
Kragujevac Journal of Mathematics
Volume 47(4) (2023), Pages 613–625.

GENERALIZATION OF CERTAIN INEQUALITIES CONCERNING
THE POLAR DERIVATIVE OF A POLYNOMIAL

IMTIAZ HUSSAIN1 AND A. LIMAN1

Abstract. In this paper, we prove some more general results concerning the max-
imum modulus of the polar derivative of a polynomial. A variety of interesting
results follow as special cases from our results.

1. Introduction

Let Pn denote the space of all complex polynomials P (z) := ∑n
j=0 ajz

j of degree n
and let P ′(z) be its derivative then

(1.1) max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ nmax

|z|=1

∣∣∣P (z)
∣∣∣.

Inequality (1.1) is a famous result due to Bernstein (for reference see [3]) and is best
possible with equality holds for P (z) = λzn, where λ is a complex number. Where
as concerning the maximum modulus of P (z) on the circle |z| = R > 1, we have (for
reference see [15]),

(1.2) max
|z|=R

∣∣∣P (z)
∣∣∣ ≤ Rn max

|z|=1

∣∣∣P (z)
∣∣∣, R ≥ 1.

Inequality (1.2) holds for P (z) = λzn, where λ is a complex number.
If we restrict ourselves to the class of polynomials P ∈ Pn, with P (z) ̸= 0 in |z| < 1,

then (1.1) and (1.2) can be respectively replaced by

(1.3) max
|z|=1

∣∣∣P ′(z)
∣∣∣ ≤ n

2 max
|z|=1

∣∣∣P (z)
∣∣∣
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and

(1.4) max
|z|=R≥1

∣∣∣P (z)
∣∣∣ ≤ Rn + 1

2 max
|z|=1

∣∣∣P (z)
∣∣∣.

Inequality (1.3) was conjectured by Erdös and later proved by Lax [10], where as
inequality (1.4) was proved by Ankeny and Rivlin [1].

Inequality (1.1) can be seen as a special case of the following inequality which is
also due to Bernstein [3].

Theorem 1.1. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial
of degree at most n. If |f(z)| ≤ |F (z)| for |z| = 1, then for |z| ≥ 1, we have

(1.5)
∣∣∣f ′(z)

∣∣∣ ≤
∣∣∣F ′(z)

∣∣∣.
Equality holds in (1.5) for f(z) = eiηF (z), η ∈ R.

Inequality (1.1) can be obtained from inequality (1.5) by taking F (z) = Mzn, where
M = max|z|=1 |f(z)|. In the same way, inequality (1.2) follows from the following result
which is a special case of Bernstein-Walsh lemma [14], Corollary 12.1.3.

Theorem 1.2. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial
of degree at most n. If |f(z)| ≤ |F (z)| for |z| = 1, then∣∣∣f(z)

∣∣∣ < ∣∣∣F (z)
∣∣∣, for |z| > 1,

unless f(z) = eiηF (z) for some η ∈ R.

In 2011, Govil et al. [4] proved a more general result which provides a compact
generalization of inequalities (1.1), (1.2), (1.3) and (1.4) and includes Theorem 1.1
and Theorem 1.2 as special cases. In fact, they proved that if f(z) and F (z) are as
in Theorem 1.1, then for any β with |β| ≤ 1 and R ≥ r ≥ 1, we have

(1.6)
∣∣∣f(Rz) − βf(rz)

∣∣∣ ≤
∣∣∣F (Rz) − βF (rz)

∣∣∣, for |z| ≥ 1.

Further, as a generalization of (1.6), Liman et al. [8] in the same year 2011 and under
the same hypothesis as in Theorem 1.1, proved that∣∣∣∣∣f(Rz) − βf(rz) + γ

{(
R + 1
r + 1

)n

− |β|
}
f(rz)

∣∣∣∣∣
≤
∣∣∣∣∣F (Rz) − βF (rz) + γ

{(
R + 1
r + 1

)n

− |β|
}
F (rz)

∣∣∣∣∣,(1.7)

for every β, γ ∈ C with |β| ≤ 1, |γ| ≤ 1 and R > r ≥ 1.
Jain [6] proved a result concerning the minimum modulus of polynomials by showing

that if f ∈ Pn and f(z) has all its zeros in |z| ≤ 1, then for every β with |β| ≤ 1 and
R ≥ 1,

min
|z|=1

∣∣∣∣∣f(Rz) + β
(
R + 1

2

)n

f(z)
∣∣∣∣∣ ≥

∣∣∣∣∣Rn + β
(
R + 1

2

)n
∣∣∣∣∣min

|z|=1
|f(z)|.(1.8)
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Mezerji et al. [13] besides proving some other results also obtained a generalization
of (1.8) by proving that if f ∈ Pn and f(z) has all its zeros in |z| ≤ k, k ≤ 1, then for
every |β| ≤ 1 and R ≥ 1

min
|z|=1

∣∣∣∣∣f(Rz) + β
(
R + k

1 + k

)n

f(z)
∣∣∣∣∣ ≥ 1

kn

∣∣∣∣∣Rn + β
(
R + k

1 + k

)n
∣∣∣∣∣min

|z|=1
|f(z)|.(1.9)

Recently, Kumar [7] found that there is a room for the generalization of the condition
R ≥ 1 in (1.8) and (1.9) to R ≥ r > 0 and proved that if f ∈ Pn and f(z) has all its
zeros in |z| ≤ k, k > 0, then for every β with |β| ≤ 1, |z| ≥ 1 and R ≥ r, Rr ≥ k2,

min
|z|=1

∣∣∣∣∣f(Rz) + β
(
R + k

r + k

)n

f(rz)
∣∣∣∣∣ ≥ 1

kn

∣∣∣∣∣Rn + βrn
(
R + k

r + k

)n
∣∣∣∣∣min

|z|=k
|f(z)|.(1.10)

For f ∈ Pn, let Dαf(z) denote the polar derivative of f(z) of degree n with respect
to α (see [11]) then

Dαf(z) := nf(z) + (α− z)f ′(z).
The polynomial Dαf(z) is of degree at most n − 1 and it generalizes the ordinary
derivative in the following sense:

lim
α→∞

Dαf(z)
α

:= f ′(z)

uniformly with respect to z for |z| ≤ R, R > 0.
The latest development and research can be found in the papers by Jiraphorn

Somsuwan and Meneeruk Nakprasit [16] and Abdullah Mir [12].
Recently, Liman et al. [9] besides proving some other results also proved the following

generalization of (1.6) and (1.7) to the polar derivative Dαf(z) of a polynomial f(z)
with respect to α, |α| ≥ 1.

Theorem 1.3. Let F ∈ Pn, having all its zeros in |z| ≤ 1 and f(z) be a polynomial
of degree m(≤ n) such that |f(z)| ≤ |F (z)| for |z| = 1. If α, β, γ ∈ C be such that
|α| ≥ 1, |β| ≤ 1 and |λ| < 1, then for R > r ≥ 1 and |z| ≥ 1, we have∣∣∣∣∣z

[
(n−m)

{
f(Rz) − βf(rz)

}
+Dαf(Rz) − βDαf(rz)

]

+ nλ

2 (|α| − 1)
{
f(Rz) − βf(rz)

}∣∣∣∣∣
≤
∣∣∣∣∣z
{
DαF (Rz) − βDαF (rz)

}
+ nλ

2 (|α| − 1)
{
F (Rz) − βF (rz)

}∣∣∣∣∣.(1.11)

Equality holds in (1.11) for f(z) = eiηF (z), η ∈ R.

2. Main Results

The main aim of this paper is to obtain some more general results for the maximum
modulus of the polar derivative of a polynomial under certain constraints on the
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zeros and on the functions considered. We first prove the following generalization of
inequalities (1.6) and (1.7) and of Theorem 1.3.

Theorem 2.1. Let F ∈ Pn, having all its zeros in |z| ≤ k, k > 0 and f(z) be a
polynomial of degree m(≤ n) such that

(2.1)
∣∣∣f(z)

∣∣∣ ≤ |F (z)|, for |z| = k.

If α, β, γ, λ ∈ C be such that |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1 and |λ| < 1, then for R > r,
rR ≥ k2 and |z| ≥ 1, we have∣∣∣∣∣z

[
(n−m)

{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]

+ nλ

2 (|α| − 1)
{
f(Rz) + ψf(rz)

}∣∣∣∣∣
≤
∣∣∣∣∣z
{
DαF (Rz) + ψDαF (rz)

}
+ nλ

2 (|α| − 1)
{
F (Rz) + ψF (rz)

}∣∣∣∣∣,(2.2)

where

ψ = ψk(R, r, β, γ) = γ


(
R + k

r + k

)n

− |β|

.(2.3)

The result is sharp and equality in (2.2) holds for f(z) = eiηF (z), η is real and F (z)
has all its zeros in |z| ≤ k.

We now present and discuss some consequences of Theorem 2.1. Suppose f ∈ Pn

and f(z) ̸= 0 in |z| < k, the polynomial Q(z) = znf(1
z̄
) ∈ Pn and Q(z) has all its

zeros in |z| ≤ 1
k
. Note that

|Q(z)| = 1
kn

|f(k2z)|, for |z| = 1
k
.

Applying Theorem 2.1 with F (z) replaced by knQ(z), we get the following corollary.

Corollary 2.1. If f ∈ Pn and f(z) ̸= 0 in |z| < k, k > 0, then for every |α| ≥ 1,
|β| ≤ 1, |γ| ≤ 1 and |λ| < 1, we have for R > r, rR ≥ 1

k2 and |z| ≥ 1,∣∣∣∣∣z
{
Dαf(Rk2z) + ϕDαf(rk2z)

}
+ nλ

2 (|α| − 1)
{
f(Rk2z) + ϕf(rk2z)

}∣∣∣∣∣
≤kn

∣∣∣∣∣z
{
DαQ(Rz) + ϕDαQ(rz)

}
+ nλ

2 (|α| − 1)
{
Q(Rz) + ϕQ(rz)

}∣∣∣∣∣,(2.4)

Q(z) = znf(1
z̄
) and

ϕ = ϕk(R, r, β, γ) = γ


(
Rk + 1
rk + 1

)n

− |β|

.(2.5)

Equality holds in (2.4) for f(z) = eiηQ(z), η ∈ R.
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Remark 2.1. For k = 1 and γ = 0, Corollary 2.1 in particular yields a result of Liman
et al. [9, Corollary 1.4]. Taking β = λ = 0 in Corollary 2.1 we get the following result.
Corollary 2.2. If f ∈ Pn and f(z) ̸= 0 in |z| < k, k > 0, then for every |α| ≥ 1,
|γ| ≤ 1, we have for R > r, rR ≥ 1

k2 and |z| ≥ 1,∣∣∣∣∣Dαf(Rk2z) + γ
(
Rk + 1
rk + 1

)n

Dαf(rk2z)
∣∣∣∣∣

≤kn

∣∣∣∣∣DαQ(Rz) + γ
(
Rk + 1
rk + 1

)
DαQ(rz)

∣∣∣∣∣,(2.6)

Q(z) = znf(1
z̄
).

Inequality (2.6) should be compared with a result recently proved by Kumar [7,
Lemma 2.2], where f(z) is replaced by Dαf(z), |α| ≥ 1.
Remark 2.2. For r = 1, Corollary 2.2 gives the polar derivative analog of a result
due to Mezerji et al. ([13], Lemma 4). If we take β = 0 in Theorem 2.1 we get the
following.
Corollary 2.3. Let F ∈ Pn, having all zeros in |z| ≤ k, k > 0 and f(z) be a
polynomial of degree m(≤ n) such that∣∣∣f(z)

∣∣∣ ≤
∣∣∣F (z)

∣∣∣, for |z| = k.

If α, γ, λ ∈ C be such that |α| ≥ 1, |γ| ≤ 1 and |λ| < 1, then for R > r, rR ≥ k2 and
|z| ≥ 1, we have∣∣∣∣∣z

[
(n−m)

{
f(Rz) + γ

(
R + k

r + k

)n

f(rz)
}

+Dαf(Rz) + γ
(
R + k

r + k

)n

Dαf(rz)
]

+ nλ

2 (|α| − 1)
{
f(Rz) + γ

(
R + k

r + k

)n

f(rz)
}∣∣∣∣∣

≤
∣∣∣∣∣z
{
DαF (Rz) + γ

(
R + k

r + k

)n

DαF (rz)
}

+ nλ

2 (|α| − 1)
{
F (Rz) +

(
R + k

r + k

)n

F (rz)
}∣∣∣∣∣.(2.7)

Equality holds in (2.7) for f(z) = eiηF (z), η ∈ R and F (z) has all its zeros in |z| ≤ k.

If we apply Theorem 2.1 to polynomials f(z) and zn

kn min|z|=k |f(z)|, we get the
following result.
Corollary 2.4. If f ∈ Pn and f(z) has all its zeros in |z| ≤ k, k > 0, then for every
α, β, γ, λ ∈ C such that |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1 and |λ| < 1, we have for R > r,
rR ≥ k2 and |z| ≥ 1,∣∣∣∣∣z

{
Dαf(Rz) + ψDαf(rz)

}
+ nλ

2 (|α| − 1)
{
f(Rz) + ψf(rz)

}∣∣∣∣∣
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≥n|z|n

kn

∣∣∣∣∣α(Rn−1 + ψrn−1) + λ

2 (|α| − 1)(Rn + ψrn)
∣∣∣∣∣min

|z|=k
|f(z)|,(2.8)

where ψ is defined by the equation (2.3). Equality holds in (2.8) for f(z) = azn, a ̸= 0.
Taking λ = 0 in Corollary 2.4 we get the following result.

Corollary 2.5. If f ∈ Pn and f(z) has all its zeros in |z| ≤ k, k > 0, then for every
α, β, γ,∈ C such that |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1 and for R > r, rR ≥ k2, we have

min
|z|=1

∣∣∣∣∣Dαf(Rz) + ψDαf(rz)
∣∣∣∣∣ ≥ n|α|

kn

∣∣∣∣∣Rn−1 + ψrn−1
∣∣∣∣∣min

|z|=k
|f(z)|,(2.9)

ψ is defined by the equation (2.3). Equality holds in (2.8) for f(z) = azn, a ̸= 0.
Remark 2.3. For β = 0, the above inequality (2.9) gives the polar derivative analog
of (1.10).
Theorem 2.2. Let F ∈ Pn, having all its zeros in |z| ≤ k, k > 0 and f(z) be a
polynomial of degree m(≤ n) such that∣∣∣f(z)

∣∣∣ ≤ |F (z)|, for |z| = k.

If α, β, γ,∈ C be such that |α| ≥ 1, |β| ≤ 1 and |γ| ≤ 1, then for R > r, rR ≥ k2 and
|z| ≥ 1, we have ∣∣∣∣∣z

[
(n−m)

{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]∣∣∣∣∣
+ n

2 (|α| − 1)
∣∣∣∣∣F (Rz) + ψF (rz)

∣∣∣∣∣
≤
∣∣∣∣∣z
{
DαF (Rz) + ψDαF (rz)

}∣∣∣∣∣+ n

2 (|α| − 1)
∣∣∣∣∣f(Rz) + ψf(rz)

∣∣∣∣∣,(2.10)

where ψ is defined by the equation (2.3). Equality holds in (2.10) for f(z) = eiηF (z),
η ∈ R and F (z) has all its zeros in |z| ≤ k.

Remark 2.4. γ = 0 and k = 1, Theorem 2.2 gives in particular a result of Liman et al.
[9, Theorem 2]. From Theorem 2.2 we have the following.
Corollary 2.6. If f ∈ Pn, and f(z) does not vanish in |z| < k, k > 0, then for every
α, β, γ ∈ C with |α| ≥ 1, |β| ≤ 1, |γ| ≤ 1, we have for R > r, rR ≥ 1

k2 and |z| ≥ 1,∣∣∣∣∣z
{
Dαf(Rk2z) + ϕDαf(rk2z)

}∣∣∣∣∣+ n

2 (|α| − 1)kn

∣∣∣∣∣Q(Rz) + ϕQ(rz)
∣∣∣∣∣

≤kn

∣∣∣∣∣z
{
DαQ(Rz) + ϕDαQ(rz)

}∣∣∣∣∣+ n

2 (|α| − 1)
∣∣∣∣∣f(Rk2z) + ϕf(rk2z)

∣∣∣∣∣,(2.11)

where Q(z) = znf(1
z̄
) and ϕ is defined by the equation (2.5).

Remark 2.5. We recover a result of Liman et al. [9, Corollary 2.3] from Corollary 2.5
when we take γ = 0 and k = 1.
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3. Lemmas

We need the following lemmas to prove our theorems. The first lemma is due to
Aziz and Zargar [2].

Lemma 3.1. Let f ∈ Pn, having all its zeros in |z| ≤ k, k ≥ 0, then for every R > r,
rR ≥ k2 ∣∣∣f(Rz)

∣∣∣ > (
R + k

r + k

)n∣∣∣f(rz)
∣∣∣, for |z| = 1.

Lemma 3.2. Let f ∈ Pn, having all its zeros in |z| ≤ 1, then for every α with |α| ≥ 1,

2
∣∣∣zDαf(z)

∣∣∣ ≥ n(|α| − 1)
∣∣∣f(z)

∣∣∣, for |z| = 1.

The above lemma is due to Shah [17].

Lemma 3.3. Let f ∈ Pn, having all its zeros in |z| ≤ k, then for |α| ≥ k, the polar
derivative

Dαf(z) := nf(z) + (α− z)f ′(z),
of f(z) at the point α also has all its zeros in |z| ≤ k.

The above lemma is due to Laguerre [11, page 49].

4. Proof of the Theorems

Proof of Theorem 2.1. By hypothesis, F (z) is a polynomial of degree n having all its
zeros in |z| ≤ k and f(z) is a polynomial of degree at most n such that

(4.1)
∣∣∣f(z)

∣∣∣ ≤ |F (z)|, for |z| = k,

therefore, if F (z) has a zero of multiplicity ν at z = keiθ0 , then f(z) must also have
a zero of multiplicity at least ν at z = keiθ0 . We assume that f(z)

F (z) is not a constant,
otherwise, the inequality (2.2) is obvious. It follows by the maximum modulus principle
that ∣∣∣f(z)

∣∣∣ < |F (z)|, for |z| > k.

Suppose F (z) has m zeros on |z| = k, where 0 ≤ m < n, so that we can write

F (z) = F1(z)F2(z),

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = k and F2(z) is a
polynomial of degree n−m whose all zeros lie in |z| < k. This gives with the help of
(4.1) that

f(z) = P1(z)F1(z),
where P1(z) is a polynomial of degree at most n−m. Now, from inequality (4.1), we
get

|P1(z)| ≤ |F2(z)|, for |z| = k,
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and F2(z) ̸= 0 for |z| = k. Therefore, for a given complex number δ with |δ| > 1, it
follows from Rouche’s theorem that the polynomial P1(z)−δF2(z) of degree n−m ≥ 1
has all its zeros in |z| < k. Hence, the polynomial

P (z) = F1(z)(P1(z) − δF2(z)) = f(z) − δF (z)
has all its zeros in |z| ≤ k with at least one zero in |z| < k, so that we can write

P (z) = (z − ηeiγ)H(z),
where η < k and H(z) is a polynomial of degree n− 1 having all its zeros in |z| ≤ k.
Applying Lemma 3.1 to H(z), we obtain for R > r, rR ≥ k2 and 0 ≤ θ < 2π,∣∣∣P (Reiθ)

∣∣∣ =
∣∣∣∣∣Reiθ − ηeiγ

∣∣∣∣∣∣∣∣H(Reiθ)
∣∣∣

>

∣∣∣∣∣Reiθ − ηeiγ

∣∣∣∣∣
(
R + k

r + k

)n−1∣∣∣H(reiθ)
∣∣∣

=
(
R + k

r + k

)n−1
∣∣∣Reiθ − ηeiγ

∣∣∣∣∣∣reiθ − ηeiγ
∣∣∣
∣∣∣∣∣reiθ − ηeiγ

∣∣∣∣∣∣∣∣H(reiθ)
∣∣∣.(4.2)

Now for 0 ≤ θ < 2π, we have∣∣∣∣∣Reiθ − ηeiγ

reiθ − ηeiγ

∣∣∣∣∣
2

=R
2 + η2 − 2Rη cos(θ − γ)
r2 + η2 − 2rη cos(θ − γ)

≥
(
R + η

r + η

)2

, for R > r and rR ≥ k2

>

(
R + k

r + k

)2

, since η < k.

This implies ∣∣∣∣∣Reiθ − ηeiγ

reiθ − ηeiγ

∣∣∣∣∣ > R + k

r + k
,

which on using in (4.2) gives for R > r, rR ≥ k2 and 0 ≤ θ < 2π,∣∣∣P (Reiθ)
∣∣∣ > (

R + k

r + k

)n∣∣∣P (reiθ)
∣∣∣.

Equivalently,

(4.3)
∣∣∣P (Rz)

∣∣∣ > (
R + k

r + k

)n∣∣∣P (rz)
∣∣∣,

for R > r, rR ≥ k2 and |z| = 1. This implies for every |β| ≤ 1, R > r, rR ≥ k2 and
|z| = 1, ∣∣∣P (Rz) − βP (rz)

∣∣∣ ≥
∣∣∣P (Rz)

∣∣∣− |β|
∣∣∣P (rz)

∣∣∣ > {(
R + k

r + k

)n

− |β|
}∣∣∣P (rz)

∣∣∣.(4.4)
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Again, since r < R, it follows that
(

r+k
R+k

)n

< 1, inequality (4.3) implies that

|P (rz)| < |P (Rz)|, for |z| = 1.
Also, all the zeros of P (Rz) lie in |z| ≤ k

R
and R2 > rR ≥ k2, we have k

R
< 1. A direct

application of Rouche’s theorem shows that the polynomial P (Rz)−βf(rz) has all its
zeros in |z| < 1, for every |β| ≤ 1. Applying Rouche’s theorem again, it follows from
(4.4) that for every |γ| ≤ 1, |β| ≤ 1, R > r, rR ≥ k2, all the zeros of the polynomial

g(z) := P (Rz) − βP (rz) + γ

{(
R + k

r + k

)n

− |β|
}
P (rz) = P (Rz) + ψP (rz)(4.5)

lie in |z| < 1. Using Lemma 3.2 we get for every α ∈ C with |α| ≥ 1 and |z| = 1

2
∣∣∣zDαg(z)

∣∣∣ ≥ n(|α| − 1)
∣∣∣g(z)∣∣∣.

Hence, for any complex number λ with |λ| < 1, we have for |z| = 1,

2
∣∣∣zDαg(z)

∣∣∣ > n|λ|(|α| − 1)
∣∣∣g(z)∣∣∣.

Therefore, it follows by Lemma 3.3 that all the zeros of
W (z) :=2zDαg(z) + nλ(|α| − 1)g(z)

=2zDαP (Rz) + 2zψDαP (rz) + nλ
(
|α| − 1

)(
P (Rz) + ψP (rz)

)
(4.6)

lie in |z| < 1.
Replacing P (z) by f(z) − δF (z) and using definition of polar derivative give

W (z) =2z
[
n
{
f(Rz) − δF (Rz)

}
+ (α−Rz)

{
f(Rz) − δF (Rz)

}′
]

+ 2zψ
[
n
{
f(rz) − δF (rz)

}
+ (α− rz)

{
f(rz) − δF (rz)

}′
]

+ nλ(|α| − 1)
{
f(Rz) − δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz) − δF (rz)

}
,

which on simplification gives

W (z) =2z
[
(n−m)f(Rz) +mf(Rz) + (α−Rz)

(
f(Rz)

)′

− δ
{
nF (rz) + (α− rz)

(
F (Rz)

)′}]

+ 2zψ
[
(n−m)f(rz) +mf(rz) + (α− rz)

(
f(rz)

)′

− δ
{
nF (rz) + (α− rz)

(
F (rz)

)′}]

+ nλ(|α| − 1)
{
f(Rz) − δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz) − δF (rz)

}
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=2z
{(
n−m)f(Rz) +Dαf(Rz) − δDαF (Rz)

}
+ 2zψ

{(
n−m)f(rz) +Dαf(rz) − δDαF (rz)

}
+ nλ(|α| − 1)

{
f(Rz) − δF (Rz)

}
+ nλψ(|α| − 1)

{
f(rz) − δF (rz)

}
=2z

{
(n−m)f(Rz) + ψ(n−m)f(rz) +Dαf(Rz) + ψDαf(rz)

}
+ nλψ(|α| − 1)f(Rz) + nλψ(|α| − 1)f(rz)

− δ
{

2zDαF (Rz) + 2zψDαF (rz)

+ nλ(|α| − 1)F (Rz) + nλψ(|α| − 1)F (rz)
}
.(4.7)

Since by (4.6), W (z) has all its zeros in |z| < 1, therefore, by (4.7), we get for |z| ≥ 1∣∣∣∣∣z
[
(n−m)

{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]

+ nλ

2 (|α| − 1)
{
f(Rz) + ψf(rz)

}∣∣∣∣∣
≤
∣∣∣∣∣z
{
DαF (Rz) + ψDαF (rz)

}
+ nλ

2 (|α| − 1)
{
F (Rz) + ψF (rz)

}∣∣∣∣∣.(4.8)

To see that the inequality (4.8) holds, note that if the inequality (4.8) is not true,
then there is a point z = z0 with |z0| ≥ 1, such that∣∣∣∣∣z0

[
(n−m)

{
f(Rz0) + ψf(rz0)

}
+Dαf(Rz0) + ψDαf(rz0)

]

+ nλ

2 (|α| − 1)
{
f(Rz0) + ψf(rz0)

}∣∣∣∣∣
>

∣∣∣∣∣z0

{
DαF (Rz0) + ψDαF (rz0)

}
+ nλ

2 (|α| − 1)
{
F (Rz0) + ψF (rz0)

}∣∣∣∣∣.(4.9)

Now, because by hypothesis all the zeros of F (z) lie in |z| ≤ k, the polynomial F (Rz)
has all its zeros in |z| ≤ k

R
< 1, and therefore, if we use Rouche’s theorem and Lemmas

3.1 and 3.3 and argument similar to the above we will get that all the zeros of

z
(
DαF (Rz) + ψDαF (rz)

)
+ nλ

2 (|α| − 1)
{
F (Rz) + ψF (rz)

}
lie in |z| < 1 for every |α| ≥ 1, |λ| < 1 and R > r, rR ≥ k2, that is,

z
(
DαF (Rz0) + ψDαF (rz0)

)
+ nλ

2 (|α| − 1)
{
F (Rz0) + ψF (rz0)

}
̸= 0,
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for every z0 with |z0| ≥ 1. Therefore, if we take

δ =
z0

[
(n−m)

{
f(Rz0) + ψf(rz0)

}
+Dαf(Rz0) + ψDαf(rz0)

]

z0

(
DαF (Rz0) + ψF (rz0)Dα

)
+ nλ

2 (|α| − 1)
{
F (Rz0) + ψF (rz0)

}

+
nλ
2 (|α| − 1)

{
f(Rz0) + ψf(rz0)

}
z0

(
DαF (Rz0) + ψF (rz0)Dα

)
+ nλ

2 (|α| − 1)
{
F (Rz0) + ψF (rz0)

} ,
then δ is a well-defined real or complex number, and in view of (4.9) we also have
|δ| > 1. Hence, with the choice of δ, we get from (4.7) that W (z0) = 0 for some z0,
satisfying |z0| ≥ 1, which is clearly a contradiction to the fact that all the zeros of
W (z) lie in |z| < 1. Thus for every R > r, rR ≥ k2, |α| ≥ 1, |λ| < 1 and |z| ≥ 1,
inequality (4.8) holds and this completes the proof of Theorem 2.1. □

Proof of Theorem 2.2. Since all the zeros of F (z) lie in |z| ≤ k, k > 0, for R > r,
rR ≥ k2, |β| ≤ 1, |γ| ≤ 1, it follows as in the proof of Theorem 2.1, that all the zeros
of

h(z) := F (Rz) − βF (rz) + γ

{(
R + k

r + k

)n

− |β|
}
F (rz) = F (Rz) + ψF (rz)

lie in |z| < 1. Hence, by Lemma 3.2 we get for |α| ≥ 1,
2
∣∣∣zDαh(z)

∣∣∣ ≥ n(|α| − 1)
∣∣∣h(z)

∣∣∣, for |z| ≥ 1.
This gives for every λ with |λ| < 1∣∣∣∣∣z

{
DαF (Rz) + ψDαF (rz)

}∣∣∣∣∣− n|λ|
2 (|α| − 1)

∣∣∣F (Rz) + ψF (rz)
∣∣∣ ≥ 0,(4.10)

for |z| ≥ 1. Therefore, it is possible to choose the argument of λ in the right hand
side of (4.8) such that for |z| ≥ 1∣∣∣∣∣z

{
DαF (Rz) + ψDαF (rz)

}
+ nλ

2 (|α| − 1)
{
F (Rz) + ψF (rz)

}∣∣∣∣∣
=
∣∣∣∣∣z
{
DαF (Rz) + ψDαF (rz)

}∣∣∣∣∣− n|λ|
2 (|α| − 1)

∣∣∣∣F (Rz) + ψF (rz)
∣∣∣∣.(4.11)

Hence, from (4.8), we get by using (4.11) for |z| ≥ 1∣∣∣∣∣z
[
(n−m)

{
f(Rz) + ψf(rz)

}
+Dαf(Rz) + ψDαf(rz)

]∣∣∣∣∣
− n|λ|

2 (|α| − 1)
∣∣∣f(Rz) + ψf(rz)

∣∣∣
≤
∣∣∣∣∣z
{
DαF (Rz) + ψDαF (rz)

}∣∣∣∣∣− n|λ|
2 (|α| − 1)

∣∣∣F (Rz) + ψF (rz)
∣∣∣.(4.12)



624 I. HUSSAIN AND A. LIMAN

Letting |λ| → 1 in (4.12), we immediately get (2.10) and this proves Theorem 2.2
completely. □
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