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PICTURE FUZZY SUBSPACE OF A CRISP VECTOR SPACE

SHOVAN DOGRA1 AND MADHUMANGAL PAL2

Abstract. In this paper, the notion of picture fuzzy subspace of a crisp vector space
is established and some related properties are explored on the basis of some basic
operations (intersection, Cartesian product, union, (θ, ϕ, ψ)-cut etc.) on picture
fuzzy sets. Direct sum of two picture fuzzy subspaces is initiated here over the
direct sum of two crisp vector spaces. Also, the concepts of picture fuzzy linear
transformation and picture fuzzy linearly independent set of vectors are introduced
and some corresponding results are presented. Isomorphism between two picture
fuzzy subspaces is developed here as an extension of isomorphism between two fuzzy
subspaces.

1. Introduction

Vector space and subspace of a vector space are two pioneer concepts in the field of
algebra. Rosenfeld [13] applied the notion of fuzzy set to group theory and established
the idea of fuzzy group after the initiation of fuzzy set by Zadeh [15]. After that many
researchers worked on different topics of algebra in the environment of fuzzy set. The
concept of fuzzy subspace was initiated by Katsaras and Liu [10]. Vector space in fuzzy
sense under triangular norm was studied by Das [5]. Kumar [11] enriched the idea of
Das. The concept of picture fuzzy set, a generalization of the concepts of fuzzy set and
intuitionistic fuzzy set, was introduced by Cuong [4]. With the advancement of time,
different kinds of research works under picture fuzzy environment were performed by
several researchers [6–9,12,14].
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In this paper, we will introduce the notion of picture fuzzy subspace of a crisp vector
space and study some basic results related to it on the basis of some basic operations
on picture fuzzy sets. Also, we will establish the concepts of direct sum of two
picture fuzzy subspaces, isomorphism between two picture fuzzy subspaces, picture
fuzzy linear transformation and picture fuzzy linearly independent set of vectors and
explore some properties connected to these.

2. Preliminaries

In the current section, we will call again some basic concepts about fuzzy set (FS),
fuzzy subspace (FSS) of a crisp vector space (crisp VS), intuitionistic fuzzy set (IFS),
picture fuzzy set (PFS) and some basic operations on picture fuzzy sets (PFSs).
Definition 2.1 ([15]). Let A be the set of universe. Then a FS P over A is defined
as P = {(a, µP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the measure of membership of a
in P .

Togethering the concepts of FS and subspace of a crisp VS, Kumar defined FSS of
a crisp VS as follows.
Definition 2.2 ([11]). Let V be a crisp VS over the field F and P = {(a, µP (a)) :
a ∈ V } be a FS in V . Then P is said to be FSS of V if the below stated conditions
are meet.

(i) µP (a1 − a2) ⩾ µP (a1) ∧ µP (a2).
(ii) µP (ra1) ⩾ µP (a) for all a1, a2 ∈ V and for all r ∈ F .
The measure of non-membership was missing in FS. Including this type of uncer-

tainty, Atanassov [1] defined IFS.
Definition 2.3 ([1]). Let A be the set of universe. An IFS P over A is defined as
P = {(a, µP (a), vP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the measure of membership
of a in P and vP (a) ∈ [0, 1] is the measure of non-membership of a in P with the
condition 0 ⩽ µP (a) + vP (a) ⩽ 1 for all a ∈ A.

It can be noted that sP (a)= 1 − (µP (a) + vP (a)) is the measure of suspicion of a in
P , which excludes the measure of membership and the measure of non-membership.

Including more possible types of uncertainty, Cuong [4] defined PFS generalizing
the concepts of FS and IFS.
Definition 2.4 ([4]). Let A be the set of universe. Then a PFS P over the universe
A is defined as P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A}, where µP (a) ∈ [0, 1] is the
measure of positive membership of a in P , ηP (a) ∈ [0, 1] is the measure of neutral
membership of a in P and vP (a) ∈ [0, 1] is the measure of negative membership of a
in P with the condition 0 ⩽ µP (a) + ηP (a) + vP (a) ⩽ 1 for all a ∈ A. For all a ∈ A,
1 − (µP (a) + ηP (a) + vP (a)) is the measure of denial membership a in P .

The basic operations on PFSs consist of equality, union and intersection are defined
below.
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Definition 2.5 ([4]). Let P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A} and Q = {(a, µQ(a),
ηQ(a), vQ(a)) : a ∈ A} be two PFSs over the universe A. Then

(i) P ⊆ Q if and only if µP (a) ⩽ µQ(a), ηP (a) ⩽ ηQ(a), vP (a) ⩾ vQ(a) for all a ∈ A;
(ii) P = Q if and only if µP (a) = µQ(a), ηP (a) = ηQ(a), vP (a) = vQ(a) for all a ∈ A;
(iii) P ∪ Q = {(a,max(µP (a), µQ(a)),min(ηP (a), ηQ(a)),min(vP (a), vQ(a))) : a ∈

A};
(iv) P ∩ Q = {(a,min(µP (a), µQ(a)),min(ηP (a), ηQ(a)),max(vP (a), vQ(a))) : a ∈

A}.

Definition 2.6. Let P = {(a, µP , ηP , vP ) : a ∈ A} be a PFS over the universe A.
Then (θ, ϕ, ψ)-cut of P is the crisp set in A denoted by Cθ,ϕ,ψ(P ) and is defined as
Cθ,ϕ,ψ(P ) = {a ∈ A : µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ}, where θ, ϕ, ψ ∈ [0, 1] with
the condition 0 ⩽ θ + ϕ+ ψ ⩽ 1.

Definition 2.7. Let A1 and A2 be two sets of universe. Let h : A1 → A2 be a surjective
mapping and P = {(a1, µP (a1), ηP (a1), vP (a1)) : a1 ∈ A1} be a PFS in A1. Then image
of P under the map h is the PFS h(P ) = {(a2, µh(P )(a2), ηh(P )(a2), vh(P )(a2)) : a2 ∈
A2}, where

µh(P )(a2) = ∨
a1∈h−1(a2)

µP (a1), ηh(P )(a2) = ∧
a1∈h−1(a2)

ηP (a1)

and
vh(P )(a2) = ∧

a1∈h−1(a2)
vP (a1),

for all a2 ∈ A2.

Definition 2.8. Let A1 and A2 be two sets of universe. Let h : A1 → A2 be a mapping
and Q = {(a2, µQ(a2), ηQ(a2), vQ(a2)) : a2 ∈ A2} be a PFS in A2. Then inverse image
of Q under the map h is the PFS h−1(Q) = {(a1, µh−1(Q)(a1), ηh−1(Q)(a1), vh−1(Q)(a1)) :
a1 ∈ A1}, where µh−1(Q)(a1) = µQ(h(a1)), ηh−1(Q)(a1) = ηQ(h(a1)) and vh−1(Q)(a1) =
vQ(h(a1)) for all a1 ∈ A1.

Definition 2.9. Let P = {(a1, µP (a1), ηP (a1), vP (a1)) : a1 ∈ A1} and Q = {(a2,
µQ(a2), ηQ(a2), vQ(a2)) : a2 ∈ A2} be two PFSs over A1 and A2 respectively, where
A1, A2 be two sets of universe. Then the Cartesian product of P and Q is the PFS
P × Q={((a, b), µP×Q((a, b)), ηP×Q((a, b)), vP×Q((a, b))) : (a, b) ∈ A1 × A2}, where
µP×Q((a, b)) = µP (a)∧µQ(b), ηP×Q((a, b)) = ηP (a)∧ηQ(b) and vP×Q((a, b)) = vP (a)∨
vQ(b) for all (a, b) ∈ A1 × A2.

Throughout the paper, we write PFS P = {(a, µP (a), ηP (a), vP (a)) : a ∈ A} as
P = (µP , ηP , vP ).

Now, it is time to introduce picture fuzzy subspace (PFSS) of a crisp vector space
(crisp VS).
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3. Picture Fuzzy Subspace

In the current section, the concept of PFSS is initiated and some basic results on
PFSS are explored on the basis of intersection, union, Cartesian product and (θ, ϕ, ψ)-
cut on PFSs. Also, some properties of PFSS under image and inverse image of PFS
are studied when the map is a linear map in crisp sense.

Now, let us define PFSS of a crisp VS.
Definition 3.1. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a PFS
in V . Then P is said to be a PFSS of V if

(i) µP (a−b) ⩾ µP (a)∧µP (b), ηP (a−b) ⩾ ηP (a)∧ηP (b) and vP (a−b) ⩽ vP (a)∨vP (b);
(ii) µP (ra) ⩾ µP (a), ηP (ra) ⩾ ηP (a) ∧ ηP (b) and vP (ra) ⩽ vP (a) for all a, b ∈ V

and for all r ∈ F .
Proposition 3.1. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a
PFSS of V . Also, let ρ be the null vector in V . Then

(i) µP (ρ) ⩾ µP (a), ηP (ρ) ⩾ ηP (a), vP (ρ) ⩽ vP (a);
(ii) µP (ra) = µP (a), ηP (ra) = ηP (a) and vP (ra) = vP (a) for all a ∈ V and for any

non-zero r ∈ F .
Proof. (i) Since P is a PFSS of V , therefore

µP (ρ) = µP (a− a) ⩾ µP (a) ∧ µP (a) = µP (a),
ηP (ρ) = ηP (a− a) ⩾ ηP (a) ∧ ηP (a) = ηP (a),
vP (ρ) = vP (a− a) ⩽ vP (a) ∨ vP (a) = vP (a).

Thus, it is obtained that µP (ρ) ⩾ µP (a), ηP (ρ) ⩾ ηP (a) and vP (ρ) ⩽ vP (a) for all
a ∈ V .

(ii) Since P is a PFSS of V therefore
µP (ra) ⩾ µP (a), ηP (ra) ⩾ ηP (a) and vP (ra) ⩽ vP (a),

for all a ∈ V and for all r ∈ F . Let r be a non-zero scalar. Then
µP (a) = µP (r−1(ra)) ⩾ µP (ra) [because P is a PFSS of V ],
ηP (a) = ηP (r−1(ra)) ⩾ ηP (ra) [because P is a PFSS of V ],
vP (a) = vP (r−1(ra)) ⩽ vP (ra) [because P is a PFSS of V ],

for all a ∈ V . Consequently, µP (ra) = µP (a), ηP (ra) = ηP (a) and vP (ra) = vP (a) for
all a ∈ V and for any non-zero r ∈ F . □

Proposition 3.2. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a
PFS in V . Then P is a PFSS of V if and only if µP (ra + sb) ⩾ µP (a) ∧ µP (b),
ηP (ra+ sb) ⩾ ηP (a) ∧ ηP (b) and vP (ra+ sb) ⩽ vP (a) ∨ vP (b) for all a, b ∈ V and for
all r, s ∈ F .
Proof. Let us suppose that P is a PFSS of V . Therefore,

µP (ra+ sb) = µP (ra− (−sb)) ⩾ µP (ra) ∧ µP ((−s)b) ⩾ µP (a) ∧ µP (b),
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ηP (ra+ sb) = ηP (ra− (−sb)) ⩾ ηP (ra) ∧ ηP ((−s)b) ⩾ ηP (a) ∧ ηP (b),
vP (ra+ sb) = vP (ra− (−sb)) ⩽ vP (ra) ∨ vP ((−s)b) ⩽ vP (a) ∨ vP (b),

for all a, b ∈ V and for all r, s ∈ F . Thus, it is obtained that µP (ra+ sb) ⩾ µP (a) ∧
µP (b), ηP (ra + sb) ⩾ ηP (a) ∧ ηP (b) and vP (ra + sb) ⩽ vP (a) ∨ vP (b) for all a, b ∈ V
and for all r, s ∈ F .

Conversely, let µP (ra + sb) ⩾ µP (a) ∧ µP (b), ηP (ra + sb) ⩾ ηP (a) ∧ ηP (b) and
vP (ra+ sb) ⩽ vP (a) ∨ vP (b) for all a, b ∈ V and for all r, s ∈ F . Let us suppose that
ρ be the null vector in V .

Now, setting r = 1 and s = −1, it is obtained that µP (a − b) ⩾ µP (a) ∧ µP (b),
ηP (a− b) ⩾ ηP (a) ∧ ηP (b) and vP (a− b) ⩽ vP (a) ∨ vP (b) for all a, b ∈ V . Now, setting
a = b, it is obtained that

µP (a− a) ⩾ µP (a) ∧ µP (a) i.e. µP (ρ) ⩾ µP (a),
ηP (a− a) ⩾ ηP (a) ∧ ηP (a) i.e. ηP (ρ) ⩾ ηP (a),
vP (a− a) ⩽ vP (a) ∨ vP (a) i.e. vP (ρ) ⩽ vP (a), for all a ∈ V .

Therefore,
µP (ra) = µP (ra+ sρ) ⩾ µP (a) ∧ µP (ρ) = µP (a),
ηP (ra) = ηP (ra+ sρ) ⩾ ηP (a) ∧ ηP (ρ) = ηP (a),
vP (ra) = vP (ra+ sρ) ⩽ vP (a) ∨ vP (ρ) = vP (a), for all a ∈ V and for all r ∈ F .

Consequently, P is a PFSS of V . □

Example 3.1. Let us consider a crisp VS V = R3 over the field F = R and a PFS
P = (µP , ηP , vP ) in V defined below.

µP (a) =
{

0.3, when a ∈ {(a1, a2, 0) : a1, a2 ∈ R},
0.2, otherwise,

ηP (a) =
{

0.35, when a ∈ {(a1, a2, 0) : a1, a2 ∈ R},
0.15, otherwise,

vP (a) =
{

0.15, when a ∈ {(a1, a2, 0) : a1, a2 ∈ R},
0.45, otherwise.

Clearly, P is a PFSS of V .

Proposition 3.3. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a
PFSS of V . If for a, b ∈ V , µP (a−b) = µP (ρ), ηP (a−b) = ηP (ρ) and vP (a−b) = vP (ρ)
then µP (a) = µP (b), ηP (a) = ηP (b) and vP (a) = vP (b), where ρ be the null vector in
V .

Proof. Here it is observed that
µP (a) = µP ((a− b) + b) ⩾ µP (a− b) ∧ µP (b) [because P is a PFSS of V ]

= µP (ρ) ∧ µP (b)
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= µP (b) [by Proposition 3.1],
ηP (a) = ηP ((a− b) + b) ⩾ ηP (a− b) ∧ ηP (b) [because P is a PFSS of V ]

= ηP (ρ) ∧ ηP (b)
= ηP (b) [by Proposition 3.1],

vP (a) = vP ((a− b) + b) ⩽ vP (a− b) ∨ vP (b) [because P is a PFSS of V ]
= vP (ρ) ∨ vP (b)
= vP (b) [by Proposition 3.1].

Thus, µP (a) ⩾ µP (b), ηP (a) ⩾ ηP (b) and vP (a) ⩽ vP (b).
Also,
µP (b) = µP (a− (a− b))) = µP (a+ (−1)(a− b))

⩾ µP (a) ∧ µP (a− b) [because P is a PFSS of V ]
= µP (a) ∧ µP (ρ)
= µP (a) [by Proposition 3.1],

ηP (b) = ηP (a− (a− b)) = ηP (a+ (−1)(a− b))
⩾ ηP (a) ∧ ηP (a− b) [because P is a PFSS of V ]
= ηP (a) ∧ ηP (ρ)
= ηP (a) [by Proposition 3.1],

vP (b) = vP (a− (a− b)) = vP (a+ (−1)(a− b))
⩽ vP (a) ∨ vP (a− b) [becuase P is a PFSS of V ]
= vP (a) ∨ vP (ρ)
= vP (a) [by Proposition 3.1].

Thus, µP (b) ⩾ µP (a), ηP (b) ⩾ ηP (a) and vP (b) ⩽ vP (a).
Consequently, it is obtained that µP (a) = µP (b), ηP (a) = ηP (b) and vP (a) =

vP (b). □

Proposition 3.4. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be
a PFSS of V . If for a, b ∈ V , µP (a) < µP (b), ηP (a) < ηP (b) and vP (a) > vP (b)
hold then µP (a − b) = µP (a) = µP (b − a), ηP (a − b) = ηP (a) = ηP (b − a) and
vP (a− b) = vP (a) = vP (b− a).

Proof. It is observed that
µP (a− b) ⩾ µP (a) ∧ µP (b) [because P is a PFSS of V ]

= µP (a) [as µP (a) < µP (b)],
ηP (a− b) ⩾ ηP (a) ∧ ηP (b) [because P is a PFSS of V ]

= ηP (a) [as ηP (a) < ηP (b)],
vP (a− b) ⩽ vP (a) ∨ vP (b) [because P is a PFSS of V ]
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= vP (a) [as vP (a) > vP (b)].

Thus, it is obtained that µP (a− b) ⩾ µP (a), ηP (a− b) ⩾ ηP (a) and vP (a− b) ⩽ vP (a).
Also,

µP (a) ⩾ µP (a− b) ∧ µP (b) [because P is a PFSS of V ]
= µP (a− b) or µP (b),

ηP (a) ⩾ ηP (a− b) ∧ ηP (b) [because P is a PFSS of V ]
= ηP (a− b) or ηP (b),

vP (a) ⩽ vP (a− b) ∨ vP (b) [because P is a PFSS of V ]
= vP (a− b) or vP (b).

If µP (a) ⩾ µP (b), ηP (a) ⩾ ηP (b) and vP (a) ⩽ vP (b) then they contradict the given
conditions µP (a) < µP (b), ηP (a) < ηP (b) and vP (a) > vP (b). So, it follows that
µP (a) ⩾ µP (a− b), ηP (a) ⩾ ηP (a− b) and vP (a) ⩽ vP (a− b).

Consequently, it is obtained that µP (a) = µP (a − b), ηP (a) = ηP (a − b) and
vP (a) = vP (a− b).

Moreover, it is clear that µP (a − b) = µP (−(b − a)) = µP (b − a), ηP (a − b) =
ηP (−(b− a)) = ηP (b− a) and vP (a− b) = vP (−(b− a)) = vP (b− a) [by Proposition
3.1].

Consequently, µP (a− b) = µP (b− a) = µP (a), ηP (a− b) = ηP (b− a) = ηP (a) and
vP (a− b) = vP (b− a) = vP (a). □

Proposition 3.5. Let V be a crisp VS over the field F and P = (µP , ηP , vP ), Q =
(µQ, ηQ, vQ) be two PFSS of V . Then P ∩Q is a PFSS of V .

Proof. Let P ∩ Q = R = (µR, ηR, vR), where µR(a) = µP (a) ∧ µQ(a), ηR(a) =
ηP (a) ∧ ηQ(a) and vR(a) = vP (a) ∨ vQ(a) for all a ∈ V .

Now,

µR(ra+ sb) = µP (ra+ sb) ∧ µQ(ra+ sb)
⩾ (µP (a) ∧ µP (b)) ∧ (µQ(a) ∧ µQ(b)) [because P,Q are PFSSs of V ]
= (µP (a) ∧ µQ(a)) ∧ (µP (b) ∧ µQ(b))
= µR(a) ∧ µR(b),

ηR(ra+ sb) = ηP (ra+ sb) ∧ ηQ(ra+ sb)
⩾ (ηP (a) ∧ ηP (b)) ∧ (ηQ(a) ∧ ηQ(b)) [because P,Q are PFSSs of V ]
= (ηP (a) ∧ ηQ(a)) ∧ (ηP (b) ∧ ηQ(b))
= ηR(a) ∧ ηR(b),

vR(ra+ sb) = vP (ra+ sb) ∨ vQ(ra+ sb)
⩽ (vP (a) ∨ vP (b)) ∨ (vQ(a) ∨ vQ(b)) [because P,Q are PFSSs of V ]
= (vP (a) ∨ vQ(a)) ∨ (vP (b) ∨ vQ(b))
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= vR(a) ∨ vR(b), for all a, b ∈ V and all r, s ∈ F .

Consequently, R = P ∩Q is a PFSS of V .
Thus, we have proved that the intersection of two PFSSs is a PFSS. But union of

two PFSSs is not necessarily a PFSS. This can be proved by two examples. If P,Q
be two PFSSs of a crisp VS V over the field F then Example 3.2 shows that P ∪Q is
not a PFSS of V while Example 3.3 shows that P ∪Q is a PFSS of V . □

Example 3.2. Let us consider a crisp VS V = R2 over the field F = R and two PFSs
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) in V defined below.

µP (a) =
{

0.45, when a = (k, 0) for some k ̸= 0 or a = (0, 0),
0.1, otherwise,

ηP (a) =
{

0.35, when a = (k, 0) for some k ̸= 0 or a = (0, 0),
0.15, otherwise,

vP (a) =
{

0.1, when a = (k, 0) for some k ̸= 0 or a = (0, 0),
0.4, otherwise,

and
µQ(a) =

{
0.4, when a = (0, k) for some k ̸= 0 or a = (0, 0),
0.2, otherwise,

ηQ(a) =
{

0.25, when a = (0, k) for some k ̸= 0 or a = (0, 0),
0.2, otherwise,

vQ(a) =
{

0.2, when a = (0, k) for some k ̸= 0 or a = (0, 0),
0.35, otherwise.

Thus, P ∪Q is given by

µP∪Q(a) =


0.45, when a = (0, 0),
0.45, when a = (k, 0) for some k ̸= 0,
0.4, when a = (0, k) for some k ̸= 0,
0.2, otherwise,

ηP∪Q(a) =


0.25, when a = (0, 0),
0.2, when a = (k, 0) for some k ̸= 0,
0.15, when a = (0, k) for some k ̸= 0,
0.15, otherwise,

vP∪Q(a) =


0.1, when a = (0, 0),
0.1, when a = (k, 0) for some k ̸= 0,
0.2, when a = (0, k) for some k ̸= 0,
0.35, otherwise.

It is observed that
0.2 = µP∪Q((2, 2)) ≱ µP∪Q((2, 0)) ∧ µP∪Q(0, 2) = 0.45 ∧ 0.4 = 0.4,

0.35 = vP∪Q((2, 2)) ≰ vP ((2, 0)) ∨ vP ((0, 2)) = 0.1 ∨ 0.2 = 0.2,
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but
0.15 = ηP∪Q((2, 2)) ⩾ ηP∪Q((2, 0)) ∧ ηP∪Q(0, 2) = 0.2 ∧ 0.15 = 0.15.

Hence, P ∪Q is not a PFSS of V .

Example 3.3. Let us consider a crisp VS V = R2 over the field F = R and two PFSs
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) in V defined below.

µP (a) =
{

0.3, when a = (0, 0),
0.1, otherwise,

ηP (a) =
{

0.35, when a = (0, 0),
0.1, otherwise,

vP (a) =
{

0.15, when a = (0, 0),
0.4, otherwise,

and

µQ(a) =
{

0.25, when a = (0, 0),
0.2, otherwise,

ηQ(a) =
{

0.25, when a = (0, 0),
0.2, otherwise,

vQ(a) =
{

0.2, when a = (0, 0),
0.3, otherwise.

Thus, P ∪Q is given by

µP∪Q(a) =
{

0.3, when a = (0, 0),
0.2, otherwise,

ηP∪Q(a) =
{

0.25, when a = (0, 0),
0.1, otherwise,

vP∪Q(a) =
{

0.15, when a = (0, 0),
0.3, otherwise.

Here, P ∪Q is a PFSS of V .

Proposition 3.6. Let V be a crisp VS over the field F and P = (µP , ηP , vP ), Q =
(µQ, ηQ, vQ) be two PFSSs of V . Then P ∪ Q is a PFSS of V if either P ⊆ Q or
Q ⊆ P .

Proof. Case 1. Let P ⊆ Q. Then µP (a) ⩽ µQ(a), ηP (a) ⩽ ηQ(a) and vP (a) ⩾ vQ(a) for
all a ∈ A. Then µP∪Q(a) = µP (a) ∨ µQ(a) = µQ(a), ηP∪Q(a) = ηP (a) ∧ ηQ(a) = ηP (a)
and vP∪Q(a) = vP (a) ∧ vQ(a) = vQ(a) for all a ∈ V .

Now,
µP∪Q(ra+ sb) = µQ(ra+ sb)

⩾ µQ(a) ∧ µQ(b) [because Q is a PFSS of V ]
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= µP∪Q(a) ∧ µP∪Q(b),
ηP∪Q(ra+ sb) = ηP (ra+ sb)

⩾ ηP (a) ∧ ηP (b) [because P is a PFSS of V ]
= ηP∪Q(a) ∧ ηP∪Q(b),

vP∪Q(ra+ sb) = vQ(ra+ sb)
⩽ vQ(a) ∨ vQ(b) [because Q is a PFSS of V ]
= vP∪Q(a) ∨ µP∪Q(b) for all a, b ∈ V .

Thus, P ∪Q is a PFSS of V whenever P ⊆ Q.
Case 2. Let Q ⊆ P . Then µQ(a) ⩽ µP (a), ηQ(a) ⩽ ηP (a) and vQ(a) ⩾ vP (a) for all

a ∈ V . Then µP∪Q(a) = µP (a) ∨ µQ(a) = µP (a), ηP∪Q(a) = ηP (a) ∧ ηQ(a) = ηQ(a)
and vP∪Q(a) = vP (a) ∨ vQ(a) = vP (a) for all a ∈ V . Proceeding in the similar way
like case 1, it is obtained that P ∪Q is a PFSS of V whenever Q ⊆ P . □

Proposition 3.7. Let V be a crisp VS over the field F and P = (µP , ηP , vP ), Q =
(µQ, ηQ, vQ) be two PFSSs of V . Then P ×Q is a PFSS of V × V .

Proof. Let P × Q = (µP×Q, ηP×Q, vP×Q), where µP×Q((a, b)) = µP (a) ∧ µQ(b),
ηP×Q((a, b)) = ηP (a) ∨ ηQ(b) and vP×Q((a, b)) = vP (a) ∨ vQ(b) for all (a, b) ∈ V × V .
Now,

µP×Q(r(a, b) + s(c, d)) = µP (ra+ sc) ∧ µQ(rb+ sd)
⩾ (µP (a) ∧ µP (c)) ∧ (µQ(b) ∧ µQ(d))
[because P,Q are PFSSs of V ]
= (µP (a) ∧ µQ(b)) ∧ (µP (c) ∧ µQ(d))
= µP×Q((a, b)) ∧ µP×Q((c, d)),

ηP×Q(r(a, b) + s(c, d)) = ηP (ra+ sc) ∧ ηQ(rb+ sd)
⩾ (ηP (a) ∧ ηP (c)) ∧ (ηQ(b) ∧ ηQ(d))
[because P,Q are PFSSs of V ]
= (ηP (a) ∧ ηQ(b)) ∧ (ηP (c) ∧ ηQ(d))
= ηP×Q((a, b)) ∧ ηP×Q((c, d)),

vP×Q(r(a, b) + s(c, d)) = vP (ra+ sc) ∧ vQ(rb+ sd)
⩽ (vP (a) ∨ vP (c)) ∨ (vQ(b) ∨ vQ(d))
[because P,Q are PFSSs of V ]
= (vP (a) ∨ vQ(b)) ∨ (vP (c) ∨ vQ(d))
= vP×Q((a, b)) ∨ vP×Q((c, d)),

for all (a, b), (c, d) ∈ V × V and for all r, s ∈ F . Consequently, P × Q is a PFSS of
V × V . □
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Proposition 3.8. Let V1 and V2 be two crisp VSs over the field F and
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V1 and V2 respectively. Also,
let ρ1 and ρ2 be two null vectors in V1 and V2 respectively. Then µP×Q((ρ1, ρ2)) ⩾
µP×Q((a, b)), ηP×Q((ρ1, ρ2)) ⩾ ηP ((a, b)) and vP×Q((ρ1, ρ2)) ⩽ vP ((a, b)) for all
(a, b) ∈ V1 × V2.

Proof. Here, it is observed that
µP×Q((ρ1, ρ2)) = µP (ρ1) ∧ µQ(ρ2)

⩾ µP (a) ∧ µQ(b), for all a ∈ V1 and for all b ∈ V2

= µP×Q((a, b)), for all (a, b) ∈ V1 × V2,

ηP×Q((ρ1, ρ2)) = ηP (ρ1) ∧ ηQ(ρ2)
⩾ ηP (a) ∧ ηQ(b), for all a ∈ V1 and for all b ∈ V2

= ηP×Q((a, b)), for all (a, b) ∈ V1 × V2,

and vP×Q((ρ1, ρ2)) = vP (ρ1) ∧ ηQ(ρ2)
⩽ vP (a) ∨ vQ(b), for all a ∈ V1 and for all b ∈ V2

= vP×Q((a, b)), for all (a, b) ∈ V1 × V2.

Consequently, it is obtained that µP×Q((ρ1, ρ2)) ⩾ µP×Q((a, b)), ηP×Q((ρ1, ρ2)) ⩾
ηP×Q((a, b)) and vP×Q((ρ1, ρ2)) ⩽ vP×Q((a, b)) for all (a, b) ∈ V1 × V2. □

Proposition 3.9. Let V1 and V2 be two crisp VSs over the field F and
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V1 and V2 respectively. Then one
of the below stated conditions must hold.

(i) µP (a) ⩽ µQ(ρ2), ηP (a) ⩽ ηQ(ρ2) and vP (a) ⩾ vQ(ρ2).
(ii) µQ(b) ⩽ µP (ρ1), ηQ(b) ⩽ ηP (ρ1) and vQ(b) ⩾ vP (ρ1) for all a ∈ V1 and for all

b ∈ V2, where ρ1 and ρ2 be two null vectors in V1 and V2, respectively.

Proof. Let none of the stated conditions be hold. Then there exist a ∈ V1 and b ∈ V2
such that µP (a) > µQ(ρ2), ηP (a) > ηQ(ρ2), vP (a) < vQ(ρ2) and µQ(b) > µP (ρ1),
ηQ(b) > ηP (ρ1), vQ(b) < vP (ρ1). Now,

µP×Q((a, b)) = µP (a) ∧ µQ(b) > µQ(ρ2) ∧ µP (ρ1) = µP×Q((ρ1, ρ2)),
ηP×Q((a, b)) = ηP (a) ∧ ηQ(b) > ηQ(ρ2) ∧ ηP (ρ1) = ηP×Q((ρ1, ρ2)),
vP×Q((a, b)) = vP (a) ∨ vQ(b) < vQ(ρ2) ∨ vP (ρ1) = vP×Q((ρ1, ρ2)).

Thus, it is obtained that µP×Q((a, b)) > µP ((ρ1, ρ2)), ηP×Q((a, b)) > ηP×Q((ρ1, ρ2))
and vP ((a, b)) < vP×Q((ρ1, ρ2)). But it is known from Proposition 3.8 that µP×Q((a, b))
⩽ µP ((ρ1, ρ2)), ηP×Q((a, b)) ⩽ ηP×Q((ρ1, ρ2)) and vP×Q((a, b)) ⩾ vP×Q((ρ1, ρ2)).
Hence, one of the stated conditions must hold. □

Proposition 3.10. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be
a PFSS of V . Then Cθ,ϕ,ψ(P ) is a crisp subspace of V , provided that µP (ρ) ⩾ θ,
ηP (ρ) ⩽ ϕ and vP (ρ) ⩽ ψ, where ρ be the null vector in V .
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Proof. Clearly, Cθ,ϕ,ψ(P ) is non-empty. Let a, b ∈ Cθ,ϕ,ψ(P ) and r, s ∈ F . Then
µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ and µP (b) ⩾ θ, ηP (b) ⩾ ϕ, vP (b) ⩽ ψ. Now,

µP (ra+ sb) ⩾ µP (a) ∧ µP (b) [because P is a PFSS of V ]
⩾ θ ∧ θ

= θ,

ηP (ra+ sb) ⩾ ηP (a) ∧ ηP (b) [because P is a PFSS of V ]
⩾ ϕ ∧ ϕ

= ϕ,

vP (ra+ sb) ⩽ vP (a) ∨ vP (b) [because P is a PFSS of V ]
⩽ ψ ∨ ψ

= ψ.

Thus, a, b ∈ Cθ,ϕ,ψ(P ) and r, s ∈ F imply ra+sb ∈ Cθ,ϕ,ψ(P ). Consequently, Cθ,ϕ,ψ(P )
is a crisp subspace of V . □

Proposition 3.11. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a
PFS in V . Then P is a PFSS of V if all (θ, ϕ, ψ)-cuts of P are crisp subspaces of V .

Proof. Let a, b ∈ V . Take, µP (a)∧µP (b) = θ, ηP (a)∧ηP (b) = ϕ and vP (a)∨vP (b) = ψ.
Clearly, θ ∈ [0, 1], ϕ ∈ [0, 1] and ψ ∈ [0, 1] with 0 ⩽ θ + ϕ+ ψ ⩽ 1.

Now,
µP (a) ⩾ µP (a) ∧ µP (b) = θ,

ηP (a) ⩾ ηP (a) ∧ ηP (b) = ϕ,

vP (a) ⩽ vP (a) ∨ vP (b) = ψ.

Thus, µP (a) ⩾ θ, ηP (a) ⩾ ϕ and vP (a) ⩽ ψ. So, a ∈ Cθ,ϕ,ψ(P ). Also,
µP (b) ⩾ µP (a) ∧ µP (b) = θ,

ηP (b) ⩾ ηP (a) ∧ ηP (b) = ϕ,

vP (b) ⩽ vP (a) ∨ vP (b) = ψ.

Thus, µP (b) ⩾ θ, ηP (b) ⩾ ϕ and vP (b) ⩽ ψ. So, b ∈ Cθ,ϕ,ψ(P ).
Since Cθ,ϕ,ψ(P ) is a crisp subspace of V therefore ra+sb ∈ Cθ,ϕ,ψ(P ) for all r, s ∈ F .
As a result,

µP (ra+ sb) ⩾ θ = µP (a) ∧ µP (b),
ηP (ra+ sb) ⩾ ϕ = ηP (a) ∧ ηP (b),
vP (ra+ sb) ⩽ ψ = vP (a) ∨ vP (b), for all r, s ∈ F .

Since a, b are arbitrary elements of V therefore µP (ra+ sb) ⩾ µP (a) ∧ µP (b), ηP (ra+
sb) ⩾ ηP (a)∧ηP (b) and vP (ra+sb) ⩽ vP (a)∨vP (b) for all a, b ∈ V and for all r, s ∈ F .
Thus, P is a PFSS of V . □
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Proposition 3.12. Let V and W be two crisp VSs over the field F and Q be a PFSS
of W . Then for a linear transformation (LT) h : V → W , h−1(Q) is a PFSS of V .

Proof. Let h−1(Q) = (µh−1(Q), ηh−1(Q), vh−1(Q)). Then µh−1(Q)(a) = µQ(h(a)),
ηh−1(Q)(a) = ηQ(h(a)) and vh−1(Q)(a) = vQ(h(a)) for all a ∈ V .

Now,
µh−1(Q)(ra+ sb) = µQ(h(ra+ sb))

= µQ(rh(a) + sh(b)) [because h is a crisp LT from V to W ]
⩾ µQ(h(a)) ∧ µQ(h(b)) [because Q is a PFSS of W ]
= µh−1(Q)(a) ∧ µh−1(Q)(b),

ηh−1(Q)(ra+ sb) = ηQ(h(ra+ sb))
= ηQ(rh(a) + sh(b)) [because h is a crisp LT from V to W ]
⩾ ηQ(h(a)) ∧ ηQ(h(b)) [because Q is a PFSS of W ]
= ηh−1(Q)(a) ∧ ηh−1(Q)(b),

vh−1(Q)(ra+ sb) = vQ(h(ra+ sb))
= vQ(rh(a) + sh(b)) [because h is a crisp LT from V to W ]
⩽ vQ(h(a)) ∨ vQ(h(b)) [because Q is a PFSS of W ]
= vh−1(Q)(a) ∨ vh−1(Q)(b), for all a, b ∈ V and for all r, s ∈ F .

Consequently, h−1(Q) is a PFSS of V . □

Proposition 3.13. Let V and W be two VSs over the same field F and P =
(µP , ηP , vP ) be a PFSS of V . Then for a bijective LT h : V → W , h(P ) is a PFSS of
W .

Proof. Let h(P ) = (µh(P ), ηh(P ), vh(P )). Then
µh(P )(q) = ∨

p∈h−1(q)
µP (p),

ηh(P )(q) = ∧
p∈h−1(q)

ηP (p),

vh(P )(q) = ∧
p∈h−1(q)

vP (p).

Since h is bijective therefore h−1(q) must be a singleton set. So, for q ∈ W , there
exists an unique p ∈ V such that p = h−1(q), i.e., h(p) = q. Thus, in this case,
µh(P )(q) = µh(P )(h(p)) = µP (p), ηh(P )(q) = ηh(P )(h(p)) = ηP (p) and vh(P )(q) =
vh(P )(h(p)) = vP (p). Now,

µh(P )(rc+ sd) = µh(P )(rh(a) + sh(b))
[where c = h(a) and d = h(b) for unique a, b ∈ V ]
= µh(P )(h(ra+ sb)) [because h is a crisp LT]
= µP (ra+ sb)
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⩾ µP (a) ∧ µP (b) [because P is a PFSS of V ]
= µh(P )(h(a)) ∧ µh(P )(h(b))
= µh(P )(c) ∧ µh(P )(d),

ηh(P )(rc+ sd) = ηh(P )(rh(a) + sh(b))
[where c = h(a) and d = h(b) for unique a, b ∈ V ]
= ηh(P )(h(ra+ sb)) [because h is a crisp LT]
= ηP (ra+ sb)
⩾ ηP (a) ∧ ηP (b) [because P is a PFSS of V ]
= ηh(P )(h(a)) ∧ ηh(P )(h(b))
= ηh(P )(c) ∧ ηh(P )(d),

vh(P )(rc+ sd) = vh(P )(rh(a) + sh(b))
[where c = h(a) and d = h(b) for unique a, b ∈ V ]
= vh(P )(h(ra+ sb)) [because h is a crisp LT]
= vP (ra+ sb)
⩽ vP (a) ∨ vP (b) [because P is a PFSS of V ]
= vh(P )(h(a)) ∨ vh(P )(h(b))
= vh(P )(c) ∨ vh(P )(d), for all r, s ∈ F .

Since, c, d are arbitrary elements of W therefore µh(P )(rc+ sd) ⩾ µh(P )(c) ∧ µh(P )(d),
ηh(P )(rc + sd) ⩾ ηh(P )(c) ∧ ηh(P )(d) and vh(P )(rc + sd) ⩽ vh(P )(c) ∨ vh(P )(d) for all
c, d ∈ W and for all r, s ∈ F . Consequently, h(P ) is a PFSS of W . □

4. Direct Sum of two Picture Fuzzy Subspaces

The current section introduces direct sum of two PFSSs over the direct sum of two
crisp VSs and investigates some important results connected to it.

Definition 4.1. Let V and W be two crisp VSs over the same field F and P =
(µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V and W respectively. Then direct
sum of P and Q is defined as the PFS P ⊕ Q = (µP⊕Q, ηP⊕Q, vP⊕Q) over the set of
universe V ⊕W , where

µP⊕Q(c) = µP (a) ∧ µQ(b),
ηP⊕Q(c) = ηP (a) ∧ ηQ(b),
vP⊕Q(c) = vP (a) ∨ vQ(b), for any c ∈ V ⊕W,

with c = a+ b, where a ∈ V and b ∈ W .

Example 4.1. Let us consider two crisp VSs V1 = {(a1, 0) : a1 ∈ R} and V2 = {(0, a2) :
a2 ∈ R} over the field F = R. Also, let us suppose two PFSSs P1 and P2 of V1 and
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V2 respectively defined below.

µP (a) =
{

0.55, when a = (0, 0),
0.2, otherwise,

ηP (a) =
{

0.45, when a = (0, 0),
0.2, otherwise,

vP (a) =
{

0.05, when a = (0, 0),
0.37, otherwise,

and
µQ(a) =

{
0.35, when a = (0, 0),
0.3, otherwise,

ηQ(a) =
{

0.4, when a = (0, 0),
0.3, otherwise,

vQ(a) =
{

0.1, when a = (0, 0),
0.3, otherwise.

Thus, for any a ∈ V1 ⊕ V2, P ⊕Q is defined as follows.

µP⊕Q(a) =


0.35, when a = (0, 0),
0.3, when a ∈ V2 − {(0, 0)},
0.2, otherwise,

ηP⊕Q(a) =


0.4, when a = (0, 0),
0.3, when a ∈ V2 − {(0, 0)},
0.2, otherwise,

vP⊕Q(a) =


0.1, when a = (0, 0),
0.3, when a ∈ V2 − {(0, 0)},
0.37, otherwise.

Proposition 4.1. Let V and W be two crisp VSs over the same field F and P =
(µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V and W respectively. Then P ⊕Q is
a PFSS of V ⊕W .

Proof. Let c1, c2 ∈ V ⊕ W with c1 = a1 + b1 and c2 = a2 + b2 where a1, a2 ∈ V and
b1, b2 ∈ W . Let r, s ∈ F . Now,

µP⊕Q(rc1 + sc2) = µP⊕Q(r(a1 + b1) + s(a2 + b2))
= µP⊕Q((ra1 + sa2) + (rb1 + sb2))
= µP (ra1 + sa2) ∧ µQ(rb1 + sb2)
⩾ (µP (a1) ∧ µP (a2)) ∧ (µQ(b1) ∧ µQ(b2))
[because P is a PFSS of V and Q is a PFSS of W ]
= (µP (a1) ∧ µQ(b1)) ∧ (µP (a2) ∧ µQ(b2))
= µP⊕Q(c1) ∧ µP⊕Q(c2),
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ηP⊕Q(rc1 + sc2) = ηP⊕Q(r(a1 + b1) + s(a2 + b2))
= ηP⊕Q((ra1 + sa2) + (rb1 + sb2))
= ηP (ra1 + sa2) ∧ ηQ(rb1 + sb2)
⩾ (ηP (a1) ∧ ηP (a2)) ∧ (ηQ(b1) ∧ ηQ(b2))
[because P is a PFSS of V and Q is a PFSS of W ]
= (ηP (a1) ∧ ηQ(b1)) ∧ (ηP (a2) ∧ ηQ(b2))
= ηP⊕Q(c1) ∧ ηP⊕Q(c2),

vP⊕Q(rc1 + sc2) = vP⊕Q(r(a1 + b1) + s(a2 + b2))
= vP⊕Q((ra1 + sa2) + (rb1 + sb2))
= vP (ra1 + sa2) ∨ vQ(rb1 + sb2)
⩽ (vP (a1) ∨ vP (a2)) ∨ (vQ(b1) ∨ vQ(b2))
[because P is a PFSS of V and Q is a PFSS of W ]
= (vP (a1) ∨ vQ(b1)) ∨ (vP (a2) ∨ vQ(b2))
= vP⊕Q(c1) ∨ vP⊕Q(c2).

Since c1, c2 are arbitrary elements of V ⊕W and r, s are arbitrary scalars of F therefore
µP⊕Q(rc1 + sc2) ⩾ µP⊕Q(c1) ∧ µP⊕Q(c2), ηP⊕Q(rc1 + sa2) ⩾ ηP⊕Q(c1) ∧ ηP⊕Q(c2) and
vP⊕Q(rc1 + rc2) ⩽ vP⊕Q(c1) ∨ vP⊕Q(c2) for all c1, c2 ∈ V ⊕ W and for all r, s ∈ F .
Consequently, P ⊕Q is a PFSS of V ⊕W . □

Proposition 4.2. Let V and W be two crisp VSs over the same field F and P =
(µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V and W respectively. Then Cθ,ϕ,ψ(P⊕
Q) = Cθ,ϕ,ψ(P ) ⊕ Cθ,ϕ,ψ(Q).

Proof. Let c ∈ Cθ,ϕ,ψ(P ⊕ Q). Then clearly, c ∈ V ⊕ W . Say, c = a + b with a ∈ V
and b ∈ W . Then

µP⊕Q(c) = µP (a) ∧ µQ(b) ⩾ θ ⇒ µP (a) ⩾ θ and µQ(b) ⩾ θ,

ηP⊕Q(c) = ηP (a) ∧ ηQ(b) ⩾ ϕ ⇒ ηP (a) ⩾ ϕ and ηQ(b) ⩾ ϕ,

vP⊕Q(c) = vP (a) ∨ vQ(b) ⩽ ψ ⇒ vP (a) ⩽ ψ and ηQ(b) ⩽ ψ.

Thus, a ∈ Cθ,ϕ,ψ(P ) and b ∈ Cθ,ϕ,ψ(Q). So, c = a + b ∈ Cθ,ϕ,ψ(P ) ⊕ Cθ,ϕ,ψ(Q).
Consequently, Cθ,ϕ,ψ(P ⊕Q) ⊆ Cθ,ϕ,ψ(P ) ⊕ Cθ,ϕ,ψ(Q).

Conversely, let c ∈ Cθ,ϕ,ψ(P ) ⊕ Cθ,ϕ,ψ(Q). Then there exists a ∈ Cθ,ϕ,ψ(P ) and
b ∈ Cθ,ϕ,ψ(Q) with c = a+ b. Then µP (a) ⩾ θ, ηP (a) ⩾ ϕ, vP (a) ⩽ ψ and µQ(b) ⩾ θ,
ηQ(b) ⩾ ϕ, vQ(b) ⩽ ψ. Thus, µP (a)∧µQ(b) ⩾ θ, ηP (a)∧ηQ(b) ⩾ ϕ and vP (a)∨vQ(b) ⩽
ψ. Now, a ∈ Cθ,ϕ,ψ(P ) ⇒ a ∈ V and b ∈ Cθ,ϕ,ψ(Q) ⇒ b ∈ W . As a result, c = a+ b ∈
V ⊕ W . It follows that µP⊕Q(c) ⩾ θ, ηP⊕Q(c) ⩾ ϕ and vP⊕Q(c) ⩽ ψ. Therefore,
c ∈ Cθ,ϕ,ψ(P ⊕Q). Thus, it is obtained that Cθ,ϕ,ψ(P ) ⊕ Cθ,ϕ,ψ(Q) ⊆ Cθ,ϕ,ψ(P ⊕Q).

Consequently, we get Cθ,ϕ,ψ(P ⊕Q) = Cθ,ϕ,ψ ⊕ Cθ,ϕ,ψ(Q). □
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5. Isomorphism between two Picture Fuzzy Subspaces

Isomorphism is a pioneer concept in crisp sense. In this section, the notion of
isomorphism is introduced between two PFSSs. An important result is established
here through a proposition.

Definition 5.1. Let V and W be two crisp VSs over the same field F and
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V and W respectively. Then P
is said to be isomorphic to Q if there exists an isomorphism H : V → W such that
µQ(H(a)) = µP (a), ηQ(H(a)) = ηP (a) and vQ(H(a)) = µP (a) for all a ∈ V .

Proposition 5.1. Let V and W be two crisp VSs over the field F and
P = (µP , ηP , vP ), Q = (µQ, ηQ, vQ) be two PFSSs of V and W respectively. Let
P is isomorphic to Q. Then Cθ,ϕ,ψ(P ) is isomorphic to Cθ,ϕ,ψ(Q), provided that

(i) µP (ρ1) ⩾ θ, ηP (ρ1) ⩾ ϕ and vP (ρ1) ⩽ ψ;
(ii) µQ(ρ2) ⩾ θ, ηQ(ρ2) ⩾ ϕ and vQ(ρ2) ⩽ ψ,

where ρ1, ρ2 be the null vectors in V and W , respectively.

Proof. Since P and Q are isomorphic therefore there exists an isomorphism H : V →
W such that µQ(H(a)) = µP (a), ηQ(H(a)) = ηP (a) and vQ(H(a)) = vP (a). Now, let
us define h : Cθ,ϕ,ψ(P ) → Cθ,ϕ,ψ(Q) such that h(a) = H(a) for every a ∈ Cθ,ϕ,ψ(P ).
Let a ∈ Cθ,ϕ,ψ(P ). Then µP (a) ⩾ θ, ηP (a) ⩾ ϕ and vP (a) ⩽ ψ. Since P is isomorphic
to Q therefore it follows that µQ(H(a)) ⩾ θ, ηQ(H(a)) ⩾ ϕ and vQ(H(a)) ⩽ ψ. Thus,
for a ∈ Cθ,ϕ,ψ(P ), it is obtained that H(a) ∈ Cθ,ϕ,ψ(Q). So, h is well defined.

Since H is an isomorphism therefore H is one-one and onto. Due to injectivity of
H, kerH = {a ∈ V : H(a) = ρ2} = {ρ1}. It follows that {a ∈ Cθ,ϕ,ψ(P ) : H(a) =
ρ2} = {ρ1} because Cθ,ϕ,ψ(P ) ⊆ V . So, kerh={ρ1}. Thus, h is one-one.

Let us suppose b ∈ Cθ,ϕ,ψ(Q). Then µQ(b) ⩾ θ, ηQ(b) ⩾ ϕ and vQ(b) ⩽ ψ. Since
H is an isomorphism therefore there exists a ∈ V such that H(a) = b. So, we can
write µQ(H(a)) ⩾ θ, ηQ(H(a)) ⩾ ϕ and vQ(H(a)) ⩽ ψ. Since P is isomorphic to Q
therefore µP (a) ⩾ θ, ηP (a) ⩾ ϕ and vP (a) ⩽ ψ. So, a ∈ Cθ,ϕ,ψ(P ). Thus, for each
b ∈ Cθ,ϕ,ψ(Q) there exists a pre-image a ∈ Cθ,ϕ,ψ(P ). So, h is onto.

Consequently, Cθ,ϕ,ψ(P ) is isomorphic to Cθ,ϕ,ψ(Q). □

6. Picture Fuzzy Linear Transformation

In the current section, the notion of picture fuzzy linear transformation (PFLT) is
initiated with a suitable example and some corresponding properties are studied.

Definition 6.1. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a PFSS
of V . Then a map T : V → V is said to be PFLT on V if

(i) T is a linear map in crisp sense;
(ii) µP (T (a)) ⩾ µP (a), ηP (T (a)) ⩾ ηP (a) and vP (T (a)) ⩽ vP (a) for all a ∈ V .

Example 6.1. Consider the Example 3.1. Define a map T : V → V by T ((a1, a2, a3)) =
(a1 + a2, a2 + a3, 0). Clearly, T is a linear map in crisp sense. For any (a1, a2, a3) ∈ V ,
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it is observed that
µP (T (a1, a2, a3)) = µP ((a1 + a2, a2 + a3, 0)) = 0.3 ⩾ µP ((a1, a2, a3)),
ηP (T (a1, a2, a3)) = ηP ((a1 + a2, a2 + a3, 0)) = 0.35 ⩾ ηP ((a1, a2, a3)),
vP (T (a1, a2, a3)) = vP ((a1 + a2, a2 + a3, 0)) = 0.15 ⩽ vP ((a1, a2, a3)).

Thus, T is a PFLT on V .

Proposition 6.1. Let V be a crisp VS over the field F and P be a PFSS of V . If T1
and T2 are two PFLTs on V then so is T1 + T2.

Proof. Let a ∈ V . Now,
µP ((T1 + T2)(a)) = µP (T1(a) + T2(a))

⩾ µP (T1(a)) ∧ µP (T2(a)) [because P is a PFSS of V ]
⩾ µP (a) ∧ µP (a) [because T is a PFLT on V ]
= µP (a),

ηP ((T1 + T2)(a)) = ηP (T1(a) + T2(a))
⩾ ηP (T1(a)) ∧ ηP (T2(a)) [because P is a PFSS of V ]
⩾ ηP (a) ∧ ηP (a) [because T is a PFLT on V ]
= ηP (a),

and vP ((T1 + T2)(a)) = vP (T1(a) + T2(a))
⩽ vP (T1(a)) ∨ vP (T2(a)) [because P is a PFSS of V ]
⩽ vP (a) ∨ vP (a) [because T is a PFLT on V ]
= vP (a).

Since a is an arbitrary element of V therefore µP ((T1 + T2)(a)) ⩾ µP (a), ηP ((T1 +
T2)(a)) ⩾ ηP (a) and vP ((T1 + T2)(a)) ⩽ vP (a) for all a ∈ V . Consequently, T1 + T2 is
a PFLT on V . □

Proposition 6.2. Let V be a crisp VS over the field F and P be a PFSS of V . If T
is a PFLT on V then so is kT for some scalar k ∈ F .

Proof. Let a ∈ V . Now,
µP ((kT )(a)) = µP (kT (a))

⩾ µP (T (a)) [because P is a PFSS of V ]
⩾ µP (a) [because T is a PFLT on V ],

ηP ((kT )(a)) = ηP (kT (a))
⩾ ηP (T (a)) [because P is a PFSS of V ]
⩾ ηP (a) [because T is a PFLT on V ],

and vP ((kT )(a)) = vP (kT (a))
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⩽ vP (T (a)) [because P is a PFSS of V ]
⩽ vP (a) [because T is a PFLT on V ].

Since a is an arbitrary element of V therefore µP ((kT )(a)) ⩾ µP (a), ηP ((kT )(a)) ⩾
ηP (a) and vP ((kT )(a)) ⩽ vP (a) for all a ∈ V and for some scalar k ∈ F . Consequently,
kT is a PFLT on V . □

7. Linear Independency of a Finite Set of Vectors in Picture Fuzzy
Sense

The current section introduces the concept of picture fuzzy linearly independent
(PFLI) set of vectors with suitable example. An important result related to it is
highlighted through a proposition.

Definition 7.1. Let V be a crisp VS over the field F and P = (µp, ηP , vP ) be a PFSS
of V . A finite set of vectors {a1, a2, a3, . . . , an} in V is said to be PFLI in V with
respect to PFSS P if

(i) {a1, a2, a3, . . . , an} is linearly independent set of vectors in V ;
(ii)

µP (c1a1 + c2a2 + · · · + cnan) = µP (c1a1) ∧ µP (c2a2) ∧ · · · ∧ µP (cnan),
ηP (c1a1 + c2a2 + · · · + cnan) = ηP (c1a1) ∧ ηP (c2a2) ∧ · · · ∧ ηP (cnan),
vP (c1a1 + c2a2 + · · · + cnan) = vP (c1a1) ∨ vP (c2a2) ∨ · · · ∨ vP (cnan),

where ci ∈ F for i = 1, 2, . . . , n.

Proposition 7.1. Let V be a crisp VS over the field F and P = (µP , ηP , vP ) be a
PFSS of V . Also, let M be a finite set of vectors in V which is PFLI in V with respect
to PFSS P . Then any subset of M is PFLI in V with respect to PFSS P .

Proof. Let M = {a1, a2, . . . , an}. Now, let {a1, a2, a3, . . . , ar} be any subset of M ,
where r ⩽ n. It is known that {a1, a2, a3, . . . , ar} is linearly independent in V . Let
ρ be the null vector in V . Now, c1a1 + c2a2 + · · · + crar = c1a1 + c2a2 + · · · + crar +
cr+1ar+1 + · · · + cnan, where cr+1 = cr+2 = · · · = cn = 0. Now,

µP (c1a1 + c2a2 + · · · + crar)
=µP (c1a1 + c2a2 + · · · + crar + cr+1ar+1 + · · · + cnan)
=µP (c1a1) ∧ µP (c2a2) ∧ · · ·µP (crar) ∧ µP (cr+1ar+1) ∧ · · · ∧ µP (cnan)

[since {a1, a2, . . . , an} is PFLI set of vectors in V with respect to PFSS P ]
=µP (c1a1) ∧ µP (c2a2) ∧ · · · ∧ µP (crar) ∧ µP (ρ)
=µP (c1a1) ∧ µP (c2a2) ∧ · · · ∧ µP (crar) [by Proposition 3.1],
ηP (c1a1 + c2a2 + · · · + crar)

=ηP (c1a1 + c2a2 + · · · + crar + cr+1ar+1 + · · · + cnan)
=ηP (c1a1) ∧ µP (c2a2) ∧ · · · ∧ ηP (crar) ∧ ηP (cr+1ar+1) ∧ · · · ∧ ηP (cnan)
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[since {a1, a2, . . . , an} is PFLI set of vectors in V with respect to PFSS P ]
=ηP (c1a1) ∧ ηP (c2a2) ∧ · · · ∧ ηP (crar) ∧ ηP (ρ)
=ηP (c1a1) ∧ ηP (c2a2) ∧ · · · ∧ ηP (crar) [by Proposition 3.1]

and

vP (c1a1 + c2a2 + · · · + crar)
=vP (c1a1 + c2a2 + · · · + crar + cr+1ar+1 + · · · + cnan)
=vP (c1a1) ∨ vP (c2a2) ∨ · · · ∨ vP (crar) ∨ vP (cr+1ar+1) ∨ · · · ∨ vP (cnan)

[since {a1, a2, . . . , an} is PFLI set of vectors in V with respect to PFSS P ]
=vP (c1a1) ∨ vP (c2a2) ∨ · · · ∨ vP (crar) ∨ vP (ρ)
=vP (c1a1) ∨ vP (c2a2) ∨ · · · ∨ vP (crar) [by Proposition 3.1],

for c1, c2, c3, . . . , cn ∈ F . Thus, {a1, a2, a3, . . . , ar} is PFLI in V with respect to PFSS
P . Therefore, any subset of M is PFLI in V with respect to PFSS P . □

Example 7.1. Let us consider a crisp VS V = R2 and a PFSS P of V as follows:

µP (a) =
{

0.57, when a ∈ {(k, 0) : k ∈ R},
0.23, otherwise,

ηP (a) =
{

0.32, when a ∈ {(k, 0) : k ∈ R},
0.17, otherwise,

vP (a) =
{

0.11, when a ∈ {(k, 0) : k ∈ R},
0.37, otherwise.

It is clear that {(a1, 0), (0, a2)} is a PFLI set of vectors in V with respect to PFSS
P for a1 ̸= 0 and a2 ̸= 0.

8. Conclusion

In this paper, the notion of PFSS of a crisp VS is introduced. Some basic properties
of PFSS in context of some basic operations on PFSs are studied. Here, we have
shown that the intersection of two PFSSs is a PFSS. Similar type of result is also true
for Cartesian product of two PFSSs, but not necessarily true in case of union which is
highlighted with two suitable examples. Also, it is shown that (θ, ϕ, ψ)-cut of a PFSS
is a crisp subspace. A result on (θ, ϕ, ψ)-cut of a PFS is established here which gives
a condition under which a PFS will be a PFSS. The idea of direct sum of two PFSSs
over the direct sum of two crisp VSs is established and related properties are studied.
The concept of isomorphism between two PFSSs is initiated here and related result is
investigated. Also, the notions of PFLT and PFLI set of vectors are introduced here.
It is proved that the sum of two PFLTs is a PFLT and scalar multiplication with
PFLT is a PFLT. Also, it is proved that any subset of a PFLI set of vectors is PFLI.
We expect that our works will help the researchers to go through more advanced level
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of works on PFSS and it will also encourage them to explore the idea of subspace in
the environment of some other kinds of sets.
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