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DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND
PICARD TYPE THEOREM FOR SLOWLY MOVING PERIODIC
TARGETS

DUC THOAN PHAM !, DANG TUYEN NGUYEN!, AND THI TUYET LUONG!

ABSTRACT. In this paper, we show some Second main theorems for linearly non-
degenerate meromorphic mappings over the field P! of c-periodic meromorphic
functions having their hyper-orders strictly less than one in C™ intersecting slowly
moving targets in P*(C). As an application, we give some Picard type theorems for
meromorphic mappings of C™ into P*(C) under the growth condition hyper-order
less than one.

1. INTRODUCTION

In 2006, R. Halburd and R. Korhonen [5] considered the Second main theorem
for complex difference operator with finite order in complex plane. Later, difference
analogues of the Second main theorem for holomorphic curves or for meromorphic
mappings into P"(C) were obtained independently by the authors such as P. M.
Wong, H. F. Law, P. P. W. Wong, R. Halburd, R. Korhonen, K. Tohge, T. B. Cao (see
[2,6-8]). Recently, T. B. Cao and R. Korhonen [3] obtained a new natural difference
analogue of the Cartan’s theorem [1], in which the counting function N(r,vyy(;))
of Wronskian determinant of f is replaced by the counting function N(r, l/g( ) of
Casorati determinant of f (it was called the finite difference Wronskian determinant

in [6]).
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In particular, under the growth condition hyper-order < 1, R. Korhonen, N. Li-K.
Tohge [9] obtained the Second main theorem of holomorphic curves of C into P*(C)
for slowly moving periodic targets which is similar to the Cartan’s theorem.

To state some results in this direction, we recall some notations in [3,9].

Let ¢ € C™, we denote by M,, the set of all meromorphic functions on C™, by
P. the set of all meromorphic functions of M, periodic with period ¢, and by P2
the set of all meromorphic functions of M,,, periodic with period ¢ and having their
hyper-orders strictly less than . Obviously, P} C P. C M,,,.

Definition 1.1. Let f be a meromorphic mapping from C™ into P"(C) with a reduced

representation f = (fo :---: f,). Then the map f is said to be linearly nondegenerate
over a field X if the entire functions f, ..., f, are linearly independent over the field
X.

For c = (c1,...,¢m) and 2 = (21, ..., 2y), we write ¢+ 2z = (c1 + 21, -+ -, Cn + Zm)-

Let f be a meromorphic mapping of C™ into P"(C) with a reduced representation

f="(fo:--: fn). Denote
fR)=f=f0fz+¢)=f:=fY f(z 4 2¢) = f .= F2 0 f (e ke) = [,

Let ) )
a1y am\J

po - (2 . (2

@zl 8zm

be a partial differentiation operator of order at most 7 = >3*; ax(j). Similarly as the
Wronskian determinant

B pivs o pis
DWfy DYfy -+ DYV,
W(f):W(f077fn): . . . . s
DM fy DMF ... DWMF
the Casorati determinant is defined by
fo i fa
fo  H o fa
C(f):C<f077fn): : : . :
il A i
Let Hy, Hs, ..., H, be (fixed) hyperplanes in P*(C) given by
H; ={Jwo - :wy] € P(C) :ajowo + -+ + ajpw, =0} (1 <j <gq),
where the constants ajo, ..., a;j, € C are not simultaneously zero.

Definition 1.2. Let N > n and ¢ > N + 1. The family {H;}J_, is said to be in
N-subgeneral position in P*(C) if any N + 1 of the vectors (ajo,...,a5,) (1 <j <q)
are linearly independent over C.

If they are in n-subgeneral position, we simply say that they are in general position.
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Let ay,...,a, (¢ > n+ 1) be ¢ meromorphic mappings of C™ into P"(C) with

reduced representations a; = (ajo : -+ : aj,) (1 < j < ¢). The moving hyperplane H;
associated with a; is defined by
Hj(z) = {lwo : -+ :wn] € P"(C) : Ly, (2,a;(2)) := ajo(2)wo + - + ajn(2)w, = 0},

with z € C™ \ I(a;), where I(a;) is the locus of indeterminacy of a;.
Similarly to the above definition, we have the following.

Definition 1.3. Let £ > n and ¢ > k£ + 1 and let X be a field such that C C
K. We say that the moving targets a,...,q, (also say that the moving hyper-
planes H;(2),...,H,(z)) are in k-subgeneral position over X if any k + 1 of vectors
(ajo(2),...,aju(2)) (1 <j <q) are linearly independent over X.

If they are in n-subgeneral position over X, we also simply say that they are in
general position over X.

Let f,a be two meromorphic mappings of C™ into P"(C) with reduced representa-
tions f = (fo,..., fu), a = (ag,-..,an), respectively. We define (f,a) := 3" a;f;.

Definition 1.4. We say that a is a small moving target or a slowly moving target
with respect to f if T'(r,a) = o(T(r, f)) as r — oo, where the notations 7'(r,a) and
T(r, f) are characteristic functions of a and f, respectively.

When the entire functions a; (0 < j < n) are periodic with period ¢ then we say
that a; are moving periodic targets with period c.

Definition 1.5. Let n € N,c € C™\ {0} and a € C. An a-point 2 of a meromorphic
function f(z) is said to be n-successive with separation c, if the n mappings f(z + kc)
(k=1,...,n) take the value a at z = z; with multiplicity not less than that of f(z)
there. All the other a-points of f(z) are called n-aperiodic of pace c.

By N™(r,(f,a)), we denote the counting function of all n-aperiodic zeros of the
function (f,a) of pace c.

Note that Nj, 4(r, (f,a)) = 0 when all zeros of (f,a) with taking their multiplicities
into account are located periodically with period c. This is also the case when the
moving target a is forward invariant by f with respect to the translation 7. = z + ¢,
i.e., 7.(f71(a)) C f~(a) and f~!(a) are considered to be multi-sets in which each
point is repeated according to its multiplicity. In fact, it follows by the definition that
any zero with a forward invariant preimage of the function (f, a) must be n-successive
with separation c, since

f_l(a) C T—c(f_l(a)) c-C T—(n—l)C(f_l(a»‘

With these definitions, the Second main theorem of holomorphic curves for slowly
moving periodic hyperplanes is stated as follows.
Theorem A. (]9]) (Difference analogue of the Cartan’s Second main theorem) Let
n>1andlet g = (g0 : - : gn) be a holomorphic curve of C into P"(C) with



758 D. T. PHAM, D. T. NGUYEN, AND T. T. LUONG

hyper-order ¢ = (2(g) < 1, where go, . .., gn are linearly independent over PL. Let
aj(z) = (ajo:---:am) (G €{0,....4}),

where a;,(2) are c-periodic entire functions satisfying T (r,a;,) = o(T,(r)) for all
J,k€40,...,q}. If the moving hyperplanes

Hj(z) = {(wo, ... ,wn) : Lu,(2,a5(2)) =0} (j€{0,...,q})

are located in general position over PL, then
q
| (@ mie) < 3 5 )+ 0Ty 00)

Here, by the notation ”|| P“ we mean the assertion P holds for all r € [0, c0) outside
of an exceptional set with finite logarithmic measure.

Firstly, by using the idea proposed by D. D. Thai, S. D. Quang [11], we will
extend Theorem A to meromorphic mappings of C™ into P"(C). Namely, we have the
following.

Theorem 1.1. Let ¢ € C™ and f : C™ — P"(C) be a linearly nondegenerate mero-
morphic mapping over PL with hyper-order (o(f) < 1. Let a; (1 < j < q) be q slowly
moving periodic targets with respect to f with period c, located in general position over
PL. Then we have

| yren < Sl oo,

where N([?i)(r) is the counting function of all n-aperiodic zeros of the function (f,a;).
We now consider A = {ay,...,a,} be the set of meromorphic mappings of C™ into

P*(C).

Definition 1.6. We say that A is nondegenerate over a field X if dim(A)x =n + 1

and for each nonempty proper subset A; of A
(Ax N (AN A)x NA # 0,
where (A)x is the linear span of A over the field K.

With the above definitions, we have the following theorem.

Theorem 1.2. Let ¢ € C™ and let f : C™ — P*(C) be a linearly nondegenerate
meromorphic mapping over P with hyper-order ((f) < 1. Let a; (1 < j < q) be
q slowly moving periodic targets with respect to f with period ¢ such that (f,a;) #
0 (1 <j<gq). Assume that A = {as,...,a,} is nondegenerate over M,,. Then we
have

H (. f) sz o(T(r 1),

where N([?i)(r) is the counting functzon of all n-aperiodic zeros of the function (f,a;).
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We would like note that if the mapping f is forward invariant over a; for all
J € {1,...,q} with respect to the translation 7.(z) = z+c, i.e., 7((f,a;)™) C (f,a;)~*
(counting multiplicity) holds for all j, then N nc])( ) = 0 for all j. It follows from
Theorem 1.2 that there exists no linearly nondegenerate meromorphic mapping over
P. which is periodic with period c.

By considering the uniqueness problem for f(z) and f(z+c) intersecting hyperplanes,
the authors of [3,7] obtained an unicity theorem for linearly degenerate meromorphic
mappings over P.. That result is an extension of Picard’s theorem under the growth
condition hyper-order less than 1.

Theorem B ([3]). Let f be a meromorphic mapping of C™ into P"(C) with hyper-
order (o(f) < 1, and let 7(z) = z + ¢, where ¢ € C™. Assume that 7((f, H;)™) C
(f, H;)™" (counting multiplicity) holds for q distinct hyperplanes {H;}i_, in N-subge-
neral position in P"(C). If ¢ > 2N, then f(z) = f(z + ¢).

Finally, we would like to extend the above result to the case of slowly moving
periodic targets.

Theorem 1.3. Let [ be a meromorphic mapping of C™ into P"(C) with hyper-order
G(f) < 1. Let A = {ay,...,a,} be the set of slowly moving periodic targets with
respect to f with period ¢ which is nondegenerate over M,, and satisfying (f,a;) #
0 (1 <j<gq). Assume that f is forward invariant over a; for all j € {1,...,q}
with respect to the translation 1.(z) = z + c¢. Then the image of f is contained in a
projective linear subspace over Pl of dimension < [q } Particularly, if ¢ > 2n, then

f is periodic with period c, i.e., f(z) = f(z+ ¢).

Theorem 1.4. Let f be a meromorphic mapping of C™ into P"(C) with hyper-order
G(f)<1. Letce C™" and k € N, k> n. Let A ={a1,...,a,} be the set of slowly
moving periodic targets with respect to f with period ¢ such that (f,a;) 0 (1 < j <q)
and satisfies condition: dim(A)y,, =n+ 1 and for each a proper subset Ay of A with
|Ay| > kE+1 then (A1), N (A\AL) # 0. Assume that f is forward invariant over a;
forall j € {1,...,q} with respect to the translation 1.(z) = z+c. Then the image of f
is contained in a projective linear subspace over P! of dimension < {q } Particularly,

if ¢ > 2k then f is periodic with period c, i.e., f(z) = f(z + ¢).

Denote by R = R({a;}{_;) € M,, the smallest subfield which contains C and all
“”“ with a; # 0. ObVlously7 R C P! € M,,. Since the proof of Theorem 1.4, we can
See that this theorem also holds when the ﬁeld M, is replaced by the field R or the
field P!. Therefore, when the moving targets are in k-subgeneral position over P! it
is easy to see that they satisfy the hypothesis of Theorem 1.4. Immediately, we have
the following corollary which is an extension of Theorem B.

Corollary 1.1. Let ¢ € C™ and f : C™ — P*(C) be a meromorphic mapping with
hyper-order ((f) < 1. Let a; (1 < j < q) be q slowly moving periodic targets with
period ¢, located in k-subgeneral position over PL such that (f,a;) Z0 (1 < j < q).
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Assume that f is forward invariant over a; for all j € {1,...,q} with respect to the

translation 1.(z) = z + c¢. Then the image of f is contained in a projective linear
subspace over P! of dimension < L]_Lk} Particularly, if ¢ > 2k + 1, then f is periodic
with period ¢, i.e., f(z) = f(z+¢).

2. PRELIMINARIES

1/2
2.1. Divisor. We set ||z|| = (|21]2 + -+ |zn|2> ” for 7 = (21,...,2,) € C" and
define

Bn(r):={z€ C":||z|]| <r}, Snu(r)={z€C™:|z|]|=r} (0<r<o0).
Define )
m(2) == (dd°||2|*)"  and

T (2) ::dclogHzHZ/\(ddclogHzH2>m_1 on C™\ {0}.

Let F' be a nonzero holomorphic function on a domain €2 in C™. For a set
a = (ay,...,q,) of nonnegative integers, we set |a| = a3 + -+ + a,, and D*F =
I*F__ We define the map vg : ) — Z by

vp(z) :=max {n: DF(z) =0 for all o with |a] <n} (z¢€ Q).

We mean by a divisor on a domain €2 in C™ a map v : 2 — Z such that for
each a € (2, there are nonzero holomorphic functions F' and G on a connected
neighbourhood U C Q of a such that v(z) = vr(z) — vg(z) for each z € U outside an
analytic set of dimension < m — 2. Two divisors are regarded as the same if they are
identical outside an analytic set of dimension < m — 2. For a divisor v on 2, we set
lv] :={z:v(2) # 0}, which is a purely (m — 1)-dimensional analytic subset of € or
empty.

Take a nonzero meromorphic function ¢ on a domain 2 in C". For each a € ), we
choose nonzero holomorphic functions F' and G on a neighbourhood U C ) such that
¢ = £ on U and dim(F~(0) N G~1(0)) < m — 2, and we define the divisors v, v
by Vg '=VF, Vg = Vg, which are independent of choices of F' and G and so globally
well-defined on €.

o0

2.2. Counting function. For a divisor ¥ on C™, we define the counting function of
v by

[ v(z)om_1, ifm>2,

_ ) lvInB(®)
t) =
n(t) > v(z), ifm=1.

|2|<t

Define

t2m—1

N(r,y):j n(t) dt (1 <r<o0).
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Let ¢ : C™ — C be a meromorphic function. Define
N@<T) :N(T7V<P>7 N(M)(T> :N(M)(Taygo)'

o)

2.3. Characteristic function. Let f : C™ — P"(C) be a meromorphic mapping. For

arbitrarily fixed homogeneous coordinates (wy : - - - : w,) on P"(C), we take a reduced
representation f = (fy:---: f,), which means that each f; is a holomorphic function
on C™ and f(z) = (fo(z) Do fn(z)> outside the analytic set {fo = --- = f, = 0}

1/2
of codimension greater or equal to 2. Set ||f|| = (]fo|2 +- 4 \fnP) ?
The characteristic function of f is defined by

T f)= [ 10gl|flnm— | loglf -
Sm(r) Sm (1)

Note that T'(r, f) is independent of the choice of the representation of f. The order
and hyper-order of f are respectively defined by

1 + T 1 + 1 + T
C(f) = hm Sup w and CQ(f) - hm Sup Og Og (T7 f)
r—00 log T r—00 IOg r

where log" 2 := max{log x, 0} for any = > 0.

2.4. Some lemmas. It is known that the holomorphic functions fy, ..., f, on C™ are
linearly dependent over C if and only if their Wronskian determinant W (fy, ..., f,)
vanishes identically [10]. The similar result was proved by T. B. Cao, R. Korhonen
3] as follows.

Lemma 2.1 ([3]). (i) Let ¢ € C™. A meromorphic mapping f : C™ — P*(C) with a
reduced representation f = (fo: -+ : fu) satisfies C(f) £ 0 if and only if f is linearly
nondegenerate over the field P..

(ii) Let ¢ € C™. If a meromorphic mapping f : C™ — P*(C) with a reduced
representation f = (fo: -+ fn) satisfies ((f) < A < 400, then C(f) Z£ 0 if and only
if f is linearly nondegenerate over the field P} C P...

The lemma on the Logarithmic derivative [1,4] plays an important role in the
Nevanlinna theory. Here, it is replaced by the following lemma due to T. B. Cao, R.
Korhonen [3].

Lemma 2.2 ([3]). Let f be a nonconstant meromorphic function on C™ such that

f(0) # 0,00, and let € > 0. If ((f) :=( < 1, then
T
—o(1E2).

flz+0)\ ot f(z+¢)
m<r’ f(z) >_/Sm<r>1 &

f(z)
where € is some positive constant.
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Lemma 2.3. ([7, Lemma 8.3]). Let T' : [0;4+00) — [0;+00) be a non-decreasing
continuous function and let s € (0;400). If the hyper-order ¢ = lim sup loglog 7(r) - 4

o0 logr
and 6 € (0;1 — (), then

| T(r+s)=T() +o (T(;’gf)) .

3. PrROOF OF THEOREM 1.1

We recall the Second main theorem of meromorphic mappings with hyper-order
C2(f) < 1 intersecting hyperplanes in N-subgeneral position in P"(C).

Lemma 3.1 ([3]). Let ¢ € C™ and f : C™ — P™*(C) be a linearly nondegenerate
meromorphic mapping over P. with hyper-order ¢ = ((f) < 1, and let H; (1 < j <q)
be q (¢ > 2N —n+ 1) hyperplanes in N-subgeneral position in P"(C). Then we have
4 N T(r, f
H(q — 2N +n—1)T(r, f) <> N(r, I/?f’Hj)) — —N(r, y?c(f))) +o0 ( ( )> 7

n Tl—{—e
Jj=1

where V?vaj) is the zero divisor of function H;(f) and € is some positive constant.

Proof of Theorem 1.1. Consider n + 2 meromorphic mappings a;, ..., a;,,, with re-
duced representations aj, = (a0 @ -+t @jpn) (1 < jo < -+ < jny1 < q). We may
assume that a;, 0 # 0 for all 0 <k <n+1. We put a;,; = %, Ak, = (Qj0 - * Qjpn)-
Take a reduced representation f = (fy:---: f,,) of f and define (f,a;,) = >Xir filj,i-
Since {a;}%_, is in general position over PL, we have G,41 = Y }_ Ckay,, Where

o € R({a; Yo \ {0} and T(r,e0) = O ((max Tlr.a;)) = o7 ).

i<q
Moreover, we can see that ¢, € P! for all 0 < k < n.

Define f = (co(f,a5,) : -+~ : ea(f,a;,)). Then f is a linearly nondegenerate mero-
morphic mapping of C™ — P"(C) over P.. Indeed, assume that S-}_ M\ecx(f, a;,) =0
with A, € P! (0 < k < n). This implies that

(i )\kangk0> f() + ...+ (i /\kckd]’kn> fn =0.

k=0 k=0
Since f is linearly nondegenerate over P., we have

Z)\kck&jkizo (’L:O,,n)
k=0
By det(a;,i)o<k<n,o0<i<n Z 0, the above linearly equation system has solutions Azc, = 0
(0 <k <mn). Hence, A\, =0 (0 < k < n). This implies that f is linearly nondegenerate
over PL.
Let 2y is a common zero of ¢x(f,a;,) (0 <k <n). There are two possibilities.
Case 1. If (f,a;,)(20) = 0 for all 0 < k < n, then z is either in I(f) which is
an analytic subset of codim > 2 or zj is a zero of det(a;,;)o<k<n0<i<n, Where I(f) is
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the locus of indeterminacy of f. Moreover, by the First main theorem and by the
assumption of the theorem, we get

NdEt(djki)nggn,Ogign (7") < T(T, det(djki>0§k§n,0§i§n> + 0(1)

=0 <1rr<1§1<x T(r, a]))

=o(T(r, [)).

Case 2. If there exists 0 < k < n such that c¢x(z9) = 0, we also have

N, (r) <T(r,cg) =0 <maX T(r, a])> =o(T(r, f)).

1<5<q

We now take f = (heo(f,az,) @ -+ : hea(f,d;,)) as a reduced representation of f,
where h is a meromorphic function on C™. It is easy to see that

Np(r) < kzn: (Nl/ck 7) + Naj, o (7 )) =0 (maX T(r, a])> =o(T(r, f))

1<5<q

and

M) € 32 N0 + Nt toscaca(r) = O (ax Tr,,)) = ofT(r, ),

1<5<q

Define Fy, = (f,a;,) (0 <k <n). Then since the linearly equation system

n

dajufi=F (0<k<n),

=0
we can see that fy = 37 by (0 <t < n), where by € R({a;}j—;) N P;. Put

1/2 1/2
A= ( Z |d]kt|2> and B = ( Z ‘bm’Q) .

0<k,t<n 0<k,t<n

Then

n 1/2
and (Zw) < AlIf]l.
t=0

T(r,f) = /S(T) log (i: |Ft|>1/2 N + O <lngjax T(r, aj)>

On the other hand, we have

> ()l < (3 et

k=0

k=0
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and

S lhew(F.ap)P < [P (Z !ckl2> (z . %)\2) |
k=0 k=0 k=0
Hence, we have

T(r, £) = T(r.f) + O (max Tlr.a5) ) = Na(r) + Nugulr)
=T(r,f) +o(T(r,f)).

(3.1)

It follows that

G(F) = limsup log* log* T'(r, f)

log™ log™ (T'(r, f) + o(T(r, f)))

= lim sup

r—00 IOgT r—00 10g7"
log™ log™ (2T loet (2 + lost (T
< lim sup og log” (2T(r, f)) < lim sup og" (2 +log™ (T'(r, [)))
r—00 lOgT r—o0 lggr
log* 2 +log™ log™ (T
< lim sup og 2+ log” log"(T(r /) =G(f) < 1.
r—00 lOgT

By applying Lemma 3.1 to the hyperplanes
Ho = {wo :O},,Hn = {wn :0}7Hn+1 = {w0+---+wn :0},
for f, we have

L Gy
T(r. f) < X0 Nuew(as) (1) + Naray, ) (1) = N1 Vo) + 0 ( =i ) |
k=0

This, by going through all points z, € C™ and by the definitions of N (r, H(f)),
we obtain

3 - 7[n,c] [n,c] T(Ta f~)
T(r, f) Skz th(f,?ljk)( )+ N(faj +1)(T)+0<T1_<_5

=0

n+1
7lm,c] (T‘ f)
(3.2) < 2 (f,ajk)(r) +0 <1H<1]ax T(r, a])) +o0 < e )
n+1 < (]
< SSNED @) 4 o £)).
k=0
Combining inequality (3.1) with inequality (3.2), we get
n+1
(3.3) ) < Z N () +o(T(r, [):
We now take the sum of both of 81des of (3.3) over all combinations (jo, ..., jnt+1)
with 1 < jo < -+ < Jp11 < q, we get
q N e
| w2 ) S S NG ) +olT(r )

The proof of Theorem 1.1 is completed. U
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4. PROOF OF THEOREM 1.2

In order to prove Theorem 1.2, we need the following.

Lemma 4.1 ([11]). Assume that A = {a1,...,a,} is nondegenerate over M,,. There
evist subsets Iy, ..., Iy of (f,a;)j=, such that the following are satisfied:

(i) 11 is minimal over R, i.e., Iy is linearly dependent over R and each proper subset
of I is linearly independent over R;

(ii) I; is linearly independent over R for all 2 <i < k;

(iff) (U1 1), = (@)Y

(iv) for each 2 < i <k, there exist meromorphic functions c, € R\ {0} such that

e (),

(fda)El;
where R = R({aj}}*:l)-
Proof of Theorem 1.2. Take subsets I = {(f,a),(f,a2),...,(f,a,)} and

L = {(f,a,_,41),---,(f,a)} (2 < i < k) as in Lemma 4.1. Since I; is minimal,
there exist ¢;; € R\ {0} such that

t1
> ay(fa;) =0
j=1

Put ¢;; = 0 for all j > t;. We have E] 1cj(f,a;) = 0. Lemma 4.1 yields that
{c1;(f, ;) Y, is linearly independent over R. It is easy to see that {a;}}., is linearly
independent over C. Since the assumption that f is linearly nondegenerate over P!,
and using the arguments as in Theorem 1.1, we can see that {c1;(f, dj)}?:Q are linearly
independent over P!. Therefore, by Lemma 2.1, the Casorati determinant

C(1 == 0(612(f7 gL1)7 o Ciy (.fa dtl))
ti—f []] <612(fa d2) City (fv dtl))

fo 77 Sy
t1—to—1 o
H f(g]]C’l?_éOa
7=0

where ty = 1.

We now consider i > 2. By the property of subset I;, there exist meromorphic
functions ¢;; Z 0, ;-1 +1 < 7 <t; in R such that Z;‘i:ti,l-i—l cii(f,a;) € (UZ L I) )
Therefore, there exist meromorphic functions ¢;; € R (1 < j < ¢;) such that ¢;; #
0, ti1+1 < 5 <t and Z;;l cij(f.a;) = 0. Put ¢;; = 0 for all j > ¢;, then
Yk e (f,a;) = 0. Since ¢i5(f, @), , 41 are linearly independent over R, they are
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linearly independent over P!, we have
Ci - O(Citz‘—1+1(f’ dti—1+1)7 <o 7citi(f7 (Nltz»

ti—ti—1—1 ~ ~
_ _[j]c Citi71+1(fv ati—1+1) o Citi(f? ati))
O S

ti—ti—1—1 o
= I ¢ #o
7=0

Consider the ¢, X ¢ + 1 minor matrices T and T given by

cu(f,an) c1e, (f, Gy,.)
Cll(f> &1) o City, (f7 &tk)

Cll(f[tl—to—ll, ay) - Cltk(f[tl—to—l}’ a, )
C21(]§ a) T Cm(]f, dtk)
021(f> dl) T C2tk(f> dtk)

T =
con(f771 ay) ey, (S )
c1(f,a1) o can, (f, @)
cs1(f,an) e e, (f, ay,)
Cr1 (f[tk*tkflfl]’ dl) .. thk(f[tk*tkqfl}’ dtk)
and
c11(f,a1) . city, (foaey,)
fo fo
enifa) 1oy (Fin)
fo fo
e (ftr—to=1 a;) ciey, (f111),ae, )
D Y T Tt —to—-1]
fO f()
C21(f7[~11) . C?tk, (f’&tk)
fo fo
c21(f,a1) o caty, (f,at;,)
F= o , fo
e (flt2—t1-1.ay) iy, (f[t27t171],(~1tk)
T fe—ti-u T iz —t1-1]
0 0 B
Galran . ey
fo fo
e1(f.a1) ... esuy, (fat,)
fo fo
Ckl(f[tk_tkfl_l],dl) . ck:tk (f[tkitkilil]@tk)

Ttp—tp_1—1] Ttp—tp_1—1
fok k—1 f([)k k—1—1



DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND PICARD TYPE THEORENI67

Denote by D; (resp. @Z) the determinant of the matrix obtained by deleting the
(¢ + 1)-th column of the minor matrix T (resp. J). Since the sum of each row of
T (resp. T) is zero, we get

) ) k to—ty—1—1 _m ~ k to—ty—1—1
Di=(-1)"Dy= (1) [[ Co = (1) [] H foCo=(D"T] H f'D
v=1 v=1 = v=1 =
k to—ty—1—1
v=1 =0
Since dim(A)x = n + 1, we can assume that a;,,...,a;,,, is a basis of (A) over R.

Then det(@s,s)1<j<n+1,0<s<n 7 0. By solving the linearly equation system
(f,ai;) = aiofo+ -+ aynfn (1<7<n+1),

we get f, = Z?ill Awe(f,a;;) (0 <wv <n), with A, € R.
Take a basic {(f,a;,)},...,(f,a;,)} of the space (Uf:1 [i)y' By

(@)} <fajdy—(Uf) (0 )N,

R

we have f, = 2% | By(f, a;,) (0 <wv <n), with By, € R. Hence,

oz Z 2)| max {[(f,a:)(z)[} (2 €C™).

1<i<ty,
Define A(z) = S0, 32" | By (2)], then we have

F I < A(z) max {[(f, a:)(2)[}

1<i<ty

and

/S()logm <2210g+\3tv )i +O(1)

t=1v=0

n

1) <3S 70 By) +O)

t=1v=

O(max T(r,a;))+O(1)

1<5<

= o(T(r, f))-

We now fix zp € C™ and take i (1 <1i < ;) such that

|(f; @) (20)| = max {|(f,@)(z0)]}-

1<i<ty
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Then
[Do(z0)] - [1£ (20)l] _ |D;(20))| )]
Ty [(f @) (zo) Ty (@) (20)] 1(fsdi)(20)]
< A(z) 1Di(20)]

H;'k:l,j;éi I(f, dj)(20)|'
Therefore, we have
Do)l 1FGo)ll ( Dy(20)] )
| <1 A
B 1 fra ol — 2 \ M )

Diz0)] ) .
log™ log™ A(zp).
= log ( ()] ) T AR

It implies that for each z € C™, we have

D IfC) D,(2) o
log [ \(Foa ><z> Zl <j1m|<faj>< >|)“g A42)

ty |g~3.(z)’
= 1 + . 1 l + A |
Z > Hjlil,j7éi [(f,a;)(2)] + log (Z)

T I

Hence, we get

(4.2)

12, [(f, @ Di(2)|
1 <1 J + lo + logt A(z2).
og 1/(2)]| < log == 75 2 o8 | e | HloETAG)

[ I 1 e

Note that each element of the matrix of the determinant

®z‘(z)
1%, . (£3)()
[T e

has a form
(f“j[,l;i -
foo Jo
Sa g (1<i<k1<j<t)
fo



DIFFERENCE ANALOGUES OF SECOND MAIN THEOREM AND PICARD TYPE THEORENI69

On the other hand, by the definition of the counting functions and the Jensen’s
formula, we have

(f.a;)\

f/m log((1 +Z SEIREE +Z @)

+ Nfo (T) + Z: Naio (T) + O(l)

n

= [ 108 S URD P+ Ny () + [ tom (143 )
T i=1 T i=1

+ Zn: Na,o (1) + O(1)

<T(r, ) +T(r,a;) +O(1)
=T(r, f) +o(T(r, f))-
Therefore, the hyper-order (s, <(f % ) <1 (1<j<gq). By Lemma 2.2, we have

m r,cij+-i <m(r,cj)+m|r, —2 +m O

ua g, U "o
< O(gfg?x {T(r,a5)}) +o(T(r, f))
=o(T(r, f)).
Hence,
(4.3) || m|r, Di2) < o(T(r, f)).

I lm(fag)(Z)
[T e

By taking integrating both sides of inequality (4.2) and together this with (4.1) and
(4 3) we get

|| < [, o WO oy < [k | T

[T- (f a;)

Take zg as a zero of . Then z is a zero or a pole of some (f,a;) or a pole
of some c;;.
Case 1. Assume that z, is an n-successive with separation ¢ of (f,a;) with multi-

plicity v; > 0 for all j (1 < j <t;). Then V?ﬂvl,aj)(zo) > y?fﬁj)(zo) foralll1 <ov<n
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and 1 < j < t,. Without loss of generality, we may assume that v; < vy < -+ < vg.
For each 1 < j < t;, we have

1 e 1
(fide; 1 +1) o (f.a;)
~ - (f?at 1+1) (f7at7;)
Ci= (f, ati,1+1) e (f: ati)Cz‘ti,lﬂ © e City . ) .
(]?[tiitiilillyati71+1) o (]‘T[tiiti_lill,ati)
(fvafi_l-'rl) (fvati)

= (fv ati—l-l-l) e (fv &tz‘>citi—1+1 U Citiéi‘
Put J ={(i,j) 1 ¢;; #0,1 <i <k, 1 <j <t} then

k tr k
Do=11Ci=11(f.a;) I ey 1IC
i=1 =2 (i,j)ed  i=1
Hence,
tr k tg
(4.5) vy (20) = Z V(f,a]-)(zo) + Z Veyj (20) + ZVCQ-(ZO) = Zvj + Z Veij (20).
j=2 (i,5)ed i=1 J=2 (i.9)ed

Take {aq,,...,aq,} as a basis of (A)y,,. Since ({(f, @)} )x = {(f, @) Yaca)x,
fad Zazjfazj OSJSTL)

Note that a;; € R. Put I = {a;5,1 < i < ;,0 < j < nsuch that a;; # 0} and
m = maXa,er Vay, (20)-

o If m > vy, then v; <32, f l/g‘;j(z()).

e Otherwise, we have zg is a zero of (f,ay;) with multiplicity at least v; —m for
0 < j < n. Then z is a zero of (f, aq;) with multiplicity at least v; —m for 0 < j < n.
If 2o & I(f), then z is a zero of det(aq,s) with multiplicity at least v; —m. It implies
that vy < 3., e v, (20) + udet( (20) if 20 € I(f). Therefore, together these with

(4.5), we have

tr
V(l)—ltk (faj) ZO <ZUJ (ZUj—i_ Z VCZ] ZO)
70

D J 1 ('L,])GJ
<> ngj(zo)+ydet(adjs)(z0)_ Y Ve, (20).
agjel (1,5)ed

Case 2. Assume that there exists an index jo such that zy is not an n-successive
with separation ¢ of (f,a;,). Without loss of generality, we may assume that jo = 1.
We can assume that z is an n-successive with separation c of (f,a;) with all 2 < j </,
and 2o is an n-aperiodic with separation ¢ of (f,a;) with all [ +1 < j <y, and z is
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a pole of (f,a;) with all t5, < j < t;, where ko < k. Take ¢, satisfying ¢;,_1 <1 < t;,,
we have

Ci - (f? ati—1+1) e (f? dti)citi—1+1 to Citiéi (1 <1< to — 1)
and

Ci, =(f, dti0—1+1) o (f &Z)Cioti0—1+1 " Gty

) 1 | 1 e (frag) - (f, d,)
(fsa@t; _1+1 Fa — _
(fatzﬁ Eﬁafi oo (fra) - (flaw)
>< .
(f[v]7&t; _q+1) ' *[Ui a ' o '~ . S
Wo_li)l (](cf,él)l) c () e (M ay,)

:(f7 &ti0—1+1) T (fv dl)cioti0—1+1 * Cigty, Oiov

where v =ty —t;,-1 — 1 and

o

C; = City_1+1° " Citic((f7 5ti_1+1), cee <f7 dti)) = Cit;_1+1 " Cig,
for all 70 + 1 < ¢ < k. Then we have

Hékzl(]i d]) _ (f7 dl) szzlJrl(fv dl)

R
Do i jerscij - Iliza &
and therefore
123
0 _.0 0
YIT (f,aj>(20) =VU(raneo) T 22 Upan(20) = 2. Vey(20) > Va, ,(20)
73:@10 i=l+1 (i,j)€J 20+1Si§€,0§j§n
k
0
= v¢,(%)
i=1
123
0
Vtaen t 2 U — D Vey(#) > Vay ;(Z0).
i=l+1 (ij)e] zo+1§i§k,0§j§n

By going through all points zp € C™ and by the definition of N([}Lv’gl)(r), two cases
above imply that

N |, V(ﬁ;kzl(fﬁj) §ZN[”’C] (7, V(fa Z N(r, I/c” Z N(r, I/a”)

= j=1 (ig)€T 1<i<ty 0<j<n
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Together this with (4.4), we have
LN n,c \T172,C
|| T(r ) < 3O NES (1) 4 olT(r ) < 3 NE (1) 4 o7 £)).
j=1
The proof of Theorem 1.2 is completed. U

5. PROOF OF THEOREM 1.3
We recall the lemma due to T. B. Cao and R. Korhonen [3] as follows.

Lemma 5.1 ([3]). Let c € C™ and f = (fo : -+ : fn) be a meromorphic mapping
from C™ into P"(C) such that hyper-order (o(f) < A < 1 and all zeros of fo,..., fn
forward invariant with respect to the translation 7(z) = z+c. Let Sy U---US; be the
partition of {0,1,...,n} formed in such a way that i and j are in the same class Sy
if and only @'f% cPNIf fo+ -+ fu=0, then

> fi=0

JESK
forall ke {1,...1}.
Lemma 5.2. If A = {a1,...,a,} is linearly nondegenerate over M,,, then A is

linearly nondegenerate over R, i.e., dim(A)x =n + 1 and for each nonempty proper
subset Ay of A, we have

(AD)e N (AN Az DA # 0.

Proof. By the assumption, dim(A)y,, = n + 1, so dim(A)g = n + 1. Take any
nonempty proper subset A; of A, we have

(A, N (AN A, NA # 0.

We consider two possibilities.

Case 1. There exists a; € (A1)n,, N(A\A;). Then there exist by, ..., by € A; which
are linearly independent over M, and there exist ¢y,...,cx € M, \ {0} such that
a; = Y%, ¢;b;. Take reduced representations a; = (ag : -+ : @g,) and by = (bg -+
bin) (1 < i < k). We have a linear equation system %, cibij = ay; (0 < j <n). Since

StV ) >

above linear equation system, we have ¢; € R (1 <i < k). It follows that a; € (A;)x
and hence a; € (Ay)g N (A\ Ay), e,

(A)z N (A\ Az NA # 0.

Case 2. There exists a; € A; N (A \ Aq)n,,- By the same arguments as in Case 1,
we have a; € (A \ A1)z and therefore we also have

(A N (AN Az VA # 0.

Lemma 5.2 is proved. ]
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Proof of Theorem 1.3. By the assumption of the theorem, the holomorphic functions
9 = (f.05) = Siy fua, satisfy {r(g; (0)} C {g; (0}, € {1,....q}, where {}
denotes a multiset with counting multiplicities of its elements. We say that i ~ j if
gi = ayg; for some a € P!\ {0}. Therefore, the set of indexes {1,...,q} may be split
into disjoint equivalent classes S;, {1,...,q} = Ué-:lSj for some 1 <1 <gq.

We assume that the complement of S; has at least n + 1 elements for some j &
1,...,01. Let Ay = {1,...,q} \ S;. Then A; contains at least n + 1 elements. By
Lemma 5.2, there exist {so} and {s1,..., s,} belonging to disjoint equivalent classes
and ay, ..., a, € R\ {0} such that ay, + 3%, ajas; = 0. So, we have

f aso Z O-/j f asj = Gsg + Zajgs]- = 0.
j=1

By the assumption of the theorem again, we can see that all zeros of «;gs, are forward
invariant with respect to the translation 7(z) = z + ¢. This implies that

g = (gso P Gsy fr augsu)

is a meromorphic mapping of C™ into P*(C). We have

T(rg) = [, ogllgllm+O()

<fis 1og||f||nm+z/ 1og||as]||nm+z/ Jog [l + O(1)

=T(r, f) + . T(r,a,,) + ZT(T, ;) +O(1)

=0 j=1

=T(r, f) +o(T(r, [)).

Therefore, (»(g9) < (2(f) < 1. By Lemma 5.1, we get g;, = 0 and 7, a;g,, = 0.
This is a contradiction. It implies that the complement of S; has at most n elements
for all j € 1,...,[, and hence S; has at least ¢ — n elements for all j € 1,...,[. From

this, we have
q

qg—n

Since dim(A)yg,, = n + 1, we have dim(A)p1 = n 4 1. Therefore, we can take a
subset V' C {1,...,q} with |V| = n + 1 such that {a,;};ey is linearly independent.
Put V; =V N S; for each 1 < j < 1. Then we have V = U,_, V. Since each V; gives
raise to |V;| — 1 equations over the field P., it is easy to see that there are at least

I <

q n
= N —
qg—n g—n

l
Z|V|—1 J=n+1-I1>n+1-

linear independent relations over the field P.. Hence, the image of f is contained

in a projective linear subspace over P! of dimension < [q_in] If ¢ > 2n, obviously

2] = 0. Tt follows that f(2) = f(z + ¢). Theorem 1.3 is proved. O

q
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6. PROOF OF THEOREM 1.4

Repeat the arguments as in Theorem 1.3. Assume that the complement A; =
{1...,¢}\S; of S; has at least k+1 elements for some j € 1,...,[. By the assumption,
we have (Aq)n,, N(A\ A1) # 0. From Case 1 in the proof of Lemma 5.2, it is easy to
see that (A;)x N (A\Ay) # 0. Therefore, there exist sg € S; = A\ Ay, v1,...,0 € Ay
and fq,...,0;, € R\ {0} such that as, + Z§:1 Bja,; = 0. Similarly to the proof of
Theorem 1.3, we can deduce that (f,as,) = 0. This is a contradiction. Therefore,
|A1| <k, so |S;] > g — k. Again using the discussion as in Theorem 1.3, we can show
that the image of f is contained in a projective linear subspace over P! of dimension

< [q_ik] and if ¢ > 2k, then [q%@] = 0. Therefore, f(z) = f(z 4+ ¢). Theorem 1.4 is
proved.
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