1+1 · · · citi
Ĉi.

Put J = {(i, j) : cij ̸≡ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ tk}, then

D0 =
k∏

i=1
Ci =

tk∏
j=2

(f, ãj)
∏

(i,j)∈J

cij

k∏
i=1

Ĉi.

Hence,

(4.5) νD0(z0) =
tk∑

j=2
ν(f,ãj)(z0) +

∑
(i,j)∈J

νcij
(z0) +

k∑
i=1

νĈi
(z0) ≥

tk∑
j=2

vj +
∑

(i,j)∈J

νcij
(z0).

Take {ad0 , . . . , adn} as a basis of (A)Mm . Since ({(f, ãi)}tk
i=1)R = ({(f, ãi)}a∈A)R,

(f, ãdj
) =

tk∑
i=1

αij(f, ãij) (0 ≤ j ≤ n).

Note that αij ∈ R. Put I = {αij, 1 ≤ i ≤ tk, 0 ≤ j ≤ n such that αij ≠ 0} and
m = maxαij∈I ν∞

αij
(z0).

• If m ≥ v1, then v1 ≤ ∑
αij∈I ν∞

αij
(z0).

• Otherwise, we have z0 is a zero of (f, ãdj
) with multiplicity at least v1 − m for

0 ≤ j ≤ n. Then z0 is a zero of (f, adj
) with multiplicity at least v1 − m for 0 ≤ j ≤ n.

If z0 ̸∈ I(f), then z0 is a zero of det(adjs) with multiplicity at least v1 − m. It implies
that v1 ≤ ∑

αij∈I ν∞
αij

(z0) + ν0
det(adj s)(z0) if z0 ̸∈ I(f). Therefore, together these with

(4.5), we have

ν0∏tk
j=1(fãj )

D0

(z0) ≤
tk∑

j=1
vj −

 tk∑
j=2

vj +
∑

(i,j)∈J

νcij
(z0)


≤

∑
αij∈I

ν∞
αij

(z0) + ν0
det(adj s)(z0) −

∑
(i,j)∈J

νcij
(z0).

Case 2. Assume that there exists an index j0 such that z0 is not an n-successive
with separation c of (f, ãj0). Without loss of generality, we may assume that j0 = 1.
We can assume that z0 is an n-successive with separation c of (f, ãj) with all 2 ≤ j ≤ l,
and z0 is an n-aperiodic with separation c of (f, ãj) with all l + 1 ≤ j ≤ tk0 , and z0 is
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a pole of (f, ãj) with all tk0 < j ≤ tk, where k0 ≤ k. Take i0 satisfying ti0−1 ≤ l < ti0 ,
we have

Ci = (f, ãti−1+1) · · · (f, ãti
)citi−1+1 · · · citi

Ĉi (1 ≤ i ≤ t0 − 1)

and
Ci0 =(f, ãti0−1+1) · · · (f, ãl)ci0ti0−1+1 · · · ci0ti0

×



1 · · · 1 · · · (f, ãl+1) · · · (f, ãt0)
(f̄ ,ãti0−1+1)
(f,ãti0−1+1) · · · (f̄ ,ãl)

(f,ãl)
· · · (f̄ , ãl+1) · · · (f̄ , ãt0)

... . . . ... . . . ... . . . ...
(f̄ [v],ãti0−1+1)

(f,ãti0−1+1) · · · (f̄ [v],ãl)
(f,ãl)

· · · (f̄ [v], ãl+1) · · · (f̄ [v], ãt0)


=(f, ãti0−1+1) · · · (f, ãl)ci0ti0−1+1 · · · ci0ti0

Ĉi0 ,

where v = t0 − ti0−1 − 1 and

Ci = citi−1+1 · · · citi
C((f, ãti−1+1), . . . , (f, ãti

)) = citi−1+1 · · · citi
Ĉi,

for all i0 + 1 ≤ i ≤ k. Then we have∏tk
j=1(f, ãj)
D0

= (f, ã1)
∏tk

i=l+1(f, ãi)∏
(i,j)∈J cij ·∏k

i=1 Ĉi

and therefore

ν0∏tk
j=1(f,ãj )

D0

(z0) =ν0
(f,ã1)(z0) +

tk∑
i=l+1

ν0
(f,ãi)(z0) −

∑
(i,j)∈J

νcij
(z0) +

∑
i0+1≤i≤k,0≤j≤n

ν∞
atij

(z0)

−
k∑

i=1
ν0

Ĉi
(z0)

≤ν0
(f,ã1)(z0) +

tk∑
i=l+1

ν0
(f,ãi)(z0) −

∑
(i,j)∈J

νcij
(z0) +

∑
i0+1≤i≤k,0≤j≤n

ν∞
atij

(z0).

By going through all points z0 ∈ Cm and by the definition of Ñ
[n,c]
(f,ãi)(r), two cases

above imply that

N

r, ν0∏tk
j=1(f,ãj )

D0

 ≤
tk∑

j=1
Ñ [n,c](r, ν0

(f,ãj)) −
∑

(i,j)∈J

N(r, νcij
) +

∑
1≤i≤tk,0≤j≤n

N(r, ν∞
aij

)

+
∑

αij∈I

N(r, ν∞
αij

) + N(r, ν0
det(adj s))

≤
q∑

j=1
Ñ

[n,c]
(f,ãj)(r) + o(T (r, f)).
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Together this with (4.4), we have∣∣∣∣∣
∣∣∣∣∣ T (r, f) ≤

q∑
j=1

Ñ
[n,c]
(f,ãj)(r) + o(T (r, f)) ≤

q∑
j=1

Ñ
[n,c]
(f,aj)(r) + o(T (r, f)).

The proof of Theorem 1.2 is completed. □

5. Proof of Theorem 1.3

We recall the lemma due to T. B. Cao and R. Korhonen [3] as follows.

Lemma 5.1 ([3]). Let c ∈ Cm and f = (f0 : · · · : fn) be a meromorphic mapping
from Cm into Pn(C) such that hyper-order ζ2(f) < λ ≤ 1 and all zeros of f0, . . . , fn

forward invariant with respect to the translation τ(z) = z + c. Let S1 ∪ · · · ∪ Sl be the
partition of {0, 1, . . . , n} formed in such a way that i and j are in the same class Sk

if and only if fi

fj
∈ Pλ

c . If f0 + · · · + fn = 0, then∑
j∈Sk

fj = 0,

for all k ∈ {1, . . . l}.

Lemma 5.2. If A = {a1, . . . , aq} is linearly nondegenerate over Mm, then A is
linearly nondegenerate over R, i.e., dim(A)R = n + 1 and for each nonempty proper
subset A1 of A, we have

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Proof. By the assumption, dim(A)Mm = n + 1, so dim(A)R = n + 1. Take any
nonempty proper subset A1 of A, we have

(A1)Mm ∩ (A \ A1)Mm ∩ A ̸= ∅.

We consider two possibilities.
Case 1. There exists at ∈ (A1)Mm ∩(A\A1). Then there exist b1, . . . , bk ∈ A1 which

are linearly independent over Mm and there exist c1, . . . , ck ∈ Mm \ {0} such that
at = ∑k

i=1 cibi. Take reduced representations at = (at0 : · · · : atn) and bi = (bi0 : · · · :
bin) (1 ≤ i ≤ k). We have a linear equation system ∑k

i=1 cibij = atj (0 ≤ j ≤ n). Since
{b̃1, . . . , b̃k} is linearly independent over Mm, rank(bij)1≤i≤k,0≤j≤n = k. By solving the
above linear equation system, we have ci ∈ R (1 ≤ i ≤ k). It follows that at ∈ (A1)R
and hence at ∈ (A1)R ∩ (A \ A1), i.e.,

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Case 2. There exists at ∈ A1 ∩ (A \ A1)Mm . By the same arguments as in Case 1,
we have at ∈ (A \ A1)R and therefore we also have

(A1)R ∩ (A \ A1)R ∩ A ̸= ∅.

Lemma 5.2 is proved. □
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Proof of Theorem 1.3. By the assumption of the theorem, the holomorphic functions
gj = (f, aj) = ∑n

i=0 fiai satisfy {τ(g−1
j (0))} ⊂ {g−1

j (0)}, j ∈ {1, . . . , q}, where {·}
denotes a multiset with counting multiplicities of its elements. We say that i ∼ j if
gi = αgj for some α ∈ P1

c \ {0}. Therefore, the set of indexes {1, . . . , q} may be split
into disjoint equivalent classes Sj, {1, . . . , q} = ∪l

j=1Sj for some 1 ≤ l ≤ q.
We assume that the complement of Sj has at least n + 1 elements for some j ∈

1, . . . , l. Let A1 = {1, . . . , q} \ Sj. Then A1 contains at least n + 1 elements. By
Lemma 5.2, there exist {s0} and {s1, . . . , su} belonging to disjoint equivalent classes
and α1, . . . , αu ∈ R \ {0} such that as0 +∑u

j=1 αjasj
≡ 0. So, we have

(f, as0) +
u∑

j=1
αj(f, asj

) = gs0 +
u∑

j=1
αjgsj

≡ 0.

By the assumption of the theorem again, we can see that all zeros of αjgsj
are forward

invariant with respect to the translation τ(z) = z + c. This implies that
g := (gs0 : α1gs1 : · · · : αugsu)

is a meromorphic mapping of Cm into Pu(C). We have

T (r, g) =
∫

Sm(r)
log ||g||ηm + O(1)

≤
∫

Sm(r)
log ||f ||ηm +

u∑
j=0

∫
Sm(r)

log ||asj
||ηm +

u∑
j=1

∫
Sm(r)

log ||αsj
||ηm + O(1)

= T (r, f) +
u∑

j=0
T (r, asj

) +
u∑

j=1
T (r, αsj

) + O(1)

= T (r, f) + o(T (r, f)).
Therefore, ζ2(g) ≤ ζ2(f) < 1. By Lemma 5.1, we get gs0 ≡ 0 and ∑u

j=1 αjgsj
≡ 0.

This is a contradiction. It implies that the complement of Sj has at most n elements
for all j ∈ 1, . . . , l, and hence Sj has at least q − n elements for all j ∈ 1, . . . , l. From
this, we have

l ≤ q

q − n
.

Since dim(A)Mm = n + 1, we have dim(A)P1
c

= n + 1. Therefore, we can take a
subset V ⊂ {1, . . . , q} with |V | = n + 1 such that {aj}j∈V is linearly independent.
Put Vj = V ∩ Sj for each 1 ≤ j ≤ l. Then we have V = ∪l

j=1Vj. Since each Vj gives
raise to |Vj| − 1 equations over the field P1

c , it is easy to see that there are at least
l∑

j=1
(|Vj| − 1) = n + 1 − l ≥ n + 1 − q

q − n
= n − n

q − n

linear independent relations over the field P1
c . Hence, the image of f is contained

in a projective linear subspace over P1
c of dimension ≤

[
n

q−n

]
. If q > 2n, obviously[

n
q−n

]
= 0. It follows that f(z) = f(z + c). Theorem 1.3 is proved. □
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6. Proof of Theorem 1.4

Repeat the arguments as in Theorem 1.3. Assume that the complement A1 =
{1 . . . , q}\Sj of Sj has at least k+1 elements for some j ∈ 1, . . . , l. By the assumption,
we have (A1)Mm ∩ (A \A1) ̸= ∅. From Case 1 in the proof of Lemma 5.2, it is easy to
see that (A1)R ∩ (A \A1) ̸= ∅. Therefore, there exist s0 ∈ Sj = A \A1, v1, . . . , vt ∈ A1
and β1, . . . , βt ∈ R \ {0} such that as0 + ∑t

j=1 βjavj
= 0. Similarly to the proof of

Theorem 1.3, we can deduce that (f, as0) ≡ 0. This is a contradiction. Therefore,
|A1| ≤ k, so |Sj| ≥ q − k. Again using the discussion as in Theorem 1.3, we can show
that the image of f is contained in a projective linear subspace over P1

c of dimension
≤
[

k
q−k

]
and if q > 2k, then

[
k

q−k

]
= 0. Therefore, f(z) = f(z + c). Theorem 1.4 is

proved.
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