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COMPACTNESS ESTIMATE FOR THE 0-NEUMANN PROBLEM
ON A @Q-PSEUDOCONVEX DOMAIN IN A STEIN MANIFOLD

SAYED SABER! AND ABDULLAH ALAHMARI?

ABSTRACT. We consider a smoothly bounded g-pseudoconvex domain €2 in an n-
dimensional Stein manifold X and suppose that the boundary b} of Q) satisfies
(¢ — P) property, which is the natural variant of the classical P property. Then, one
prove the compactness estimate for the d-Neumann operator N, ; in the Sobolev k-
space. Applications to the boundary global regularity for the 9-Neumann operator
N, s in the Sobolev k-space are given. Moreover, we prove the boundary global
regularity of the J-operator on .

1. INTRODUCTION AND MAIN RESULTS

The existence and regularity properties of the solutions of the system of Cauchy-
Riemann equations 0f = g on strongly pseudo-convex domains have been a central
theme in the theory of several complex variables for many years. Classically many
different approaches have been used: a) Vanishing of the d-cohomology group, b) The
abstract L2-theory of the d-Neumann problem, and ¢) The construction of rather
explicit integral solution operators for 0, in analogy to the Cauchy transform in
C'. The first approach used by Grauert—Riemenschneider [6]. Saber [15], used this
method and studied the solvability of the d-problem with C°° regularity up to the
boundary on a strictly g-convex domain of an n-dimensional Kéhler manifold X. The
second approach was first used by Kohn [11] in studying the boundary regularity of the
O-equation when € is pseudoconvex with C°° boundary. For solvability with regularity
up to the boundary in a pseudoconvexity domain without corners, one refer to Kohn
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[12]. Zampieri [18] introduced a new type of notion of ¢g-pseudoconvexity in C". Under
this condition he proved local boundary regularity for any degree > g. Other results
in this direction belong to Heungju [10], Baracco-Zampieri [1] and Saber [16]. Thus
the method of L? a priori estimates for the weighted O-Neumann operator has yielded
many important results on the local and global boundary regularity of the d-problem.
The integral formula approach was pioneered by Henkin [8] and Grauert-Lieb [7] for
strictly pseudoconvex domains. They obtained uniform and Hoélder estimates for the
solution of @ on such domains. For the related results for d on the pseudoconcave
domains in P", see Henkin-lordan [9].

In this paper, he compactness estimate proved in Khanh and Zampieri [17] is
extended F-valued forms. Such compactness estimates immediately lead to very
important qualitative properties of the d-operator, such as smoothless of solutions
and closed range. The main theorem generalizes Khanh and Zampieri [17] result to
forms with values in a vector bundle. The proof starting with the known estimate
on scalar differential forms and then obtains a similar estimate locally on bundle-
valued forms using a local frame. Then, by using a partition of unity, we globalize
this estimate at the cost of the constants. Consequently, we study the boundary
regularity of the d-equation, du = f, for forms in a vector bundle on bounded g¢-
pseudoconvex domain §2 in a Stein manifold X of dimension n. Moreover, some
standard consequences of compactness are deduced.

2. (¢ — P) PROPERTY

Let © be a bounded domain of C" with C''-boundary b2 and p its a C'-defining
function. An (r, s)-form on € is given by

F=3"fr,d" naz’,
H|=r
|J|=s
where I = (iy,...,i,) and J = (ji,...,Js) are multiindices and dz! = dz; A -+ A dz,,
dz? =dz; A\ -+ A dz,. Here, the coefficients fr; are functions (belonging to various
function classes) on €. Then for two (r, s)-forms

F=3"frdz" ndz7,

1,J

g = Z/ gudzf Adz7
1,J

One defines the inner product and the norm as

(fag) = Z/fI,Jﬁa
I,J
[f1=(f: f)-

The notation . means the summation over strictly increasing multiindices. This

definition is independent of the choice of the orthonormal basis. Denote by C25(€2)
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the space of complex-valued differential forms of class C*° and of type (r, s) on Q that

are smooth up to the boundary and D, ,(U) denotes the elements in C25(€2) that are
compactly supported in U N Q. L2 () consists of the (r, s)-forms u satisfies

ul? = 3 us s ?dV < oo.
[I|=r
|J|=s

Let

D:L2,(Q) = [2,,,(Q)
be the maximal closed extension and

9 L2,() - L2, ,(Q)
its Hilbert space adjoint. The Laplace-Beltrami operator [, 5 is defined as

O, =00 +00:dom O, — L? ().
Let
H™ = {p e domdNdomd : Jp =0 and domd p = 0}.

One defines the 0-Neumann operator

N:L2,(Q) - L2,(9),

as the inverse of the restriction of O, , to (H"*)1. For nonnegative integer k, one
defines the Sobolev k-space

WE(Q) = {f € L7.(Q) « | fle < +o0},

where the Sobolev norm of order k is defined as

£l = [, 3 1D sV

lal<k

a e %1 a Q2
Da:({)gﬁ) < ) , fora:(om---,OQn)a’04|:ZO‘J‘7

8x2n

and x1,...,Ts, are real coordinates for 2. Detailed information on Sobolev spaces
may be found for example in [4], [5]. Let p be a point in the boundary of Q2. Then one
can choose a neighborhood U of p and a local coordinate system (z1,...,%9,_1,p) €
R2"~! x R, satisfies the last coordinate is a local defining function of the boundary.
Call (U, (x,p)) a special boundary chart. Denote the dual variable of x by £, and
define

2n—1

<$a€>:: E: xjg%
j=1
The tangential Fourier transform for f € D(Q N U) is given in this special boundary
chart by

flen) = [, 9, p)da,
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where dv = dxy - - - dxs, 1. For each k > 0, the standard tangential Bessel potential
operator A* of order k (see e.g., Chen-Shaw [4], Section 5.2) is defined as

W)@ = [, e 1+ ]g)f fig p)de.

The tangential L?-Sobolev norm of f of order k is defined as

0 ~
A1 o = IASFI2 = [ [ @+ 16" 1F(E p)Pdg dp.

Clearly, for k > 0, this norm is weaker than the full L2-Sobolev norm of order k, since
it just measures derivatives in the tangential directions.

Let TCb2 be the complex tangent bundle to the boundary, Lyg = (pi;)|rcsq the
Levi form of b2 and A\ < Ay < --- < \,_; are the ordered eigenvalues of L;n. For
every positive number M and if o™ € C*°(Q N V), one denote by

M M M
A<t <<l

the ordered eigenvalues of the Levi form (¢}). Choose an orthonormal basis of (1, 0)-
forms wy, ws, ..., w, = dp and the dual basis of (1,0)-vector fields Ly, Lo, ..., L,; note
that T'99Q = Span{Ls, Ls, ..., L,_1}. We denote by p; and p;; the coefficients of
dp and 9p in this basis. Following Khanh and Zampieri [17] in Section 2, we have
the following definitions.

Definition 2.1. 02 is called g-pseudoconvex in a neighborhood V' of zj if there exist
a bundle = C T2 of rank ¢y < ¢ with smooth coefficients in V, say the bundle of
the first gy vector fields Ly, ..., L, of our basis of T"%0(), satisfies

q
(2.1) SN =D p;j=0 onb2NV.

Since 3712, pj; is the trace of the restricted form (pj;)|=, then Definition 2.1 depends
only on the choice of the bundle =, not of its basis. Condition (2.1) is equivalent to

(2.2) 3 Z PijULKTL K — Zpgﬂul >0,
[|=r ij=1
|K|=s—1

for any (r, s) form w with s > ¢. It is in this form that (2.1) will be applied. In some
case, it is better to consider instead of (2.2), the variant

, n—1 , q0
(2.3) o> punktng — Y. Y pilurk]® = 0.
[I|=r 4j=1 [I|=r j=1
|K|=s—1 |K|=s—1
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It is obvious that if Lyg|= is assumed to be diagonal, instead of less than or equalo to
0, then the left side of (2.3) equals

, n—1
Z Z PijULIKUT K -
[I|=r %4Jj=q+1
|[K|=5—-1
Thus, if Tis the Levi-orthogonal complement of =, then (2.3) is equivalent to Lyg|+ > 0.
The condition in the definition below generalizes to domains which are not necessarily

pseudoconvex, the celebrated P property by Catlin [3].

Definition 2.2. bQ is said to has the (¢ — P) property in V' if for every positive
number M there exists a function ¢ € C>®(Q N V) with

(i) [™] < 1 on &

.o M ey

(i) X1 A) — X7 90% > X, ](p;-‘/f|2 on QNV;

(i) S A2 =2 oM > M on 2NV,

where the constant ¢ > 0 does not depend on M. (The point here is that (ii) holds in
the whole ©, (iii) only on b£.)

There are obvious variants of (ii) and (iii) adapted to (2.3). Condition (iii) is a
modification of (ii) in Definition 2 of [14]. The bigger flexibility of our condition
consists in allowing subtraction of go%-[ for j =1,...,q0. We say that a compact subset
F Cc 2NV satisfies (¢ — P) if and only if (iii) holds for any z € F..

Theorem 2.1 ([13]). Let X be a complex manifold of complex dimension n with a
Hermitian metric g and ) be a bounded domain of X. Let 2 € X be an submanifold
with smooth boundary. Suppose the compactness estimate (3.1) holds on . Suppose
further that the d-closed (r,s)-form a is in W*(Q) and o L H"*, there exists a
constant Cy, so that the canonical solution u of Ou = «, with u L ker 0 satisfies

Julbwn < Celllalhws + ljul)
Since C=(Q) = M2, WH(Q), it follows that if « € C3(Y), then u e C5_,(Q).
3. SOLVABILITY OF 9 IN C"
Following Khanh and Zampieri [17], one obtains the following theorem.

Theorem 3.1. Let 2 be a smoothly bounded q-pseudoconvex domain in C", and
suppose that bQ) satisfies property (¢ — P) in a neighborhood V' of zy. Then for every
€ > 0 there exists a function C. € D(Q) satisfying

(3.1) lull* < e Qu,w) + Cc [[ullfy-10y »
foru e D, (ANV)Ndomd* and for any s > q. Here
Q(u,u) = 9ull® + 107wl + [[ul?,

and ||ully-1 o) is the Sobolev norm of order —1.
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The same statement holds if g-pseudoconvexity is understood in the sense of the
variant (2.3) and if (¢ — P) property has the corresponding variants.

Definition 3.1. We will refer to (3.1) as a compactness estimate.

Theorem 3.2. Let Q be the same as in Theorem 3.1. Then, for f € C’ﬁ(ﬁ), g<s<
n — 2, satisfying Of = 0, there exists u € C°_,(Q), satisfies Ou = f.

rys—1
Proof. The proof follows from the estimate (3.1) and Theorem 2.1. O
Property (q — P) is related to the d-Neumann problem by the following theorem.
Remark 3.1. It is easy to observe that (3.1) implies for u € dom[J, :
lull® < & 1B sull® + O ully, 1)

We now discuss the global regularity for N, . From the estimate (3.1) one can
derive a priori estimates for NV, ; in the Sobolev k-space.

Theorem 3.3. Let Q) be the same as in Theorem 3.1. A compactness estimate implies
boundedness of the 0-Neumann operator N, in W () for any k > 0.

Proof. By a standard fact of elliptic regularization, one sees that the global regularity
for the 0-Neumann operator N, ; holds if

(3.2) | k() S HDT,SUHW,’fs(Qw

for any u € C,‘?‘;(ﬁ) Ndom [, ;. Hence,
(33) Jall3 oy S 1Tnstllysozay + A5 D,

where A is the tangential differential operator of order k. By Theorem 3.1, the estimate
(3.1) implies that

(3.4) [DA [ £ Qusw) + CllullZy a0y -

In fact, it follows by the non-characteristic with respect to the boundary of L,,; the
operator D can be understood as D, or A.
Now we estimate the last term of (3.3), we have

|A* Dul” SIDA™ MMl + ClullZs 1
QN u ) + Ol
< < A, u, Au > +|[3, A’“}UHZ 10", A%ul?
17, (@AMl + 8. [ Al + Clul
<IIAMD, a2 + [ AF D2 + A%~ 2D2uu2+cuunwk y
<N stuls oy + 1A Dl + Cllualy s g

(©)
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where the second inequality follows by (3.4). Then the term [|A*~'Du|* can be
absorbed by the left-hand side term. By induction method, we obtain the estimate
(3.2). O

Proposition 3.1. Let Q be the same as in Theorem 3.1. Then the following are
equivalent.

(i) The validity of global compactness estimates.

(ii) The embedding of the space dom d N dom 9", provided with the graph norm

| + (19wl + 1107wl

into L} () is compact.
(iii) The O-Neumann operators

Nps: L2,(Q,E) = L2,(Q,E),

for q <'s <n—1 are compact from L2 (Q) to itself.
(iv) The canonical solution operators to d given by

5*]\[7”78 : L72“7S<Q) - L72“,s—1<Q)7
NT,S+15* : L72",8+1<Q) - L3,5<Q)7
are compact.

Proof. The equivalence of (ii) and (i) is a result of Lemma 1.1 in [13]. The general
L?-theory and the fact that L2 (Q) embeds compactly into W, (Q2) shows that (iii)
is equivalent to (ii) and (i). Finally, the equivalence of (iii) and (iv) follows from the
formula

N, s = (E*NT,S)*E*NT,S + E*Nr,s—i-l (E*Nr,s—‘rl)*a

(see [4], page 55). We refer the reader to [14] for similar calculations. O

4. SOLVABILITY OF O IN STEIN MANIFOLD

Let X be complex manifold of complex dimension n with a Hermitian metric g and
) be a bounded domain of X. Let 7 : £ — X be a vector bundle, of rank p, over X
with Hermitian metric h. Let {U,}, 7 € J, be an open covering of X by charts with
coordinates mappings z; : U; — C" satisfies E|y, is trivial, namely 7~ (U;) = U; x C,
and (zjl, z?, ..., 2}) be local coordinates on U;. Let {(;};cs be a partition of unity
subordinate to the holomorphic atlas (Uj, z;), of X. We denote by 7,.X the tangent
bundle of X at z € X. An E-valued differential (r, s)-form u on X is given locally by
a column vector u = (u',u?, ..., uP), where u®, 1 < a < p, are C-valued differential
forms of type (r,s) on X. The spaces Cp%(X, E), D, (X, E), C3(Q, E), D, (2, E)
and W}, (Q, E) are defined as in Section 2 but for E-valued forms. Let L2 (€, E) be
the Hilbert space of E-valued differential forms u on Q, of type (r, s), satisfies

p
lulle = > > [u§llv;ne < oo,

7 a=1
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where [|u$[|y,nq is defined in (2.1). Let 0 : L2 (2, E) — L? (9, E) be the maximal
closed extension of the original d and 9" : L2 (Q, E) — L?__(Q, E) its Hilbert space

r,s—1

adjoint. For k € R, we define a W¥(X, E)-norm by the following:
(4.1) ullZ oy = D NGuillEaw,),
J

where W; = z;(U;) and ¥; HCjujHi(Wj) is defined as in the Euclidean case.

Theorem 4.1. Let Q be a smoothly bounded q-pseudoconvexr domain in an of n-
dimensional Stein manifold X, n > 3, and suppose that b2 satisfies property (¢ — P)
in a neighborhood V' of z,. Let E be a vector bundle, of rank p, on X. Then, for
fe C;?f;(ﬁ, E), q < s <n—2, satisfying Of = 0 in the distribution sense in X, there
exists u € C°_,(Q, E), satisfies Ou = f in the distribution sense in X.

r,s—1

Proof. Let {U;}IL, be a finite covering of b2 by a local patching. Let ey, es,..., e, be
an orthonormal basis on E, = 771(z), for every z € U;, j € J. Thus, every E-valued
differential (r, s)-form v on X can be written locally, on Uj, as

u(z) = zi:lu“(z) eq(2),

where u® are the components of the restriction of u on U;. Since 0§) is compact, there
exists a finite number of elements of the covering {U;}, say, U;, 7 = 1,2, ..., m satisfies

vy Uy, cover DS Let {(;}7, be a partition of the unity satisfies (o € D, (),
¢ €D s(Uj),j=1,2,...,m, and

m

2@221 on €,

5=0

where {U;},;=1,.m is a covering of 0§2. Let U be a small neighborhood of a given
boundary point &, € b2 satisties U € V' € Uj,, for a certain j, € I. If u € D, ((Q, E),
0<r<mn,qg<s<n-—2 onapplying the compactness estimate of Khanh and
Zampieri [17] to each u* and adding for a = 1, ..., p, one gets compactness estimate
for ulonu

ol < @G, Cou) + Culliu 2
S €Q(u,u) + Os||“||wgsl(ﬂ)~
Similarly, for j = 1,...,m, we obtain compactness estimate for u|ony,
Gl S QG Gu) + CollGullyms o
2
< eQ(u,u) + CGHUHW;;(Q)'
Summing up over j, we obtain
2 2
(4.2) [ul|” < e Qu, u) + C |Jully-1) -

Thus the proof follows by using Theorem 2.1 and the compactness estimate (4.2). O
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Theorem 4.2. Denote by ), E and X as in Theorem 4.1. A compactness estimate
(4.2) implies boundedness of the d-Neumann operator Ny, in W (2, E) for any k > 0.

Proof. By a standard fact of elliptic regularization, one sees that the boundary global
regularity for the 0-Neumann operator NN, ; holds if

lllwe < 118 sullws,

for any u € CT5 (Q, F) Ndom O, and for any positive integer k. As in the proof of
Theorem 4.1, let U be a small neighborhood of a given boundary point &, € 02 satisfies
UeV eU,, for acertain j, € I. If u € D, ,(QE),0<r <n,q¢g<s<n-—2,
on applying the estimate (3.2) to each u® and adding for a = 1,...,p, one gets
compactness estimate for u| QnU

[Coullwe S 1180, sGoul|[w+-
Similarly, for j = 1,...,m, one gets compactness estimate for u|ony,
IGulllwe S 1BrsCiulllws S 10 sull[we.
Summing up over j, we obtain
[ullfwe S [[Brswlllws
Thus the proof follows. O

As in Proposition 3.1, one can prove the following proposition.

Proposition 4.1. Denote by 2, E and X as in Theorem 4.1. Then the following are
equivalent.

(i) The compactness estimates are valid.

(ii) The embedding of dom d N dom d", with the graph norm

[l + (19wl + [|0"u]

into L? (2, E) is compact.
(iii) The d-Neumann operator

Nyt L2 (QE) — L2 (Q,E),

for q <'s <n—1is compact from L} (Q, E) to itself.
(iv) The canonical solution operators to O are given by

O'N,,: L2 (QFE)— L%, (2 E),

Nyo10 L2 1 (Q,E) — L2 (D, B),

are compact.
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