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EXISTENCE AND STABILITY OF SOLUTIONS FOR NABLA
FRACTIONAL DIFFERENCE SYSTEMS WITH ANTI-PERIODIC

BOUNDARY CONDITIONS

JAGAN MOHAN JONNALAGADDA1

Abstract. In this paper, we propose sufficient conditions on existence, unique-
ness and Ulam-Hyers stability of solutions for coupled systems of fractional nabla
difference equations with anti-periodic boundary conditions, by using fixed point
theorems. We also support these results through a couple of examples.

1. Introduction

The study of anti-periodic boundary value problems garnered significant interest
due to their occurrence in the mathematical modelling of a variety of real-world
problems in engineering and science. For example, we refer [19, 31, 32, 40] and the
references therein.

The boundary value problems (BVPs) connected with nabla fractional difference
equations can be tackled with almost similar methods as their continuous counterparts.
Peterson et al. [15, 24] have initiated the study of BVPs for linear and nonlinear
nabla fractional difference equations with conjugate boundary conditions. Gholami
et al. [20] studied the existence of solutions for a coupled system of two-point nabla
fractional difference BVPs. Recently, the author [26,27] obtained sufficient conditions
on existence and uniqueness of solutions for nonlinear nabla fractional difference
equations associated with different classes of boundary conditions. In spite of the
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existence of a substantial mathematical theory of the continuous fractional anti-
periodic BVPs [5–7,13,16,36,42], there has been no progress in developing the theory
of discrete fractional anti-periodic BVPs in nabla perspective.

On the other hand, Hyers responses to Ulam’s questions have initiated the study
of stability of functional equations [23,38]. Rassias [35] generalized the Hyers result
for linear mappings. Later, several mathematicians have extended Ulam’s problem
in different directions [28]. There were significant contributions towards the study of
Ulam-Hyers stability of ordinary as well as fractional differential equations [33,41]. The
study of Ulam-Hyers stability enriched the qualitative theory of fractional difference
equations [17,18,25].

Motivated by these facts, in this article, we consider the following coupled system
of nabla fractional difference equations with anti-periodic boundary conditions:

(1.1)



(
∇α1−1

0

(
∇u1

))
(t) + f1(t, u1(t), u2(t)) = 0, t ∈ NT

2 ,(
∇α2−1

0

(
∇u2

))
(t) + f2(t, u1(t), u2(t)) = 0, t ∈ NT

2 ,

u1(0) + u1(T ) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(T ) = 0,

u2(0) + u2(T ) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(T ) = 0.

Here T ∈ N2, 1 < α1, α2 < 2, f1, f2 : NT
0 × R2 → R are continuous, ∇ν

0 denotes
the νth-th order Riemann-Liouville type backward (nabla) difference operator where
ν ∈ {α1 − 1, α2 − 1} and ∇ denotes the first order nabla difference operator.

The present paper is organized as follows. Section 2 contains preliminaries. In
Section 3, we establish sufficient conditions on existence, uniqueness and Ulam-Hyers
stability of solutions of the BVP (1.1). We present a few examples in Section 4.

2. Preliminaries

For our convenience, in this section, we present a few useful definitions and funda-
mental facts of nabla fractional calculus, which can be found in [21].

Denote by Na = {a, a + 1, a + 2, . . .} and Nb
a = {a, a + 1, a + 2, . . . , b} for any a,

b ∈ R such that b − a ∈ N1. The backward jump operator ρ : Na → Na is defined by
ρ(t) = max{a, t − 1} for all t ∈ Na.

Definition 2.1 ([21]). Define the µth-order nabla fractional Taylor monomial by

Hµ(t, a) = (t − a)µ

Γ(µ + 1) = Γ(t − a + µ)
Γ(t − a)Γ(µ + 1) , µ ∈ R \ {. . . , −2, −1}.

Here Γ(·) denotes the Euler gamma function. Observe that

Hµ(a, a) = 0

and
Hµ(t, a) = 0, for all µ ∈ {. . . , −2, −1} and t ∈ Na.
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The first order backward (nabla) difference of u : Na → R is defined by
(
∇u

)
(t) =

u(t) − u(t − 1) for t ∈ Na+1.

Definition 2.2 ([21]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum of u
based at a is given by(

∇−ν
a u

)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na,

where by convention
(
∇−ν

a u
)
(a) = 0.

Definition 2.3 ([21]). Let u : Na+1 → R and 0 < ν ≤ 1. The νth-order nabla
difference of u is given by(

∇ν
au
)
(t) =

(
∇
(
∇−(1−ν)

a u
))

(t), t ∈ Na+1.

Lemma 2.1 ([21]). We observe the following properties of nabla fractional Taylor
monomials:

(a) ∇Hµ(t, a) = Hµ−1(t, a), t ∈ Na;
(b) ∑t

s=a+1 Hµ(s, a) = Hµ+1(t, a), t ∈ Na;
(c) ∑t

s=a+1 Hµ(t, ρ(s)) = Hµ+1(t, a), t ∈ Na.

Proposition 2.1 ([24]). Let s ∈ Na and −1 < µ. The following properties hold.
(a) Hµ(t, ρ(s)) ≥ 0 for t ∈ Nρ(s) and Hµ(t, ρ(s)) > 0 for t ∈ Ns.
(b) Hµ(t, ρ(s)) is a decreasing function with respect to s for t ∈ Nρ(s) and µ ∈

(0, ∞).
(c) If t ∈ Ns and µ ∈ (−1, 0), then Hµ(t, ρ(s)) is an increasing function of s.
(d) Hµ(t, ρ(s)) is a non-decreasing function with respect to t for t ∈ Nρ(s) and

µ ∈ [0, ∞).
(e) If t ∈ Ns and µ ∈ (0, ∞), then Hµ(t, ρ(s)) is an increasing function of t.
(f) Hµ(t, ρ(s)) is a decreasing function with respect to t for t ∈ Ns+1 and µ ∈

(−1, 0).

Proposition 2.2 ( [24]). Let u and v be two nonnegative real-valued functions defined
on a set S. Further, assume u and v achieve their maximum values in S. Then,

|u(t) − v(t)| ≤ max{u(t), v(t)} ≤ max
{

max
t∈S

u(t), max
t∈S

v(t)
}
,

for every fixed t in S.

3. Green’s Function and Its Property

Assume T ∈ N2, 1 < α < 2 and h : NT
2 → R. Consider the boundary value problem

(3.1)


(

∇α−1
0

(
∇u

))
(t) + h(t) = 0, t ∈ NT

2 ,

u(0) + u(T ) = 0,
(
∇u

)
(1) +

(
∇u

)
(T ) = 0.
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First, we construct the Green’s function, G(t, s) corresponding to (3.1), and obtain
an expression for its unique solution. Denote by

D1 = {(t, s) ∈ NT
0 × NT

2 : t ≥ s}, D2 = {(t, s) ∈ NT
0 × NT

2 : t ≤ ρ(s)}
and
(3.2) ξα = 2 [1 + Hα−2(T, 0)] .

Theorem 3.1. The unique solution of the nabla fractional boundary value problem
(3.1) is given by

(3.3) u(t) =
T∑

s=2
Gα(t, s)h(s), t ∈ NT

0 ,

where

(3.4) Gα(t, s) =

Kα(t, s) − Hα−1(t, ρ(s)), (t, s) ∈ D1,

Kα(t, s), (t, s) ∈ D2.

Here

Kα(t, s) = 1
ξα

[
Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))

+ Hα−1(T, ρ(s))Hα−2(T, 0) − Hα−1(T, 0)Hα−2(T, ρ(s))
]
.

Proof. Denote by (
∇u

)
(t) = v(t), t ∈ NT

1 .

Subsequently, the difference equation in (3.1) takes the form
(3.5)

(
∇α−1

0 v
)
(t) + h(t) = 0, t ∈ NT

2 .

Let v(1) = c2. Then, by Lemma 5.1 of [4], the unique solution of (3.5) is given by

v(t) = Hα−2(t, 0)c2 −
(
∇−(α−1)

1 h
)
(t), t ∈ NT

1 .

That is,
(3.6)

(
∇u

)
(t) = Hα−2(t, 0)c2 −

(
∇−(α−1)

1 h
)
(t), t ∈ NT

1 .

Applying the first order nabla sum operator, ∇−1
0 on both sides of (3.6), we obtain

(3.7) u(t) = c1 + Hα−1(t, 0)c2 −
(
∇−α

1 h
)
(t), t ∈ NT

0 ,

where c1 = u(0). We use the pair of anti-periodic boundary conditions considered in
(3.1) to eliminate the constants c1 and c2 in (3.7). It follows from the first boundary
condition u(0) + u(T ) = 0 that
(3.8) 2c1 + Hα−1(T, 0)c2 =

(
∇−α

1 h
)
(T ).

The second boundary condition
(
∇u

)
(1) +

(
∇u

)
(T ) = 0 yields

(3.9) [1 + Hα−2(T, 0)] c2 =
(
∇−(α−1)

1 h
)
(T ).
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Solving (3.8) and (3.9) for c1 and c2, we obtain

c1 = 1
2

[
T∑

s=2
Hα−1(T, ρ(s))h(s) − 2Hα−1(T, 0)

ξα

T∑
s=2

Hα−2(T, ρ(s))h(s)
]

,(3.10)

c2 = 2
ξα

T∑
s=2

Hα−2(T, ρ(s))h(s).(3.11)

Substituting these expressions in (3.7), we achieve (3.4). □

Lemma 3.1. Observe that

(3.12) |Kα(t, s)| ≤ 1
ξα

[
Hα−1(T, 1) + 2Hα−1(T, 0) + Hα−2(T, 0)Hα−1(T, 1)

]
,

for all (t, s) ∈ NT
0 × NT

2 .

Proof. Denote by

K ′
α(t, s) = 1

ξα

[
Hα−1(T, ρ(s)) + 2Hα−1(t, 0)Hα−2(T, ρ(s))(3.13)

+ Hα−1(T, ρ(s))Hα−2(T, 0)
]

and

(3.14) K ′′
α(t, s) = 1

ξα

[
Hα−1(T, 0)Hα−2(T, ρ(s))

]
,

so that
Kα(t, s) = K ′

α(t, s) − K ′′
α(t, s), (t, s) ∈ NT

0 × NT
2 .

Clearly, from Proposition 2.1,

K ′
α(t, s) ≥ 0, K ′′

α(t, s) > 0, for all (t, s) ∈ NT
0 × NT

2 .

From Proposition 2.2, it is obvious that

(3.15) |Kα(t, s)| ≤
{

max
(t,s)∈NT

0 ×NT
2

K ′
α(t, s), max

(t,s)∈NT
0 ×NT

2

K ′′
α(t, s)

}
.

First, we evaluate the first backward difference of K ′
α(t, s) with respect to t for a fixed

s. Consider
∇K ′

α(t, s) = 1
ξα

[
2Hα−2(t, 0)Hα−2(T, ρ(s))

]
> 0,

for all (t, s) ∈ NT
0 × NT

2 , implying that K ′
α(t, s) is an increasing function of t for a

fixed s. Thus, we have

(3.16) K ′
α(t, s) ≤ K ′

α(T, s), (t, s) ∈ NT
0 × NT

2 .
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It follows from (3.13)–(3.16) that

|Kα(t, s)|

≤
{

max
(t,s)∈NT

0 ×NT
2

K ′
α(t, s), max

(t,s)∈NT
0 ×NT

2

K ′′
α(t, s)

}

≤
{

max
s∈NT

2

K ′
α(T, s), max

s∈NT
2

K ′′
α(t, s)

}
= max

s∈NT
2

K ′
α(T, s)

= 1
ξα

max
s∈NT

2

[
Hα−1(T, ρ(s)) + 2Hα−1(T, 0)Hα−2(T, ρ(s))

+ Hα−1(T, ρ(s))Hα−2(T, 0)
]

≤ 1
ξα

[
max
s∈NT

2

Hα−1(T, ρ(s)) + 2Hα−1(T, 0) max
s∈NT

2

Hα−2(T, ρ(s))

+ Hα−2(T, 0) max
s∈NT

2

Hα−1(T, ρ(s))
]

= 1
ξα

[
Hα−1(T, ρ(2)) + 2Hα−1(T, 0)Hα−2(T, ρ(T )) + Hα−2(T, 0)Hα−1(T, ρ(2))

]
= 1

ξα

[
Hα−1(T, 1) + 2Hα−1(T, 0) + Hα−2(T, 0)Hα−1(T, 1)

]
.

The proof is complete. □

4. Existence and Uniqueness of Solutions of (1.1)

Let X = RT +1 be the Banach space of all real (T + 1)-tuples equipped with the
maximum norm

∥u∥X = max
t∈NT

0

|u(t)|.

Obviously, the product space
(
X × X, ∥ · ∥X×X

)
is also a Banach space with the norm

∥(u1, u2)∥X×X = ∥u1∥X + ∥u2∥X .

A closed ball with radius R centred on the zero function in X × X is defined by

BR = {(u1, u2) ∈ X × X : ∥(u1, u2)∥X×X ≤ R}.

Define the operator T : X × X → X × X by

(4.1) T (u1, u2)(t) =
(

T1(u1, u2)(t)
T2(u1, u2)(t)

)
, t ∈ NT

0 ,
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where

T1(u1, u2)(t) =
T∑

s=2
Gα1(t, s)f1(s, u1(s), u2(s))

=
T∑

s=2
Kα1(t, s)f1(s, u1(s), u2(s)) −

t∑
s=2

Hα1−1(t, s)f1(s, u1(s), u2(s))(4.2)

and

T2(u1, u2)(t) =
T∑

s=2
Gα2(t, s)f2(s, u1(s), u2(s))

=
T∑

s=2
Kα2(t, s)f2(s, u1(s), u2(s)) −

t∑
s=2

Hα2−1(t, s)f2(s, u1(s), u2(s)).(4.3)

Clearly, (u1, u2) is a fixed point of T if and only if (u1, u2) is a solution of (1.1). For
our convenience, denote by

Λi = 1
ξαi

[
Hαi−1(T, 1) + 2Hαi−1(T, 0) + Hαi−2(T, 0)Hαi−1(T, 1)

]
,(4.4)

ai =li [Λi(T − 1) + Hαi
(T, 1)] ,(4.5)

bi =mi [Λi(T − 1) + Hαi
(T, 1)] ,(4.6)

ci =ni [Λi(T − 1) + Hαi
(T, 1)] ,(4.7)

di =Mi [Λi(T − 1) + Hαi
(T, 1)] ,(4.8)

for i = 1, 2. Assume
(H1)’ for each i ∈ {1, 2}, there exist nonnegative numbers li and mi such that

|fi(t, u1, u2) − fi(t, v1, v2)| ≤ li∥u1 − v1∥X + mi∥u2 − v2∥X ,

for all (t, u1, u2), (t, v1, v2) ∈ NT
0 × X × X;

(H1) for each i ∈ {1, 2}, there exist nonnegative numbers li and mi such that
|fi(t, u1, u2) − fi(t, v1, v2)| ≤ li∥u1 − v1∥X + mi∥u2 − v2∥X ,

for all (t, u1, u2), (t, v1, v2) ∈ NT
0 × BR;

(H2)’ for each i ∈ {1, 2}, there exist nonnegative numbers Li such that
|fi(t, u1, u2)| ≤ Li,

for all (t, u1, u2) ∈ NT
0 × X × X;

(H2) for each i ∈ {1, 2}, there exist nonnegative numbers li, mi, and ni such that
|fi(t, u1, u2)| ≤ li∥u1∥X + mi∥u2∥X + ni,

for all (t, u1, u2) ∈ NT
0 × BR;

(H3) for each i ∈ {1, 2},
max
t∈NT

0

|fi(t, 0, 0)| = Mi;

(H4) λ = (a1 + a2) + (b1 + b2) ∈ (0, 1).
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We apply Banach’s fixed point theorem to establish existence and uniqueness of
solutions of (1.1).

Theorem 4.1 ([37]). Let S be a closed subset of a Banach space X. Then, any
contraction mapping T of X into itself has a unique fixed point.

Theorem 4.2. Assume (H1), (H3) and (H4) hold. If we choose

R ≥ (d1 + d2)
1 − [(a1 + a2) + (b1 + b2)]

,

then the system (1.1) has a unique solution (u1, u2) ∈ BR.

Proof. Clearly, T : BR → X × X. First, we show that T is a contraction mapping.
To see this, let (u1, u2), (v1, v2) ∈ BR, and t ∈ NT

0 . For each i ∈ {1, 2}, consider

|Ti(u1, u2)(t) − Ti(v1, v2)(t)|

≤
T∑

s=2
|Kαi

(t, s)| |fi(s, u1(s), u2(s)) − fi(s, v1(s), v2(s))|

+
t∑

s=2
Hαi−1(t, s) |fi(s, u1(s), u2(s)) − fi(s, v1(s), v2(s))|

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ]
[

T∑
s=2

|Kαi
(t, s)| +

t∑
s=2

Hαi−1(t, s)
]

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ] [Λi(T − 1) + Hαi
(t, 1)]

≤ [li∥u1 − v1∥X + mi∥u2 − v2∥X ] [Λi(T − 1) + Hαi
(T, 1)]

≤ai∥u1 − v1∥X + bi∥u2 − v2∥X ,

implying that, for each i ∈ {1, 2},

(4.9)
∥∥∥Ti(u1, u2) − Ti(v1, v2)

∥∥∥
X

≤
[
ai∥u1 − v1∥X + bi∥u2 − v2∥X

]
.

Thus, we have

∥T (u1, u2) − T (v1, v2)∥X×X

=
∥∥∥T1(u1, u2) − T1(v1, v2)

∥∥∥
X

+
∥∥∥T2(u1, u2) − T2(v1, v2)

∥∥∥
X

≤
[
(a1 + a2)∥u1 − v1∥X + (b1 + b2)∥u2 − v2∥X

]
≤λ

[
(∥u1 − v1∥X + ∥u2 − v2∥X

]
=λ∥(u1, u2) − (v1, v2)∥X×X .

Since λ < 1, T is a contraction mapping with contraction constant λ. Next, we show
that

(4.10) T : BR → BR.
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To see this, let (u1, u2) ∈ BR, and t ∈ NT
0 . For each i ∈ {1, 2}, consider∣∣∣Ti(u1, u2)(t)

∣∣∣
≤

T∑
s=2

|Kαi
(t, s)| |fi(s, u1(s), u2(s))| +

t∑
s=2

Hαi−1(t, s) |fi(s, u1(s), u2(s))|

≤
T∑

s=2
|Kαi

(t, s)| |fi(s, u1(s), u2(s)) − fi(s, 0, 0)| +
T∑

s=2
|Kαi

(t, s)| |fi(s, 0, 0)|

+
t∑

s=2
Hαi−1(t, s) |fi(s, u1(s), u2(s)) − fi(s, 0, 0)| +

t∑
s=2

Hαi−1(t, s) |fi(s, 0, 0)|

≤
[
li∥u1∥X + mi∥u2∥X

] T∑
s=2

|Kαi
(t, s)| + Mi

T∑
s=2

|Kαi
(t, s)|

+
[
li∥u1∥X + mi∥u2∥X

] t∑
s=2

Hαi−1(t, s) + Mi

t∑
s=2

Hαi−1(t, s)

≤
[
li∥u1∥X + mi∥u2∥X + Mi

]
[Λi(T − 1) + Hαi

(t, 1)]

≤
[
li∥u1∥X + mi∥u2∥X + Mi

]
[Λi(T − 1) + Hαi

(T, 1)]

≤ai∥u1∥X + bi∥u2∥X + di,

implying that, for each i ∈ {1, 2},

(4.11)
∥∥∥Ti(u1, u2)

∥∥∥
X

≤ ai∥u1∥X + bi∥u2∥X + di.

Thus, we have

∥T (u1, u2)∥X×X =
∥∥∥T1(u1, u2)

∥∥∥
X

+
∥∥∥T2(u1, u2)

∥∥∥
X

≤ (a1 + a2)R + (b1 + b2)R + (d1 + d2) ≤ R,

implying that (4.10) holds. Therefore, by Theorem 4.1, T has a unique fixed point
(u1, u2) ∈ BR. The proof is complete. □

Corollary 4.1. Assume (H1)’ and (H4) hold. Then, the system (1.1) has a unique
solution (u1, u2) ∈ X × X.

We apply Brouwer’s fixed point theorem to establish existence of solutions of (1.1).

Theorem 4.3 ([37]). Let C be a non-empty bounded closed convex subset of Rn and
T : C → C be a continuous mapping. Then, T has a fixed point in C.

Theorem 4.4. Assume (H2) and (H4) hold. If we choose

R ≥ (c1 + c2)
1 − [(a1 + a2) + (b1 + b2)]

,

then the system (1.1) has at least one solution (u1, u2) ∈ BR.
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Proof. We claim that T : BR → BR. To see this, let (u1, u2) ∈ BR and t ∈ NT
0 . For

each i ∈ {1, 2}, consider∣∣∣Ti(u1, u2)(t)
∣∣∣

≤
T∑

s=2
|Kαi

(t, s)| |fi(s, u1(s), u2(s))| +
t∑

s=2
Hαi−1(t, s) |fi(s, u1(s), u2(s))|

≤
[
li∥u1∥X + mi∥u2∥X + ni

] T∑
s=2

|Kαi
(t, s)|

+
[
li∥u1∥X + mi∥u2∥X + ni

] t∑
s=2

Hαi−1(t, s)

≤
[
li∥u1∥X + mi∥u2∥X + ni

]
[Λi(T − 1) + Hαi

(t, 1)]

≤
[
li∥u1∥X + mi∥u2∥X + ni

]
[Λi(T − 1) + Hαi

(T, 1)]

≤ai∥u1∥X + bi∥u2∥X + ci,

implying that, for each i ∈ {1, 2},

(4.12)
∥∥∥Ti(u1, u2)

∥∥∥
X

≤ ai∥u1∥X + bi∥u2∥X + ci.

Thus, we have
∥T (u1, u2)∥X×X =

∥∥∥T1(u1, u2)
∥∥∥

X
+
∥∥∥T2(u1, u2)

∥∥∥
X

≤ (a1 + a2)R + (b1 + b2)R + (c1 + c2) ≤ R,

implying that T : BR → BR. Therefore, by Brouwer’s fixed point theorem, T has a
fixed point (u1, u2) ∈ BR. The proof is complete. □

Corollary 4.2. Assume (H2)’ hold. Then, the system (1.1) has at least one solution
(u1, u2) ∈ X × X.

Urs [39] presented some Ulam-Hyers stability results for the coupled fixed point
of a pair of contractive type operators on complete metric spaces. We use Urs’s [39]
approach to establish Ulam-Hyers stability of solutions of (1.1).

Definition 4.1 ([39]). Let X be a Banach space and T1, T2 : X × X → X be two
operators. Then, the operational equations system

(4.13)

u1 = T1(u1, u2),
u2 = T2(u1, u2),

is said to be Ulam-Hyers stable if there exist C1, C2, C3, C4 > 0 such that for each
ε1, ε2 > 0 and each solution-pair (u∗

1, u∗
2) ∈ X × X of the in-equations:

(4.14)

∥u1 − T1(u1, u2)∥X ≤ ε1,

∥u2 − T2(u1, u2)∥X ≤ ε2,
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there exists a solution (v∗
1, v∗

2) ∈ X × X of (4.13) such that

(4.15)

∥u∗
1 − v∗

1∥X ≤ C1ε1 + C2ε2,

∥u∗
2 − v∗

2∥X ≤ C3ε1 + C4ε2.

Theorem 4.5 ([39]). Let X be a Banach space, T1, T2 : X ×X → X be two operators
such that

(4.16)

∥T1(u1, u2) − T1(v1, v2)∥X ≤ k1∥u1 − v1∥X + k2∥u2 − v2∥X ,

∥T2(u1, u2) − T2(v1, v2)∥X ≤ k3∥u1 − v1∥X + k4∥u2 − v2∥X ,

for all (u1, u2), (v1, v2) ∈ X × X. Suppose

H =
(

k1 k2
k3 k4

)

converges to zero. Then, the operational equations system (4.13) is Ulam-Hyers stable.

Set

(4.17) H =
(

a1 b1
a2 b2

)
.

Theorem 4.6. Assume the hypothesis of Theorem 4.2 holds. Further, assume the
spectral radius of H is less than one. Then, the unique solution of the system (1.1) is
Ulam-Hyers stable.

Proof. In view of Theorem 4.2, we have

(4.18)


∥∥∥T1(u1, u2) − T1(v1, v2)

∥∥∥
X

≤ a1∥u1 − v1∥X + b1∥u2 − v2∥X ,∥∥∥T2(u1, u2) − T2(v1, v2)
∥∥∥

X
≤ a2∥u1 − v1∥X + b2∥u2 − v2∥X ,

which implies that

(4.19) ∥T (u1, u2) − T (v1, v2)∥X×X ≤ H

(
∥u1 − v1∥X

∥u2 − v2∥X

)
.

Since the spectral radius of H is less than one, the unique solution of (1.1) is Ulam-
Hyers stable. The proof is complete. □

5. Examples

In this section, we provide two examples to illustrate the applicability of Theorem
4.2, Theorem 4.4 and Theorem 4.6.
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Example 5.1. Consider the following coupled system of two-point nabla fractional
difference boundary value problems
(5.1)

(
∇0.5

0

(
∇u1

))
(t) + (0.001)e−t [1 + tan−1 u1(t) + tan−1 u2(t)] = 0, t ∈ N9

2,(
∇0.5

0

(
∇u2

))
(t) + (0.002) [e−t + sin u1(t) + sin u2(t)] = 0, t ∈ N9

2,

u1(0) + u1(9) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(9) = 0,

u2(0) + u2(9) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(9) = 0.

Comparing (1.1) and (5.1), we have T = 9, α1 = α2 = 1.5,

f1(t, u1, u2) = (0.001)e−t
[
1 + tan−1 u1 + tan−1 u2

]
and

f2(t, u1, u2) = (0.002)
[
e−t + sin u1 + sin u2

]
,

for all (t, u1, u2) ∈ N9
0 ×R2. Clearly, f1 and f2 are continuous on N9

0 ×R2. Next, f1 and
f2 satisfy assumption (H1) with l1 = 0.001, m1 = 0.001, l2 = 0.002 and m2 = 0.002.
We have

M1 = max
t∈N9

0

|f1(t, 0, 0)| = 0.001,

M2 = max
t∈N9

0

|f2(t, 0, 0)| = 0.002,

a1 = l1 [Λ1(T − 1) + Hα1(T, 1)] = 0.0527,

a2 = l2 [Λ2(T − 1) + Hα2(T, 1)] = 0.1053,

b1 = m1 [Λ1(T − 1) + Hα1(T, 1)] = 0.0527,

b2 = m2 [Λ2(T − 1) + Hα2(T, 1)] = 0.1053,

d1 = M1 [Λ1(T − 1) + Hα1(T, 1)] = 0.0527,

d2 = M2 [Λ1(T − 1) + Hα1(T, 1)] = 0.1053.

Also, λ = (a1 + a2) + (b1 + b2) = 0.316 ∈ (0, 1), implying that assumptions (H3) and
(H4) hold. Choose

R ≥ (d1 + d2)
1 − [(a1 + a2) + (b1 + b2)]

= 0.231.

Hence, by Theorem 4.2, the system (5.1) has a unique solution (u1, u2) ∈ BR. Further,

M =
(

a1 b1
a2 b2

)
=
(

0.0527 0.0527
0.1053 0.1053

)
.

The spectral radius of M is 0.158, which is less than one, implying that M converges
to zero. Thus, by Theorem 4.6, the unique solution of (5.1) is Ulam-Hyers stable.



EXISTENCE AND STABILITY OF SOLUTIONS 751

Example 5.2. Consider the following coupled system of two-point nabla fractional
difference boundary value problems

(5.2)



(
∇0.5

0

(
∇u1

))
(t) + (0.01)

[
e−t + 1√

1+u2
1(t)

+ u2(t)
]

= 0, t ∈ N4
2,(

∇0.5
0

(
∇u2

))
(t) + (0.02)

[
e−t + u1(t) + 1√

1+u2
2(t)

]
= 0, t ∈ N4

2,

u1(0) + u1(4) = 0,
(
∇u1

)
(1) +

(
∇u1

)
(4) = 0,

u2(0) + u2(4) = 0,
(
∇u2

)
(1) +

(
∇u2

)
(4) = 0.

Comparing (1.1) and (5.2), we have T = 4, α1 = α2 = 1.5,

f1(t, u1, u2) = (0.01)
e−t + 1√

1 + u2
1

+ u2


and

f2(t, u1, u2) = (0.02)
e−t + u1 + 1√

1 + u2
2

 ,

for all (t, u1, u2) ∈ N4
0 × R2. Clearly, f1 and f2 are continuous on N4

0 × R2. Next,
f1 and f2 satisfy assumption (H2) with l1 = 0.01, m1 = 0.01, l2 = 0.02, m2 = 0.02,
n1 = 0.01 and n2 = 0.02. We have

a1 = l1 [Λ1(T − 1) + Hα1(T, 1)] = 0.1219,

a2 = l2 [Λ2(T − 1) + Hα2(T, 1)] = 0.2438,

b1 = m1 [Λ1(T − 1) + Hα1(T, 1)] = 0.1219,

b2 = m2 [Λ2(T − 1) + Hα2(T, 1)] = 0.2438,

c1 = n1 [Λ1(T − 1) + Hα1(T, 1)] = 0.1219,

c2 = n2 [Λ2(T − 1) + Hα2(T, 1)] = 0.2438.

Also, λ = (a1 + a2) + (b1 + b2) = 0.7314 ∈ (0, 1), implying that assumption (H4) hold.
Choose

R ≥ (c1 + c2)
1 − [(a1 + a2) + (b1 + b2)]

= 1.3615.

Hence, by Theorem 4.2, the system (5.1) has at least one solution (u1, u2) ∈ BR.
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