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A PRODUCT FORMULA AND CERTAIN q-LAPLACE TYPE
TRANSFORMS FOR THE q-HUMBERT FUNCTIONS

TABINDA NAHID1 AND SHAHID AHMAD WANI2

Abstract. The present work deals with the mathematical investigation of the prod-
uct formulas and several q-Laplace type integral transforms of certain q-Humbert
functions. In our investigation, the qL2-transform and qL2-transform of certain q2-
Humbert functions are considered. Several useful special cases have been deduced
as applications of main results.

1. Introduction and preliminaries

Integral transforms have been widely used in many areas of science and engineering
and therefore so much work has been done on the theory and applications of integral
transforms. The integral transform method is a persuasive way to solve numerous
differential equations. Thus, in the literature there are lots of works on several integral
transforms such as Laplace, Fourier, Mellin, Hankel. Two of the most frequently used
formulas in the area of integral transforms are the classical Laplace and Sumudu
transform and their corresponding q-analogues, see for example [1–6, 20, 21]. The
Laplace transform is the most popular and extensively used in applied mathematics.
Yürekli and Sadek [24] introduced a new type of Laplace transform, known as the
L2-transform. These transforms were studied in more details by Yürekli [22,23]. After
that Uçar and Albayrak [19] have investigated the q-analogue of this L2-transforms,
which are called the qL2-transform and qL2-transform and are defined as follows [19]:

(1.1) qL2{f(t); s} = 1
[2]q

· (q2; q2)∞

s2

∞∑
n=0

q2n

(q2; q2)n

f
(
qns−1

)
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and

(1.2) qL2{f(t); s} = 1
[2]q

· 1
(−s2; q2)∞

∑
n∈Z

q2n
(
−s2; q2

)
n

f(qn),

respectively.
In order to better understand the work, some notations and preliminaries of the

quantum theory are recollected. For any real number b, the q-analogues of the shifted
factorial (b)s is given by [8, 16]:

(1.3) (b; q)0 = 1, (b; q)s =
s−1∏
i=0

(1 − qib), (b; q)∞ =
∞∏

i=0
(1 − qib), b, q ∈ R, n ∈ N,

and satisfy the following relations [7]:
(q; q)s+l =(q; q)s (qs+1; q)l,(1.4)

(qs+1; q)∞ =(ql+s+1; q)∞ (qs+1; q)l.(1.5)
The q-analogues of a complex number b is given by [8]:

(1.6) [b]q = 1 − qb

1 − q
, q ∈ C\{1}, b ∈ C.

The q-exponential functions are defined as [8]:

(1.7) eq(u) =
∞∑

n=0

un

[n]q!
, Eq(u) =

∞∑
n=0

q(n
2) un

[n]q!
.

These q-exponential functions are related as [8]:
(1.8) eq(u)Eq(−u) = 1 and eq(−u)Eq(u) = 1.

The q-gamma functions Γq(α) and qΓ(α) have the following series representations
[16]:

Γq(α) = (q; q)∞

(1 − q)α−1

∞∑
k=0

qkα

(q; q)k

= (q; q)∞

(qα; q)∞
(1 − q)1−α,(1.9)

qΓ(α) = K(A; α)
(1 − q)α−1(−(1/A); q)∞

∑
k∈Z

(
qk

A

)α (
− 1

A
; q
)

k
,(1.10)

where K(A; α) is the following remarkable function [16]:

(1.11) K(A; α) = Aα−1 (−q/α; q)∞

(−qt/α; q)∞
· (−α; q)∞

(−αq1−t; q)∞
, α ∈ R.

Investigating the q-analogues of the special functions and exploring their proper-
ties is a prevailing topic for mathematicians and physicists. It is familiar that the
parameter q symbolize for “quantum”, which is extensively used in quantum calculus
(or q-calculus). For more details of quantum calculus, one can see the book of Kac
and Cheung [8]. The theory of q-special functions play an indispensable role in the
formalism of mathematical physics. The development in q-calculus has also led to
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the extension of several remarkable functions to their q-analogues, see for example
[9–12,17]. Recently, the q-analogues of the Humbert functions are introduced by Sri-
vastava and Shehata [17] by means of the generating functions and series definitions.

The q-Humbert functions of the first kind J(1)
m,n(x|q) are specified by means the

following generating equation [17]:

(1.12) eq

(
xu

3

)
eq

(
xt

3

)
eq

(
− x

3ut

)
=

∞∑
m,n=0

J(1)
m,n(x|q)umtn

and have the following series representation [17]:

(1.13) J(1)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

(
(1 − q)x

3

)m+n+3k

.

The q-Humbert functions of the second kind J(2)
m,n(x|q) are defined by the following

series expansion [17]:
(1.14)

J(2)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

q
k
2 (3k+2(m+n)−1)

(
(1 − q)x

3

)m+n+3k

.

The q-Humbert functions of the first kind J(1)
m,n(x|q) and second kind J(2)

m,n(x|q) are
related as [17]:

(1.15) J(1)
m,n

(
q

1
3 x
∣∣∣∣1q
)

= q
1
3 (m+n)+(m

2 )+(n
2)J(2)

m,n(x|q).

The series form of the q-Humbert functions of the third kind J(3)
m,n(x|q) is given as

[17]:

(1.16) J(3)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

q(k+1
k )
(

(1 − q)x
3

)m+n+3k

.

Inspired by the works on the q-special functions in diverse fields, in this article,
the product formulas for the q-Humbert functions of first, second and third kind
are obtained. Certain q-Laplace type integral transforms are investigated for the
q2-Humbert functions of first, second and third kind. Some examples are considered
in order to show effectiveness of the proposed results by taking some special cases.

2. Product Formula

The Product formulas for q-Bessel functions are investigated by Rahman [13], which
are proved to be very useful in many branches of mathematics. After that, Swarttouw
[18] derived the product formulas for the Hahn-Exton q-Bessel function, which opened
the way to a rich harmonic analysis. Motivated by these works, the product formula
for the generalized q-Bessel functions are also established in [14]. We follow the same
technique of calculation developed by Swarttouw to derive a product formula for
q-Humbert functions of the first kind J(1)

m,n(x|q).
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Theorem 2.1. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product
formula for the q-Humbert functions of the first kind J(1)

m,n(x|q) holds true:

J(1)
m,n(γx|q) × J(1)

p,r(δx|q) =Bm,n,p,r(x|q)
∞∑

i=0
Mi(q)

(
−δx

3

)3i

(2.1)

× 3φ2

 q−p−i, q−r−i, q−i;
q; −γ3

δ3 q
1
2 (2(3i+p+r)+3(1−k))

qn+1, qm+1;

 ,

where lφs is the basic hypergeometric function defined by [15]:

(2.2) lφs

 a1, a2, . . . , al;
q; z

b1, b2, . . . , bs;

 =
∞∑

k=0

(a1, a2, . . . , al; q)kzk

(q, b1, b2, . . . , bs; q)k

and Bm,n,p,r(x|q) = (1−q)m+n+p+rγm+nδp+r

(q;q)m(q;q)n(q;q)p(q;q)r

(
x
3

)m+n+p+r
, Mi(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
.

Proof. In view of series (1.13), we can write

J(1)
m,n(γx|q) × J(1)

p,r(δx|q)(2.3)

=
∞∑

k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

×
(

(1 − q)γx

3

)m+n+3k ∞∑
l=0

(−1)l

(q; q)l (q; q)p+l (q; q)r+l

(
(1 − q)δx

3

)p+r+3l

,

which on using identity (1.4) becomes

J(1)
m,n(γx|q) × J(1)

p,r(δx|q)(2.4)

=Bm,n,p,r(x|q)
∞∑

k,l=0

(−1)k+l(1 − q)3k+3lγ3kδ3l
(

x3

27

)k+l

(q; q)k (qm+1; q)k (qn+1; q)k(q; q)l (qp+1; q)l (qr+1; q)l

,

where Bm,n,p,r(x|q) = (1−q)m+n+p+rγm+nδp+r

(q;q)m(q;q)n(q;q)p(q;q)r

(
x
3

)m+n+p+r
.

Replacing l by i − k in equation (2.4), we get

J(1)
m,n(γx|q) × J(1)

p,r(δx|q) =Bm,n,p,r(x|q)
∞∑

k=0

∞∑
i=k

(−1)i(1 − q)3iγ3kδ3(i−k)

(q; q)k (qm+1; q)k (qn+1; q)k

(2.5)

× 1
(q; q)i−k (qp+1; q)i−k (qr+1; q)i−k

(
x3

27

)i

,

which on using the following identity

(a; q)n−k = (a; q)n

(a−1q1−n; q)k

(
−q

a

)k

q(k
2)−nk
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gives

J(1)
m,n(γx|q) × J(1)

p,r(δx|q)(2.6)

=Bm,n,p,r(x|q)
∞∑

i=0

(−1)i
(

(1−q)δx
3

)3i

(q; q)i (qp+1; q)i (qr+1; q)i

×
i∑

k=0

(
−γ

δ

)3k (q−p−i; q)k (q−r−i; q)k (q−i; q)k

(q; q)k (qm+1; q)k (qn+1; q)k

q
k
2 (6i+2p+2r+3−3k).

Letting Mi(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
and using equation (2.2) in equation (2.6), asser-

tion (2.1) is proved. □

Similarly, we get the following product formulas for the q-Humbert functions of the
second and third kind J(2)

m,n(x|q) and J(3)
m,n(x|q), respectively.

Remark 2.1. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product formula
for the q-Humbert functions of the second kind J(2)

m,n(x|q) holds true:

J(2)
m,n(γx|q) × J(2)

p,r(δx|q) =Bm,n,p,r(x|q)
∞∑

i=0
Ni(q)

(
−δx

3

)3i

(2.7)

× 3φ2

 q−p−i, q−r−i, q−i;
q; −γ3

δ3 q
1
2 (2(3i+p+r)+3(1−k))

qn+1, qm+1;

 ,

where Ni(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
q

i
2 (3i+2p+2r−1) and Bm,n,p,r(x|q) is same as earlier.

Remark 2.2. Let x > 0, γ, δ > 0 and m, n, p, r ∈ N, then the following product formula
for the q-Humbert functions of the third kind J(3)

m,n(x|q) holds true:

J(3)
m,n(γx|q) × J(3)

p,r(δx|q) =Bm,n,p,r(x|q)
∞∑

i=0
Li(q)

(
−δx

3

)3i

(2.8)

× 3φ2

 q−p−i, q−r−i, q−i;
q; −γ3

δ3 q
1
2 (2(3i+p+r)+3(1−k))

qn+1, qm+1;

 ,

where Li(q) = (1−q)3i

(qp+1;q)i(qr+1;q)i(q;q)i
qi+2 and Bm,n,p,r(x|q) is same as earlier.

In the following section, the qL2-transform and qL2-transform for the q2-Humbert
functions are investigated.
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3. qL2-Transform and qL2-Transform

In this section, we evaluate qL2-transform and qL2-transform of t2w−2 weighted
product of m different q2-Humbert functions. The q2-Humbert functions are more
relevant than the original q-Humbert functions because of the mathematical nature
of qL2-transform and qL2-transform which contain q2-shift factorials.

Theorem 3.1. Let J
(1)
3µj ,3νj

(3(ajt
2) 1

3 | q2) j = 1, 2, . . . , m, be a set of q2-Humbert
functions of first kind and f(t) = t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is,

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

(3.1)

=
m∏

j=1
Bj(s)

∞∑
kj=0

(−aj

3s2

)kj

Hkj
(q2)Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and

(3.2) Bj(s) = (aj)µj+νj

[2]q 3µj+νj s2(w+µj+νj) , Hkj
(q) = (1 − q)w+2(µj+νj+kj)−1

(q; q)kj
(q; q)3µj+kj

(q; q)3νj+kj

.

Proof. In order to prove the theorem, let f(t) = t2w−2
m∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2) in

equation (1.1), we get

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

(3.3)

= 1
[2]q

· (q2; q2)∞

s2

m∏
j=1

∞∑
n=0

q2n

(q2; q2)n

(
qns−1

)2w−2
J

(1)
3µj ,3νk

((ajq
2ns−2) 1

3 | q2),

which in view of series expansion (1.13) becomes

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

= 1
[2]q

· (q2; q2)∞

s2w

×
m∏

j=1

∞∑
kj=0

(−1)kj

(q2; q2)3µj+kj
(q2; q2)3νj+kj

∞∑
n=0

q2nw

(q2; q2)kj
(q2; q2)n

[(1 − q2)ajq
2ns−2

3

]µj+νj+kj

=
m∏

j=1

(q2; q2)∞
(
(1 − q2)aj/3

)µj+νj

[2]q s2(w+µj+νj)

∞∑
n=0

q2n(w+µj+νj)

(q2; q2)n

×
∞∑

kj=0

(
−aj(1−q2)(qns−1)2

3

)kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

.
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Letting Bj(s) = (aj)µj +νj

[2]q 3µj +νj s2(w+µj +νj ) in the above equation, it follows that

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

=
m∏

j=1
Bj(s)

∞∑
kj=0

(
−aj

3s2

)kj (1 − q2)µj+νj+kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

∞∑
n=0

(q2; q2)∞(q2)n(w+µj+νj+kj)

(q2; q2)n

,

which on using relation (1.9) and setting Hkj
(q) = (1−q)w+2(µj +νj +kj )−1

(q;q)kj
(q;q)3µj +kj

(q;q)3νj +kj
gives

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

=
m∏

j=1
Bj(s)

∞∑
kj=0

(−aj

3s2

)kj

Hkj
(q2) Γq2(w + µj + νj + kj).

This completes the proof of Theorem 3.1. □

The following corollaries are an immediate consequence of Theorem 3.1.

Corollary 3.1. Let J
(2)
3µj ,3νj

(3(ajt
2) 1

3 | q2), j = 1, 2, . . . , m, be a set of q2-Humbert
functions of second kind and f(t) = t2w−2

m∏
j=1

J
(2)
3µj ,3νk

(3(ajt)
1
3 | q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2{f(t); s}

=
m∏

j=1
Bj(s)

∞∑
kj=0

(−aj

3s2

)kj

(q2)
kj
2 (3kj+6(µj+νj)−1)Hkj

(q2) Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and Bj(s), Hkj
(q) are same as in equation (3.2).

Corollary 3.2. Let J
(3)
3µj ,3νj

(3(ajt
2) 1

3 | q2), j = 1, 2, . . . , m, be a set of q2-Humbert
functions of third kind and f(t) = t2w−2

m∏
j=1

J
(3)
3µj ,3νk

(3(ajt)
1
3 | q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2{f(t); s} =
m∏

j=1
Bj(s)

∞∑
kj=0

(−aj

3s2

)kj

(q2)kj+1 Hkj
(q2) Γq2(w + µj + νj + kj),

where Re(s) > 0, Re(w) > 0 and Bj(s), Hkj
(q) are same as in equation (3.2).

Next, the qL2-transform for the q2-Humbert functions are investigated.

Theorem 3.2. Let J
(1)
3µj ,3νj

(3(ajt
2) 1

3 | q2), j = 1, 2, . . . , m, be a set of q2-Humbert
functions of first kind and f(t) = t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2), where w, aj, µj, νj
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and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}(3.4)

=Aq2(s) Γq2(w + µj + νj + kj)
K(1/s2, w + µj + νj + kj)

×
(

aj

3s2(1 − q2)

)µj+νj+kj m∏
j=1

∞∑
kj=0

(−1)kj

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1) ,

where Aq2(s) = (1−q2)w−1

[2]q s2w and Re(s) > 0, Re(w) > 0.

Proof. Using f(t) = t2w−2
m∏

j=1
J

(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2) in equation (1.2), it follows that

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

(3.5)

= 1
[2]q (−s2; q2)∞

∑
n∈Z

q2n(−s2; q2)n ×
m∏

j=1
(qn)2w−2

J
(1)
3µj ,3νj

((ajq
2n) 1

3 | q2),

which in view of series expansion (1.13) becomes

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

= 1
[2]q (−s2; q2)∞

m∏
j=1

∑
n∈Z

q2nw(−s2; q2)n

×
∞∑

kj=0

(−1)kj

(q2; q2)kj

1
(q2; q2)3µj+kj

(q2; q2)3νj+kj

[(1 − q2)ajq
2n

3

]µj+νj+kj

=
m∏

j=1

(
aj

3

)µj+νj

[2]q (−s2; q2)∞

∑
n∈Z

q2n(w+µj+νj)
∞∑

kj=0

(−s2; q2)n

(
ajq2n

3

)kj (1 − q2)µj+νj+kj

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

=
m∏

j=1

(
aj

3

)µj+νj

[2]q (−s2; q2)∞

∞∑
kj=0

(
aj

3

)kj

(q2; q2)3µj+kj
(q2; q2)3νj+kj

∑
n∈Z

(−s2; q2)n q2n(w+µj+νj+kj)

(q2; q2)kj
(−s2; q2)∞

.

Using relations (1.9) and (1.10) in the above equation, it follows that

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

=
m∏

j=1

(
aj

3

)µj+νj

[2]q (s2(w+µj+νj))

∞∑
kj=0

Γq2(w + µj + νj + kj)
K(1/s2, w + µj + νj + kj)
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×

(
−aj

3s2

)kj (1 − q2)w+2(µj+νj+kj)−1

(q2; q2)kj
(q2; q2)3µj+kj

(q2; q2)3νj+kj

,

which in view of identity (1.5) gives

qL2

{
t2w−2

m∏
j=1

J
(1)
3µj ,3νk

(3(ajt
2) 1

3 | q2); s
}

=(1 − q2)w−1

[2]q s2w

m∏
j=1

∞∑
kj=0

(−1)kj

(
aj

3s2

)µj+νj+kj(
(q2;q2)∞

(q2(3µj +kj +1);q2)∞

)
× (1 − q2)2(µj+νj+kj)(

(q2;q2)∞

(q2(3νj +kj +1);q2)∞

)(
(q2;q2)∞

(q2(kj +1);q2)∞

) · Γq2(w + µj + νj + kj)
K(1/s2, w + µj + νj + kj)

.

Letting Aq2(s) = (1−q2)w−1

[2]q s2w in the above equation and in view of expression (1.9),
assertion (3.4) follows. □

The following corollaries are an immediate consequence of Theorem 3.2.

Corollary 3.3. Let J
(2)
3µj ,3νj

(3(ajt
2) 1

3 | q2), j = 1, 2, . . . , m, be a set of q2-Humbert
functions of second kind and f(t) = t2w−2

m∏
j=1

J
(2)
3µj ,3νk

(3(ajt
2) 1

3 | q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is

qL2{f(t); s} =Aq2(s)
m∏

j=1

∞∑
kj=0

(−1)kj (q2)
kj
2 (3kj+6(µj+νj)−1)

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1)

× Γq2(w + µj + νj + kj)
K(1/s2, w + µj + νj + kj)

(
aj

3s2(1 − q2)

)µj+νj+kj

,

where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.

Corollary 3.4. Let J
(3)
3µj ,3νj

(3(ajt
2) 1

3 | q2), j = 1, 2, . . . , m, be a set of q2-Humbert
functions of third kind and f(t) = t2w−2

m∏
j=1

J
(3)
3µj ,3νk

(3(ajt
2) 1

3 | q2), where w, aj, µj, νj

and j = 1, 2, . . . , m, are constants then qL2-transform of f(t) is,

qL2{f(t); s} =Aq2(s)
m∏

j=1

∞∑
kj=0

(−1)kj (q2)kj+1

Γq2(kj + 1)Γq2(3µj + kj + 1)Γq2(3νj + kj + 1)

× Γq2(w + µj + νj + kj)
K(1/s2, w + µj + νj + kj)

(
aj

3s2(1 − q2)

)µj+νj+kj

,

where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.

In the next section, we give certain examples to show the applications of the results
established in previous sections.
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4. Special Cases

In consideration of m = 1, a1 = a, k1 = k, µ1 = µ and ν1 = ν in Theorem 3.1,
Corollary 3.1 and Corollary 3.2, respectively, the qL2-transforms for the q-Humbert
functions of the first, second and third kind are obtained:

qL2{t2w−2J
(1)
3µ,3ν(3(at2) 1

3 | q2); s} = C(s)
∞∑

k=0

(−a

3s2

)k

Hk(q2) Γq2(w + µ + ν + k),

qL2{t2w−2J
(2)
3µ,3ν(3(at2) 1

3 | q2); s}

=C(s)
∞∑

k=0

(−a

3s2

)k

(q2) k
2 (3k+6(µ+ν)−1)Hk(q2) Γq2(w + µ + ν + k)

and

qL2{t2w−2J
(3)
3µ,3ν(3(at2) 1

3 | q2); s} = C(s)
∞∑

k=0

(−a

3s2

)k

(q2)k+1 Hk(q2) Γq2(w + µ + ν + k),

respectively, where Re(s) > 0, Re(w) > 0 and

C(s) = (a)µ+ν

[2]q 3µ+ν s2(w+µ+ν) , Hk(q) = (1 − q)w+2(µ+ν+k)−1

(q; q)k (q; q)3µ+k (q; q)3ν+k

.

Taking m = 1, a1 = a, k1 = k, µ1 = µ and ν1 = ν in Theorem 3.2, Corollary 3.3
and Corollary 3.4, respectively, the qL2-transforms for the q-Humbert functions of the
first, second and third kind are obtained:

qL2{t2w−2J
(1)
3µ,3ν(3(at2) 1

3 | q2); s}

=Aq2(s)
∞∑

k=0

(−1)k

Γq2(k + 1)Γq2(3µ + k + 1)

× Γq2(w + µ + ν + k)
Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(
a

3s2(1 − q2)

)µ+ν+k

,

qL2{t2w−2J
(2)
3µ,3ν(3(at2) 1

3 | q2); s}

=Aq2(s)
∞∑

k=0

(−1)k(q2) k
2 (3k+6(µ+ν)−1)

Γq2(k + 1)Γq2(3µ + k + 1)

× Γq2(w + µ + ν + k)
Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(
a

3s2(1 − q2)

)µ+ν+k

and

qL2{t2w−2J
(3)
3µ,3ν(3(at2) 1

3 | q2); s}

=Aq2(s)
∞∑

k=0

(−1)k(q2)k+1

Γq2(k + 1)Γq2(3µ + k + 1)

× Γq2(w + µ + ν + k)
Γq2(3ν + k + 1)K(1/s2, w + µ + ν + k)

(
a

3s2(1 − q2)

)µ+ν+k

,
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respectively, where Re(s) > 0, Re(w) > 0 and Aq2(s) is same as in Theorem 3.2.
In the present investigation, we have constructed the product formulas and certain q-

Laplace type integral transforms for the q-Humbert functions of first, second and third
kind. The results established in this article might be useful for solving q2-difference
equations by means of the qL2-transforms and qL2-transforms. In the forthcoming
paper, we plan to deal with constructing q2-difference equations to use the results
obtained here.
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