APPROXIMATION BY AN EXPONENTIAL-TYPE COMPLEX OPERATORS

SORIN G. GAL ${ }^{1,2}$ AND VIJAY GUPTA ${ }^{3}$

Abstract

In the present paper, we discuss the approximation properties of a complex exponential kind operator. Upper estimate, Voronovskaya-type formula and exact estimate are obtained.

1. Introduction

In the year 1978, Ismail [10] and Ismail and May [11] introduced and studied some exponential type operators. A type of the operators constructed in [11, (3.11)] is the following sequence

$$
\begin{equation*}
Q_{n}(f, x)=\int_{0}^{\infty} W(n, x, t) f(t) d t, \quad x \in(0, \infty), n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where the kernel is given by

$$
W(n, x, t)=\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp (n / x) t^{-3 / 2} \exp \left(-\frac{n t}{2 x^{2}}-\frac{n}{2 t}\right) .
$$

The kernel of these operators satisfies the partial differential equation

$$
\begin{equation*}
\frac{\partial}{\partial x} W(n, x, t)=\frac{n(t-x)}{x^{3}} W(n, x, t) \tag{1.2}
\end{equation*}
$$

Due to its complicated behavior in integration, these operators were not previously much studied by researchers. Recently in case of real variables these operators were studied by Gupta [8], who established some direct results. The asymptotic formula for certain exponential type operators are discussed in [1].

[^0]Also, in the recent years, the study of approximation by complex operators on compact disks is an active area of research, see for instance $[2-4,6,7,9]$ and [12] etc.

In this paper, we study the approximation properties of the complex variant in (1.1), obtained by replacing x with z in the formula (1.1). Section 2 contains some auxiliary results used in the next sections. Section 3 deals with upper estimate, while in Section 4, we study a Voronovskaya-type result and the exact estimate in approximation.

2. Auxiliary Results

The proofs of our main results require three additional lemmas, as follows.
Lemma 2.1. If we denote $T_{n, m}(x)=Q_{n}\left(e_{m}, x\right), e_{m}(t)=t^{m}$, then using Mapple, we find that $T_{n, 0}(x)=1$ and there holds the following recurrence relation:

$$
n T_{n, m+1}(x)=x^{3}\left[T_{n, m}(x)\right]^{\prime}+n x T_{n, m}(x), \quad n, m \in \mathbb{N} .
$$

In particular

$$
\begin{aligned}
& T_{n, 0}(x)=1, \\
& T_{n, 1}(x)=x, \\
& T_{n, 2}(x)=x^{2}+\frac{x^{3}}{n}, \\
& T_{n, 3}(x)=x^{3}+\frac{3 x^{4}}{n}+\frac{3 x^{5}}{n^{2}}, \\
& T_{n, 4}(x)=x^{4}+\frac{6 x^{5}}{n}+\frac{15 x^{6}}{n^{2}}, \\
& T_{n, 5}(x)=x^{5}+\frac{10 x^{6}}{n}+\frac{45 x^{7}}{n^{2}}+\frac{105 x^{8}}{n^{3}}+\frac{105 x^{9}}{n^{4}}, \\
& T_{n, 6}(x)=x^{6}+\frac{15 x^{7}}{n}+\frac{105 x^{8}}{n^{2}}+\frac{420 x^{9}}{n^{3}}+\frac{945 x^{10}}{n^{4}}+\frac{945 x^{11}}{n^{5}} .
\end{aligned}
$$

Proof. By definition

$$
T_{n, m}(x)=\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp (n / x) \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n t}{2 x^{2}}-\frac{n}{2 t}\right) t^{m} d t
$$

Thus, differentiating w.r.t x both the sides and using (1.2), we have

$$
\begin{aligned}
x^{3}\left[T_{n, m}(x)\right]^{\prime} & =\int_{0}^{\infty} x^{3}[W(n, x, t)]^{\prime} t^{m} d t \\
& =\int_{0}^{\infty} n(t-x) W(n, x, t) t^{m} d t \\
& =n T_{n, m+1}(x)-n x T_{n, m}(x) .
\end{aligned}
$$

This completes the proof of lemma, other consequences follow from the recurrence relation.

Lemma 2.2. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$, is an entire function satisfying the condition $\left|c_{k}\right| \leq M \frac{A^{k}}{k!}, k=0,1, \ldots$, with $M>0$ and $A \in(0,1 / 2)$ (which implies that f is of exponential growth since $|f(z)| \leq M \exp (A|z|)$ for all $z \in \mathbb{C})$. Then $Q_{n}(f, z)$ is well defined for any $n \in \mathbb{N}$ and any $z \in \mathbb{C}$ satisfying

$$
\begin{equation*}
\operatorname{Re}\left(z^{2}\right)>0 \quad \text { and } \quad \frac{|z|^{2}}{\operatorname{Re}\left(z^{2}\right)}<\frac{1}{2 A} . \tag{2.1}
\end{equation*}
$$

Proof. Since $|\exp (z)|=\exp (\operatorname{Re}(z)), \operatorname{Re}(1 / z)=\operatorname{Re}(z) /|z|$ and $\operatorname{Re}\left(1 / z^{2}\right)=$ $\operatorname{Re}\left(z^{2}\right) /|z|^{2}$, we get

$$
\begin{aligned}
& \left|Q_{n}(f, z)\right| \\
\leq & M\left(\frac{n}{2 \pi}\right)^{1 / 2}|e(n / z)| \int_{0}^{\infty} t^{-3 / 2} \exp (-n /(2 t)+A t)\left|\exp \left(-n t /\left(2 z^{2}\right)\right)\right| d t \\
= & M \exp (n \operatorname{Re}(z) /|z|) \int_{0}^{\infty} t^{-3 / 2} \exp (-n /(2 t)) \exp \left(-t\left[n \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)-A\right]\right) d t
\end{aligned}
$$

By the hypothesis on z, we easily seen that $n \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)-A>0$ for all $n \geq 1$. Therefore, for fixed z as in the hypothesis and denoting $n \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)-A$ with $C>0$, we have to deal with the existence of the integral

$$
I:=\int_{0}^{\infty} t^{-3 / 2} \exp (-n /(2 t)) \exp (-C t) d t
$$

Changing the variable $t=\frac{1}{v}$, we easily obtain

$$
I=\int_{0}^{\infty} v^{-1 / 2} \exp (-n v / 2) \exp (-C / v) d v<\infty
$$

Indeed, for $K>0$ an arbitrary fixed constant, we have

$$
\begin{aligned}
I & =\int_{0}^{K} v^{-1 / 2} \exp (-n v / 2) \exp (-C / v) d v+\int_{K}^{\infty} v^{-1 / 2} \exp (-n v / 2) \exp (-C / v) d v \\
& :=I_{1}+I_{2}
\end{aligned}
$$

where

$$
I_{1} \leq \int_{0}^{K} \exp (-n v / 2) v^{-1 / 2} \frac{v}{C} d v \leq \frac{1}{C} \int_{0}^{K} v^{1 / 2} \exp (-n v / 2) d v<\infty
$$

and $I_{2} \leq \frac{1}{\sqrt{K}} \int_{K}^{\infty} e(-n v / 2) d v<\infty$.
Lemma 2.3. Suppose that f is an entire function, i.e., $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{C}$ such that there exist $M>0$ and $A \in(0,1)$, with the property $\left|c_{k}\right| \leq M \frac{A^{k}}{k!}$ for all $k=0,1, \ldots$ (which implies $|f(z)| \leq M \exp (A|z|)$ for all $z \in \mathbb{C})$.

Then for all $n \in \mathbb{N}$ and z satisfying (2.1), we have

$$
Q_{n}(f, z)=\sum_{k=0}^{\infty} c_{k} Q_{n}\left(e_{k}, z\right) .
$$

Proof. Since we can write

$$
Q_{n}(f ; z)=\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp (n / z) \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n t}{2 z^{2}}-\frac{n}{2 t}\right)\left(\sum_{k=0}^{\infty} c_{k} t^{k}\right) d t
$$

if above the integral would commute with the infinite sum, then we would obtain

$$
\begin{aligned}
Q_{n}(f, z) & =\sum_{k=0}^{\infty} c_{k}\left(\frac{n}{2 \pi}\right)^{1 / 2} \exp (n / z) \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n t}{2 z^{2}}-\frac{n}{2 t}\right) t^{k} d t \\
& =\sum_{k=0}^{\infty} c_{k} Q_{n}\left(e_{k}, z\right)
\end{aligned}
$$

It is well-known by the Fubini type result that a sufficient condition for the commutativity is that

$$
\int_{0}^{\infty} t^{-3 / 2}\left|\exp \left(-\frac{n t}{2 z^{2}}-\frac{n}{2 t}\right)\right|\left(\sum_{k=0}^{\infty}\left|c_{k}\right| t^{k}\right) d t<\infty .
$$

Applied to our case, for $n \in \mathbb{N}$ and z satisfying (2.1), we get

$$
\begin{aligned}
& \int_{0}^{\infty} t^{-3 / 2}\left|\exp \left(-\frac{n t}{2 z^{2}}-\frac{n}{2 t}\right)\right|\left(\sum_{k=0}^{\infty}\left|c_{k}\right| t^{k}\right) d t \\
\leq & M \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n}{2 t}\right) \exp \left(-n t \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)\right)\left(\sum_{k=0}^{\infty} \frac{A^{k} t^{k}}{k!}\right) d t \\
= & M \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n}{2 t}\right) \exp \left(-n t \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)\right) e^{A t} d t \\
= & M \int_{0}^{\infty} t^{-3 / 2} \exp \left(-\frac{n}{2 t}\right) \exp \left(-n t \operatorname{Re}\left(z^{2}\right) /\left(2|z|^{2}\right)+A t\right) d t<\infty,
\end{aligned}
$$

by the proof of Lemma 2.2.
Remark 2.1. It is easy to see that from geometric point of view, the conditions on z in (2.1) means that z belongs to two symmetric cones with respect to origin (but without containing the origin) containing the x axis, which are included in the two symmetric cones with respect to origin between the first and second bisectrix, containing the x axis. Indeed, since $|z|^{2}=x^{2}+y^{2}$ and $\operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}$, simple calculations show that the condition (2.1) satisfied by $z=x+i y$ can easily be written under the form

$$
\sqrt{\left(1+\frac{1}{2 A}\right)}|y|<\sqrt{\left(\frac{1}{2 A}-1\right)}|x|
$$

that is

$$
\frac{|y|}{|x|}<\frac{\sqrt{1 /(2 A)-1}}{\sqrt{1 /(2 A)+1}}<1 .
$$

3. Upper Estimate

The first main result concerns an upper estimate in approximation by $Q_{n}(f, z)$.
Theorem 3.1. Suppose that f is an entire function, i.e., $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{C}$ such that there exist $M>0$ and $A \in(0,1 / 2)$, with the property $\left|c_{k}\right| \leq M \frac{A^{k}}{k!}$, for all $k=0,1, \ldots$ (which implies $|f(z)| \leq M e^{A|z|}$ for all $\left.z \in \mathbb{C}\right)$. Consider $1 \leq r<\frac{1}{A}$.

Then for all $n \geq r^{2},|z| \leq r$ and z satisfying (2.1), the following estimate hold:

$$
\left|Q_{n}(f, z)-f(z)\right| \leq \frac{C_{r, M, A}}{n}
$$

where $C_{r, M, A}=M r \sum_{k=2}^{\infty}(k+1)(A r)^{k}<\infty$.
Proof. By Lemma 2.1 written with x replaced by z, we easily obtain

$$
n\left[T_{n, m+1}(z)-z^{m+1}\right]=z^{3}\left[T_{n, m}(z)-z^{m}\right]^{\prime}+n z\left[T_{m, n}(z)-z^{m}\right]+m z^{m+2} .
$$

Applying the Bernstein's inequality on $|z| \leq r$ to the polynomial of degree $m, T_{n, m}(z)-$ z^{m}, we get $\left\|\left[T_{n, m}(z)-z^{m}\right]^{\prime}\right\|_{r} \leq \frac{m}{r}\left\|T_{n, m}(z)-z^{m}\right\|_{r}$, where $\|P\|_{r}=\sup _{|z| \leq r}|P(z)|$. Then, denoting $e_{m}=z^{m}$, from the above recurrence we immediately obtain

$$
\left\|T_{n, m+1}-e_{m+1}\right\|_{r} \leq\left(r+\frac{m r^{2}}{n}\right)\left\|T_{m, n}-e_{m}\right\|_{r}+\frac{m r^{m+2}}{n} .
$$

In what follows we prove by mathematical induction with respect to m that for $n \geq r^{2}$, this recurrence implies

$$
\left\|T_{n, m}-e_{m}\right\|_{r} \leq \frac{(m+1)!}{n} r^{m+1}, \quad \text { for all } m \geq 0
$$

Indeed for $m=0$ and $m=1$ it is trivial, as the left-hand side is zero. Suppose that it is valid for m, the above recurrence relation implies that

$$
\left\|T_{n, m+1}-e_{m+1}\right\|_{r} \leq\left(r+\frac{r^{2} m}{n}\right) \frac{(m+1)!}{n} r^{m+1}+\frac{m}{n} r^{m+2}
$$

It remains to prove that

$$
\left(r+\frac{r^{2} m}{n}\right) \frac{(m+1)!}{n} r^{m+1}+\frac{m}{n} r^{m+2} \leq \frac{(m+2)!}{n} r^{m+2}
$$

or after simplifications, equivalently to

$$
\left(r+\frac{r^{2} m}{n}\right)(m+1)!+r m \leq(m+2)!r
$$

for all $m \in \mathbb{N}$ and $r \geq 1$.
Since $n \geq r^{2}$, we get

$$
\left(r+\frac{r^{2} m}{n}\right)(m+1)!+r m \leq(r+m)(m+1)!+r m
$$

it is good enough if we prove that

$$
(r+m)(m+1)!+r m \leq(m+2)!r .
$$

But this last inequality is obviously equivalent with

$$
m(m+1)!+r m \leq r m(m+1)!+r(m+1)!
$$

which is clearly valid for all $m \geq 1$ (and fixed $r \geq 1$).
Finally, taking into account Lemma 2.3, for all $n \geq r^{2}$, we obtain

$$
\begin{aligned}
\left|Q_{n}(f, z)-f(z)\right| & \leq \sum_{k=0}^{\infty}\left|c_{k}\right| \cdot\left|Q_{n}\left(e_{k}, z\right)-e_{k}(z)\right| \\
& \leq \frac{M}{n} \cdot \sum_{k=2}^{\infty} \frac{A^{k}}{k!} \cdot(k+1)!r^{k+1}=\frac{C_{r, M, A}}{n}
\end{aligned}
$$

where $C_{r, M, A}=M r \sum_{k=2}^{\infty}(k+1)(A r)^{k}<\infty$.
Remark 3.1. The smaller A is, the larger is the portion of the symmetrical cones where the estimation in Theorem 3.1 takes place. This happens because of the intersection between the symmetrical cones and the disk $\{|z| \leq r\}$ with $1 \leq r<\frac{1}{A}$, where if $A \searrow 0$ then $r \nearrow \infty$.

4. Voronovskaya Type Formula and Exact Estimate

The following estimate is a Voronovskaja-kind quantitative result.
Theorem 4.1. Suppose that f is an entire function, i.e., $f(z)=\sum_{k=0}^{\infty} c_{k} z^{k}$ for all $z \in \mathbb{C}$ such that there exist $M>0$ and $A \in(0,1 / 2)$, with the property $\left|c_{k}\right| \leq M \frac{A^{k}}{k!}$, for all $k=0,1, \ldots$ (which implies $|f(z)| \leq M \exp (A|z|)$ for all $z \in \mathbb{C})$. Consider $1 \leq r<\frac{1}{A}$.

Then for all $n \geq r^{2},|z| \leq r$ and z satisfying (2.1), the following estimate holds:

$$
\left|Q_{n}(f, z)-f(z)-\frac{z^{3} f^{\prime \prime}(z)}{2 n}\right| \leq \frac{E_{r, M, A}(f)}{n^{2}}
$$

where

$$
E_{r, M, A}(f)=3 M r^{2} \sum_{k=2}^{\infty}(k+1)^{2}(A r)^{k}<\infty .
$$

Proof. Everywhere in the proof consider z and n as in hypothesis.
By the proof of Lemma 2.3, we can write $Q_{n}(f, z)=\sum_{k=0}^{\infty} c_{k} Q_{n}\left(e_{k}, z\right)$. Also, since

$$
\frac{z^{3} f^{\prime \prime}(z)}{2 n}=\frac{z^{3}}{2 n} \sum_{k=2}^{\infty} c_{k} k(k-1) z^{k-2}=\frac{1}{2 n} \sum_{k=2}^{\infty} c_{k} k(k-1) z^{k+1},
$$

we get

$$
\left|Q_{n}(f, z)-f(z)-\frac{z^{3} f^{\prime \prime}(z)}{2 n}\right| \leq \sum_{k=2}^{\infty}\left|c_{k}\right|\left|T_{n, k}(z)-e_{k}(z)-\frac{k(k-1) z^{k+1}}{2 n}\right| .
$$

By Lemma 2.1, we have

$$
T_{n, k}(z)=\frac{z^{3}}{n} T_{n, k-1}^{\prime}(z)+z T_{n, k-1}(z) .
$$

If we denote

$$
J_{n, k}(z)=T_{n, k}(z)-e_{k}(z)-\frac{k(k-1) z^{k+1}}{2 n}
$$

then it is obvious that $J_{n, k}(z)$ is a polynomial of degree less than or equal to $k+2$ and by simple computation and the use of above recurrence relation, we are led to

$$
J_{n, k}(z)=\frac{z^{3}}{n} J_{n, k-1}^{\prime}(z)+z J_{n, k-1}(z)+X_{n, k}(z)
$$

where after simple computation, we have

$$
X_{n, k}(z)=\frac{k(k-1)(k-2) z^{k+2}}{2 n^{2}}
$$

Using the estimate in the proof of Theorem 3.1, we have

$$
\left|T_{n, k}(z)-e_{k}(z)\right| \leq \frac{(k+1)!}{n} \cdot r^{k+1}
$$

It follows

$$
\left|J_{n, k}(z)\right| \leq \frac{r^{3}}{n}\left|J_{n, k-1}^{\prime}(z)\right|+r\left|J_{n, k-1}(z)\right|+\left|X_{n, k}(z)\right|
$$

where

$$
\left|X_{n, k}(z)\right| \leq \frac{k(k-1)(k-2) r^{k+2}}{2 n^{2}}
$$

Now we shall find the estimation of $\left|J_{n, k-1}^{\prime}(z)\right|$. Taking into account the fact that $J_{n, k-1}(z)$ is a polynomial of degree $\leq k+1$, we have

$$
\begin{aligned}
\left|J_{n, k-1}^{\prime}(z)\right| & \leq \frac{k}{r}\left\|J_{n, k-1}(z)\right\|_{r} \\
& \leq \frac{k}{r}\left[\left\|T_{n, k-1}(z)-e_{k-1}(z)\right\|_{r}+\frac{(k-1)(k-2) r^{k}}{2 n}\right] \\
& \leq \frac{(k+1)!}{n} \cdot r^{k-1}+\frac{k(k-1)(k-2) r^{k-1}}{2 n}
\end{aligned}
$$

Thus,

$$
\frac{r^{3}}{n}\left|J_{n, k-1}^{\prime}(z)\right| \leq \frac{1}{n}\left[\frac{(k+1)!}{n} r^{k+2}+\frac{k(k-1)(k-2) r^{k+2}}{2 n}\right]
$$

and

$$
\begin{aligned}
\left|J_{n, k}(z)\right| \leq & r\left|J_{n, k-1}(z)\right|+\frac{1}{n}\left[\frac{(k+1)!}{n} r^{k+2}+\frac{k(k-1)(k-2) r^{k+2}}{2 n}\right] \\
& +\frac{k(k-1)(k-2) r^{k+2}}{2 n^{2}}
\end{aligned}
$$

This immediately implies

$$
\left|J_{n, k}(z)\right| \leq r\left|J_{n, k-1}(z)\right|+\frac{3}{n^{2}}(k+1)!r^{k+2}
$$

By writing this inequality for $k=1,2,3, \ldots$, we easily obtain step by step the following

$$
\left|J_{n, k}(z)\right| \leq \frac{3}{n^{2}} r^{k+2}\left[\sum_{j=1}^{k+1} j!\right] \leq \frac{3}{n^{2}} r^{k+2}(k+1)!(k+1)
$$

In conclusion,

$$
\begin{aligned}
\left|Q_{n}(f, z)-f(z)-\frac{z^{3} f^{\prime \prime}(z)}{2 n}\right| & \leq \frac{3}{n^{2}} \cdot \sum_{k=2}^{\infty}\left|c_{k}\right| r^{k+2} \cdot(k+1)!(k+1) \\
& \leq \frac{3 M r^{2}}{n^{2}} \cdot \sum_{k=2}^{\infty}(k+1)^{2}(A r)^{k}
\end{aligned}
$$

This completes the proof of theorem.
Using the above Voronovskaja's theorem, we obtain the following lower order in approximation.

Theorem 4.2. Under the hypothesis in Theorem 4.1, if f is not a polynomial of degree ≤ 1, then for all $n \geq r^{2}$ we have

$$
\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \geq \frac{K_{r, M, A}(f)}{n}
$$

where $\|F\|_{r}^{*}=\sup \{|F(z)|:|z| \leq r$ and z satisfies $(2.1)\}$ and $K_{r, M, A}(f)$ is a constant which depends only on f, M, A and r.

Proof. For all $n \geq r^{2},|z| \leq r$ and z satisfying (2.1), we have

$$
Q_{n}(f, z)-f(z)=\frac{1}{n}\left[0.5 z^{3} f^{\prime \prime}(z)+\frac{1}{n}\left\{n^{2}\left(Q_{n}(f, z)-f(z)-\frac{z^{3} f^{\prime \prime}(z)}{2 n}\right)\right\}\right]
$$

Also, we have

$$
\|F+G\|_{r}^{*} \geq\left\|\left|\left|F\left\|_{r}^{*}-\right\| G\left\|_{r}^{*} \mid \geq\right\| F\left\|_{r}^{*}-\right\| G \|_{r}^{*}\right.\right.\right.
$$

It follows

$$
\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \geq \frac{1}{n}\left[\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*}-\frac{1}{n}\left\{n^{2}\left\|Q_{n}(f, \cdot)-f-\frac{e_{3} f^{\prime \prime}}{2 n}\right\|_{r}^{*}\right\}\right]
$$

Taking into account that by hypothesis, f is not a polynomial of degree ≤ 1, we get $\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*}>0$. Indeed, supposing the contrary it follows that $z^{3} f^{\prime \prime}(z)=0$, which by the fact that f is entire function, clearly implies $f^{\prime \prime}(z)=0$, i.e., f is a polynomial of degree ≤ 1, a contradiction with the hypothesis.

Now by Theorem 4.1, we have

$$
n^{2}\left\|Q_{n}(f, z)-f(z)-\frac{z^{3} f^{\prime \prime}(z)}{2 n}\right\|_{r}^{*} \leq E_{r, M, A}(f)
$$

Therefore, there exists an index n_{0} depending only on f and r, such that for all $n \geq n_{0}$, we have

$$
\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*}-\frac{1}{n}\left\{n^{2}\left\|Q_{n}(f, z)-f(z)-\frac{0.5 z^{3} f^{\prime \prime}(z)}{n}\right\|_{r}^{*}\right\} \geq \frac{1}{2}\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*},
$$

which immediately implies

$$
\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \geq \frac{1}{2 n}\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*}, \quad \text { for all } n \geq n_{0}
$$

For $n \in\left\{1,2, \ldots, n_{0}-1\right\}$ we obviously have

$$
\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \geq \frac{M_{r, n}(f)}{n}
$$

with $M_{r, n}(f)=n\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*}>0$. Indeed, if we would have $\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*}=0$, then would follow $Q_{n}(f, z)=f(z)$ for all $|z| \leq r, z$ satisfying (2.1), which is valid only for f a polynomial of degree ≤ 1, contradicting the hypothesis on f. Hence, we obtain $\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \geq \frac{K_{r, M, A}(f)}{n}$ for all n, where

$$
K_{r, M, A}(f)=\min \left\{M_{r, 1}(f), M_{r, 2}(f), \ldots, M_{r, n_{0}-1}(f), \frac{1}{2}\left\|0.5 e_{3} f^{\prime \prime}\right\|_{r}^{*}\right\},
$$

which completes the proof.
Combining Theorem 3.1 with Theorem 4.2, we immediately get the following exact estimate.

Corollary 4.1. Under the hypothesis in Theorem 4.1, if f is not a polynomial of degree ≤ 1, then we have

$$
\left\|Q_{n}(f, \cdot)-f\right\|_{r}^{*} \sim \frac{1}{n}, \quad n \in \mathbb{N}
$$

where the symbol \sim represents the well-known equivalence between the orders of approximation.

Remark 4.1. Particular cases of the exponential-type operators studied in the real case in [11], are the Bernstein polynomials, the operators of Szász, of Post-Widder, of Gauss-Weierstrass, of Baskakov, to mention only a few. In the complex variable case, only the approximation properties of the operators of Bernstein, Szász, Baskakov and Post-Widder were already studied, see, e.g., [5, 7, 9]. It remains as open question to use the method in this paper for other complex exponential-type operators, too.

Acknowledgements. The authors are thankful to the reviewers for helpful remarks and suggestions which lead to essential improvement of the whole manuscript.

References

[1] T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput. 263 (2015), 233-239. https://doi.org/10.1016/j.amc.2015.04.060
[2] R. P. Agarwal and V. Gupta, On q-analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012(1) (2012), Article ID 111. https://doi.org/10.1186/ 1029-242X-2012-111
[3] S. G. Gal and V. Gupta, Quantitative estimates for a new complex Durrmeyer operator in compact disks, Appl. Math. Comput. 218(6) (2011), 2944-2951. https://doi.org/10.1016/j. amc.2011.08.044
[4] S. G. Gal, V. Gupta and N. I. Mahmudov, Approximation by a Durrmeyer-type operator in compact disks, Ann. Univ. Ferrara Sez. VII Sci. Mat. 58(2) (2012), 65-87. https://doi.org/ 10.1007/s11565-011-0124-6
[5] S. G. Gal and V. Gupta, Approximation by a complex Post-Widder type operator, Anal. Theory Appl. 34(4) (2018), 297-305. https://doi.org/10.4208/ata.OA-2018-0003
[6] S. G. Gal, Approximation by Complex Bernstein and Convolution Type Operators, World Scientific, 2009. https://doi.org/10.1142/7426
[7] S. G. Gal, Overconvergence in Complex Approximation, Springer, New York, 2013. https: //doi.org/10.1007/978-1-4614-7098-4
[8] V. Gupta, Approximation with certain exponential operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114(2) (2020). https://doi.org/10.1007/s13398-020-00792-9
[9] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-02765-4
[10] M. Ismail, Polynomials of binomial type and approximation theory, J. Approx. Theory 23(1978), 177-186. https://doi.org/10.1016/0021-9045(78) 90105-3
[11] M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462. https://doi.org/10.1016/0022-247X (78) 90090-2
[12] A. S. Kumar, P. N. Agrawal and T. Acar, Quantitative estimates for a new complex q-Durrmeyer type operators on compact disks, UPB Scientific Bulletin, Series A 80(1) (2018), 191-210.
${ }^{1}$ Department of Mathematics and Computer Science, University of Oradea,
410087 Oradea, Romania
${ }^{2}$ Academy of Romanian Scientists,
Splaiul Independentei nr. 54,
050094, Bucharest, Romania,
Email address: galso@uoradea.ro
${ }^{3}$ Department of Mathematics, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi 110078, India
Email address: vijaygupta2001@hotmail.com, vijay@nsut.ac.in

[^0]: Key words and phrases. Complex exponential kind operator, approximation properties, upper estimate, Voronovskaya-type formula, exact estimate.

 2010 Mathematics Subject Classification. Primary: 30E10. Secondary: 41A36.
 DOI 10.46793/KgJMat2305.691G
 Received: April 28, 2020.
 Accepted: November 02, 2020.

