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GEOMETRIC PROPERTIES AND COMPACT OPERATOR ON
FRACTIONAL RIESZ DIFFERENCE SPACE

TAJA YAYING!, BIPAN HAZARIKAZ, AND AYHAN ESI3

ABSTRACT. In this article we introduce the Riesz difference sequence space 7] (AB D‘)

of fractional order «, defined by the composition of fractional backward difference

operator AB% given by (AB%), = Zio(fl)i%vk,i and the Riesz matrix

R?. We give some topological properties, obtain the Schauder basis and determine
the a-, 8- and - duals and investigate certain geometric properties of the space
T (AB“). Finally, we characterize certain classes of compact operators on the space

rd (AB*) using Hausdorff measure of non-compactness.

1. INTRODUCTION

Throughout this article we shall use the symbol [° to denote the space of all real
valued sequences. Let V' and W be two sequence spaces and let A = (anr); =0 be an
infinite matrix of real entries. In the rest of the paper, for ambiguity we shall write
A = (an) in place of A = (ank);—o- We write A, to denote the sequences in the nth
row of the matrix A. We say that the matrix A defines a matrix mapping from V
to W if for every sequence v = (vy), the A-transform of v, i.e., Av = {(Av),} € W,
where

(1.1) (Av), = Zankvk, n € N.
k

Define the sequence space V4 by
(1.2) Va={v=(n)el’: AveV}.
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Then the sequence space V4 is called the domain of the matrix A in the space V.
Also, we use the notation (V, W) to represent the class of all matrices A from V to
W. Thus A € (V,W) if and only if the series on the right hand side of the equality
(1.1) converges for each n € N and v € V such that Av € W for all v € V. Besides,
we denote the unit sphere and the closed unit ball of a set V' by S(V) and B(V),
respectively.

Throughout this paper s will denote the conjugate of p, that is s = I% forl <p<
o ors=o00forp=1ors=1for p=oc.

Definition 1.1. Let = be a real number such that = ¢ {0,—1,—2,...}. Then the
gamma function of x is defined as

(1.3) I(z) ::Jéaatm‘le‘tdt

Clearly, I'(x + 1) = z! for z € N. Also, I'(z + 1) = «I'(x) for any real number
x¢{0,—1,-2,...}.

The domains cp(AF), c(AF) and €y (AF) of the forward difference matrix A in
the spaces ¢y, ¢ and /., are introduced by Kizmaz [24]. Aftermore, the domain bv,
of the backward difference matrix A® in the space ¢, have recently been investigated
for 0 < p < 1 by Altay and Bagar [6], and for 1 < p < oo by Bagar and Altay [7].
Aftermore, several other authors [13,15,16,18-21,30,31,43] generalized the notion of
difference operator A and studied difference sequence spaces of integer order. However,
for a positive proper fraction «, Baliarsingh [10] (see also [9]) introduced generalized
fractional forward and backward difference operators A7 and AB® defined by

(AFo), = Y(~ 1) ”“*”)WH and (A7), = Y(-1) Dt 1)

i —i+1 ilT(a—i+1) "
respectively. We give a short survey concerned with sequence spaces defined by frac-
tional difference operator. Baliarsingh [10] introduced the difference sequence spaces
V(I', A% u) of fractional order « for V' = {l, ¢, ¢o}, where u = (u,,) is a sequence
satisfying certain conditions. Baliarsingh and Dutta [9] studied the difference sequence
spaces V(I', A% p) for V = {l, ¢, co}. Moreover, Altay and Bagar [4] and Altay et
al. [5] introduced the Euler sequence spaces e, e/ and e, respectively. In [3], Polat
and Basar introduced the spaces ef(AP™), en(AP™) and e” (AP™) consisting of all se-
quences whose m'* order differences are in the Euler spaces ef, €/ and €”_, respectively.
Kadak and Baliarsingh [22] studied Euler difference sequence spaces of fractional order
ep(APY), ef(AP), er(AP*) and el (AP*) by introducing the Euler mean difference
operator E"(AP®). Extending these spaces Meng and Mei [29] introduced binomial
difference sequence spaces by”(AP%), b5 (APY) and 075 (AP?) of fractional order. Yay-
ing et al. [40] also studied the compactness related results on these spaces. Yaying
and Hazarika [41] also examined the sequence space b*(AP*). Furthermore, Yaying
[42] also studied paranormed Riesz difference sequence spaces r4_ (AB?), r§(AP) and
r4(AB) of fractional order. Nayak, Et and Baliarsingh [35] examined the sequence
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spaces V (u,v, AP p) derived by combining the weighted mean operator G(u,v) and
backward fractional difference operator AB®. Ozger [37] studied geometric properties
and Hausdorff measure of non-compactness related results of certain sequence spaces
defined by the fractional difference operators. More recently Baliarsingh and Kadak
[11] investigated certain class of mappings and Hausdorff measure of non-compactness
of certain generalised Euler difference sequence spaces of fractional order. Further,
one may also refer [12] for a more generalized fractional difference operators.

Definition 1.2. Let (g) be a sequence of positive numbers and define @, = >7_, qx,
n € N. Then the Riesz mean matrix R? = (r},) is defined as

{q’“ 0<k<n,

q

_ ) Qn’
Tk = "

0, k>n.

Malkowsky [25] introduced the sequence spaces r%, r? and r{ as the set of all

sequences whose Re-transforms are in the spaces (., ¢ and c¢g, respectively. Altay and
Bagar [1] studied the sequence space r9(p) as

1 n Pk
—_— < o0
@n 15 ’

ri(p) =qv=(vp) €’: )
neN

where p = (pg) is a bounded sequence of positive real numbers. Altay and Bagar [2]

also studied the sequence spaces rZ (p), r4(p) and r4(p) defined by

1 n Pk
)= o= sl S g <ooh,
neN n k—Q

KUk

1 n Pk
ro(p) = {U = (o) €1 nlg{)lo = quvk = O} and
n k=0
1 n Pk
ré(p) = {U = (o) €1”: nh_>HOlo — Y qup— 1| =0, for some l € ]R} )
n k=0

Since then several authors studied and examined Riesz sequence spaces. For more
studies on Riesz sequence spaces, one may refer to [25,42] and the references mentioned
therein.

2. RIESZ DIFFERENCE OPERATOR OF FRACTIONAL ORDER AND SEQUENCE
SPACES
First we give the definitions of RY(AB®) and its inverse.

Definition 2.1 ([42]). The product matrix R(AB®) of Riesz mean RY and the
backward difference operator AP® is defined as follows:

n i—k I'(a+1) i
(RQ(ABQ)) _ 2D e e 0k S
nk 0, k> n.
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Definition 2.2. ([42, Lemma 2.1]). The inverse of the product matrix RI(AB?) is
given by:

n—k x~k+1 P(—a+1) Q

-1 ( ) Z] k(n NIT(—a—n+j+1) 'Tf, 0§k’<n,
(Rq(ABa))nk - Cg:’ k=mn,
0, k> n.

We define the RY(AP®)-transform of a sequence v = (v;) as follows:
(2.1)

q a (SEES j— I'(a+1) q; n
= (B@%) =3 D T oy e R Ao B

where n € N. Now we introduce the Riesz difference sequence space rg(ABO‘) of
fractional order «a as follows:

ri(APY) = {v = (v,) €1°: RY (AP € Ep} ,  where 1 <p < o0.
The above sequence space can be expressed in the notation of (1.2) as follows:
rd(APY) = (6,) pa(aney, 1<p< oo
The sequence space rg(ABa) may be reduced to the following classes of sequence

spaces in the special cases of a.

1. If o« = 0, then the sequence space rg(ABO‘) reduces to rd = (£,)gs for 1 < p < oo,

2. If a = 1, then the sequence space r4(AP*) reduces to rZ(A”), where (APv);, =
v — vi_q for all £ € N.

3. If @ = m € N, then the sequence space rZ(A”*) reduces to r§(A"™), where

(AP, = S o (= 1)7 (") v for all k € N,
We begin with the following theorem.

Theorem 2.1. The sequence space Tg(ABO‘) is a BK-space normed by

1

22 [olgane = [RUA5Z0], = (Z 1(Rq<ABa>v)kF) " 1<p<oo,
k
and
23) ol ey = [FA50], = sup|(Ro(A%)0),
Proof. The proof is a routine verification and hence omitted. OJ

Theorem 2.2. The Riesz difference space TZ(ABC“) is linearly isomorphic to £,, where
1 <p<oo.

Proof. We prove the result for the space r¢ (ABO‘) 1 < p < o0. Define the mapping
T:ri(AP*) » l by v —u=Tv= RI(A@)y. Tt is easy to see that T is linear and
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injective. Let u = (ux) € ¢, and define the sequence v = (vi) by

(24) 1%:§§E;”ﬁﬁw—o£tjfgm+n'iwj+Z?% hel.
Then
[olgiase) = [ RUAZ)0], = (% KR%A%),CW
= i—j Na+1) i k 7
B §§(§—1> j(z‘—j)!P(a—HHl)'@c)“j*k“’“ )
k P\ b -
- (S| ) = (o) =, <o

Jj=0
where

s L itk=
M No, itk £

Thus, v € rg(ABa). Consequently, T is surjective and norm preserving. Thus,
ri(AP*) = {,, 1 < p < co. Similarly, we can show that rd (AP*) = /.. O

We now construct sequence of points in the space rg(ABO‘) which will form the
Schauder basis for that space. First we recall the definition of Schauder basis for a
normed space (V/ ||-|]).

Definition 2.3. A sequence v = (vy) of a normed space (V, ||-]|) is called a Schauder
basis of the space V if for every v € V there exists a unique sequence of scalars (c)
such that

=0.

n
vV — chvk

k=0

lim
n—oo

We know by Theorem 2.2 that the mapping 7T : TZ(ABO‘) — £, is an isomorphism.

Hence it is evident that the inverse image of the usual basis {e®)},cn of the space lp,
1 < p < o0, forms the basis of the new space Tg(ABa). This immediately gives us the
following theorem.

Theorem 2.3. Let 1 < p < oo and define the sequence b¥)(q) = (b¥)(q)) of the
elements of the space ri(AP*) for every fized k € N by

- ' |
JZ (_1)k—j (kfi)r(_a—’—l) Qj k < n,

" = T(—a—kt+itl) ¢’
(2.5) by (q) = Q. k=,

0, k> n.
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Then the sequence {b®)(q)} is basis for the space ri(AP*) and every v € ri(AP*) has
a unique representation of the form

(2.6) v="3 Mb*(q),

where A\, = (RQ(ABO‘)U)k for all k € N.

Corollary 2.1. The sequence space rg(ABa) is separable for 1 < p < oo.

3. a-, f- AND y-DuALS

In this section we obtain the a-, 8- and y-duals of rg(AP*). We note that the
notation « used for a-dual has different meaning to that of the operator AB®. First
we recall the definitions of a-, 3- and v-duals of the space V C [°.

Definition 3.1. The a-, 8- and v-duals of the subset V' C [° are defined by
Ve={t=(t) €l tv= (tyvy) € {1 for all v € V},
VA ={t=(t) €l’:tv=(tyvy) € cs for all v € V'},
V¥ ={t=(t) €1°:tv = (tpv}) € bs for all v € V'},
respectively.

Now, we quote certain lemmas given by Stielglitz and Tietz [38] which are necessary

to establish our results. Throughout N will denote the collection of all finite subsets
of N.

Lemma 3.1. A= (au) € ({,,01) if and only if sup > | X ank| < 00, 1 < p < o0.
KeN 'k |nekK

Lemma 3.2. A = (an;) € ({,,¢) if and only if

(3.1) lim ayy, exists for all k € N,

(3.2) sup »_ ank|* < 00, 1 < p < 0.

neN k

Lemma 3.3.

(ank) € (Uy, L) if and only if (3.2) holds, with 1 < p < oo.

A
Lemma 3.4. A = (au) € (¢1,41) if and only if sup Y, |an| < 0.
keN

Lemma 3.5. A = (a,) € ({1,¢) if and only if (3.1) holds and

(3.3) sup |anx| < oc.
n,keN

Lemma 3.6. A = (au) € (¢1,0x) if and only if (3.2) holds.
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Theorem 3.1. Define the sets di(q) and da(q) by

di(q) = {t = (tp) € 1°: iugz |di| < oo}
€ n

q
<oc}),

and

Z dnk

neK

da(q) = {t —(h) el sup Y

KeN k

where the matriz D = (d,y) is defined by

k+1
n—k D(—a+1) Q
Jgk(_l) T CanigiD) gt 0k <,
= ot k= n,

0, k> n.
Then {r?(ABO‘)r = dy(q) and {rg(ABO‘)r = dy(q) for1 <p < occ.

Proof. Consider the sequence t = (t;) € I° and v = (vy) is as defined in (2.4), then
we have

S - [(—a+1) Q|
lnUp = —1)" Jt ~t n
! JZ:% Z} ) n—)T(—a—n+itl) g o
(3.4) = (Du),, foreachn e N,

Thus, we deduce from (3.4) that tv = (t,vy) € ¢, whenever v = (v;,) € r{(AB%) or
rd(AP*) if and only if Du € ¢, whenever u = (uy) € £, or £,. This yields us the fact

that t = (t,) € [r{(AP*)]" or [r4(AB)|" if and only if D € (f1,41) or D € (£, £y).
Thus, by using Lemma 3.1 and Lemma 3.4, we conclude that

[FAP)]" =di(q) and  [rU(AP)]" = da(q). O
Theorem 3.2. Define the sets ds(q), di(q) and ds(q) as follows:

d3(q) = { = (ty) €1°: ) |AP <tk> Qrl < oo},
k gk
ds(q) = {t = (tx) € 1° : sup | AP <tk> Qx| < oo} and
n,k qk
d5(q) = {t = (tk) & lo : {Cjktk} < goo},
k
where
Ba (k) _ tk = K, [(—a+1)
(3:5) 8 (%) o +j—zk—:&—1 D Z — i) (—a—j+i+1)g

Then {T%(ABO‘)]B = d4(q) Nds(q) and [rg(ABa)}ﬁ = ds(q) Nds(q).
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Proof. We give the proof for the space rg(ABO‘), 1 < p < o0, to avoid repetition of
the similar statements. Let t = (¢) € [ and v = (v},) is as defined in (2.4). Consider
the following equation

n n -1 [j+1 (—a+1) QJ Qr
gﬁtkvkzgtk[Z(z (k—z')!f‘( a—k+i+1)q )+u

i=j qk

] k+1 F(—Oz—l—l)
£ () 2 T Ca—j+itDg

j=k+1

an

(3.6) = Z Uka

n

- Z upQp AP <qk> + %t nUn = (Cu)y,, for each n € N,

where C' = (c,x) is a matrix defined by

ABQ( )Qk, 0<k<n,

C’I’Lk‘ - g’:t'nJ k — n7

0, k> n,

and ABe ( ) is as defined in (3.5). Clearly the columns of the matrix C' are convergent,
since

t
: _ Ba k
nll_{lolo Cnke = A (C]k) Q.
Thus, we deduce from (3.6) that tv = (txvi) € cs whenever v = (v;) € ri(AP?) if and

only if Cu € ¢ whenever u = (uy) € {,. This yields the fact that t = (¢;) € {rg(ABO‘)}B
if and only if C' € (¢,,c). Thus by using Lemma 3.2 with (3.6), we get that

> |APe (tk> Qr ‘1
qk

Thus, [ri(A5)]” = dy(q) N ds(q). O

< oo and sup %tk < 00.

k| 9k

Theorem 3.3. Let 1 < p < co. Then [Tg(ABO‘)F = ds(q) and [r%(ABa)F = dy(q).

Proof. The proof is analogous to the previous theorem except that Lemma 3.3 in
case of r?(AP*) and Lemma 3.6 in case of r{(AP*) are employed instead of the
Lemma 3.2. ]

4. CERTAIN GEOMETRIC PROPERTIES OF THE SPACE ri(AP®)

In this section, we investigate certain geometric properties of the space rg(ABa).
We first recall certain notions and definitions which are necessary to establish our
results.
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Definition 4.1. A point w € S(V) is an extreme point if for every u,v € S(V') the
equality 2w = u 4+ v implies u© = v. A Banach space V is said to be rotund if every
point of S(V') is an extreme point.

Definition 4.2. A Banach space V' is said to have Kadec-Klee property (or property
(H)) if every weakly convergent sequence on the unit sphere is convergent in norm.

Definition 4.3. Let 1 < p < co. A Banach space is said to have the Banack-Saks
type p if every weakly null sequence has a subsequence () such that for some K > 0

||| < Kn%, foralln=1,2,3,...

Definition 4.4. Let V be a real vector space. A functional o : V' — [0, 00) is called
a modular if

(a) o(v) =0 if and only if v = 0;

(b) o(Av) = o(v) for scalars || = 1;

(¢) o(Au+dv) < o(u) +o(v) for all u,v € V and A\, § > 0 with A+ p = 1.
The modular o is called convex if o(Au+0v) < Ao (u)+do(v) for u,v € Vand A\, § > 0
with A 46 = 1.

We define the operator o,, 1 < p < co, on r{(A”*) by
(4.1) op(v) = S [RI(AP)".

It is clear that o,(v) is a convex modular on r¢(AP*). Now we equip the sequence
space rg(ABO‘) with the Luxemborg norm defined by

1ol :inf{m ~0:0, (“) < 1}.
K

Now, we give certain basic properties of the modular o,.

Proposition 4.1. The modular o, on 'rg(ABO‘) satisfies the following statements.
(a) If 0 < k < 1, then kPa, (%) < o,(v) and o,(kv) < ko,(v).

(b) If k> 1, then 0,(v) < k¥a, (%) .

(c) If k> 1, then o,(v) < kop(v) < o,(kv).

Proposition 4.2. The following statements hold for v € TZ(AB‘I).
(a) If vl <1, then op(v) < vl

b) If ||v|| > 1, then o,(v) > ||v]|

|vll = 1 if and only if o,(v) = 1.

vl < 1 if and only if o,(v) < 1.

|vll > 1 if and only if o,(v) > 1.

If0 < k <1, [|v]| >k, then o,(v) > KP.

If k> 1, ||v]| <k, then o,(v) < KP.

o~~~

c
d
e
f
g

—~
S N N N N

~—
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Proof. The results can be established analogously to [44, Proposition 17, p.7] (also
see [23, Proposition 3], [36, Proposition 6]). Hence, we omit details. O
Proposition 4.3. Let (v,) be a sequence in ri(AP).

(a) If lim |xnl| = 1, then nli_{loloop(xn) =1

(b) If lim op(wn) =0, then lim ||z, [| = 0.

Proof. The proof is analogous to the proof of the [36, Theorem 10, page 4]. So we
omit details. 0

Theorem 4.1. The sequence space TZ(ABO‘) is a Banach space with respect to the
Luzemborg norm.

Proof. 1t is enough to show that every Cauchy sequence in rg(AB"‘) is convergent in
Luxemborg norm. Let v = (v](-")) be a Cauchy sequence in 74(AP*) and ¢ € (0, 1).
Then there exists a positive integer ngy such that Hv(”) — v(m)H < ¢ for all m,n > ny.
Using Part (a) of Proposition 4.2, we obtain

(4.2) o, (V™ — M) < Hv(") - v(m)H <,

for all n, m > ng. This gives

(4.3) ; |(RUAP) W™ — o)) " <e.

Thus, for each fixed k£ and for all n,m > ng

sy — i), | (5), = (AP, < =

k‘ - ‘ ko
Hence, the sequence {(Rq(ABO‘)U(”))k} is Cauchy sequence in R. Since R is complete,
there exists (Rq(ABQ)U(")>k € R such that {(RQ(ABO‘)U(”))k} — (Rq(ABa)v)k as
n — oo. Therefore as n — 0o, using (4.3), we have

S| (Rrame® =), [ <o forall iz no

It remains to show that (vy) is an element of rZ(AP). Since {(Rq(ABa)v(m)>k} —

(RQ(ABO‘)v)k as m — oo we have

lim o, (V™ — ™) = g, (v™ — ).

Thus, by using the inequality (4.2), we get that o,(v™ —v) < Hv(”) - UH < ¢ for all
n > ng. This implies that v — v as n — oo. Thus, we have v = v — (v(® —v) €
ri(AP).

Hence, the space rg(ABO‘) is complete under the Luxemborg norm. 0]

Theorem 4.2. The sequence space rg(ABO‘) equipped with the Luxemborg norm is
rotund if and only if p > 1.
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Proof. Let the space r4(AP) be rotund and take p = 1. Now consider the following
sequences for a proper fraction «

. 1,a—@,&(a+1> _aﬁya(a—l—l)(oﬂ—Z) _ala+1) .@,.”

and

) Yy — T/, T4, 7_O{Q177"'
o G 2! T 1P

Then u # v and it can be clearly seen that

v:<0QlaQ1 o 04(044'1).@1 G >

7o) = 7y(0) = 0, (5

Then by Part (c) of Proposition 4.2, u,v, “3* € S [rg(ABa)} which contradicts the

fact that rZ(AP) is not rotund. Hence, p > 1.
Conversely, let w € S {rg(ABO‘)} and u,v € S [rg(ABa)} , 1 < p < 00, be such that

w = *F¥. By the convexity of o, and using the property (c) of Proposition 4.2, we
have
1 1 1
1 =op(w) < 3 [op(u) + 0 (V)] < s ts=1

This implies that o,(u) = 0,(v) = 1 and o,(w) = w

Thus from the definition of o, and from the above discussion, we get

(8%, - L5 (et [+ L a)

Again w = “t? we have

2|(mem (557)),

This implies that

(rram) (557)),

From (4.4), it follows immediately that « = v. Thus the space r4(AP*) is rotund. O

‘p

n

LX) 3|

n

‘P

n

p

(4.4 = 2 |(Ream ) [+ | (Reamoy) [

‘p

n

Theorem 4.3. The sequence space RI(AP*) has the Kadec-Klee property.

Proof. Let v e S [rg(ABO‘)} and (v(”)) - rg(ABO‘) such that Hv(”)H — 1 and o™ — v
weakly. Using Part (a) of Proposition 4.3, we get

(4.5) op,(v™) =1 as n — oco.

Alsov € S [rg(ABO‘)} and using Part (c) of Proposition 4.2, we observe that

(4.6) op(v) = 1.

Thus observing equations (4.5) and (4.6), we write

o,(v™) = o,(v) as n — oo.
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Since v — v weakly and the jth coordinate mapping 7; : rg(ABa) — R defined

by 7;(v) = v; is continuous imply that v,ﬁ”’ — v as n — 0o. Therefore, v — v as

n — oo. This completes the proof. U
Theorem 4.4. The space rg(ABO‘), 1 < p < 00, has the Banach-Saks type p.

Definition 4.5. The Gurarii’s modulus of convexity for a normed linear space V' is

defined by
Pv(g) = inf {1 - 0<inf<1 lav+ (1 —a)ul| :v,u € S(V),||lv—u| = 5} :
where 0 < e < 2.

Theorem 4.5. The Gurarii’s modulus of convezity for the space Tg(ABO‘), 1 <p<oo,
18

1
L
Braasay < 1— (1— <;> >p, where 0 < e < 2.

Proof. Let z € r4(AP*). Then

3=

121,250y = || RU(AP)2

.= (lovem2) )

Let 0 < e <2 and we define the following two sequences:

o= ([ (1= (5))" mam) ™ (5) 00.)
v = (([Rq(ABa)]‘l (1 _ <;>p)> [Re(are)] ™ (_25) 0,0, .. ) |

Then HR‘](AB"‘)UH% = JJullg(ape) = 1 and HR‘I(AB"‘)UHZP = ||vll,g(a5e) = 1. That is

u,v €S [rg(ABa)} and HRQ(ABQ)U— Rq(ABO‘)UHZ = |lu—=vll,s(a5ay = €. Thus, for
0<a<l ’

and

p

law + (1 = a)olfy psay = || RUAP)u+ (1 = @) RI(AP)o|]

1 (5 (5

Then infocqa<i [Jou+ (1 — oz)v||fg(ABa) =1- (%)p. Therefore, for p > 1

P\
Bya(am) g:l—-<1—»<;> ) . O

Corollary 4.1. (a) Fore =2, B,aanay < 1. Hence, rd(AP) s strictly conves.
(b) For 0 <e <2,0< Banasa) < 1. Hence, rg(ABa) is uniformly convex.
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5. HAUSDORFF MEASURE OF NON COMPACTNESS

In this section, we characterize certain classes of compact operators on the space
r(AP) using Hausdorff measure of non-compactness. First we recall certain known
definitions, results and notations that are essential for our investigation.

If V and W are Banach spaces then by B(V, W), we denote the class of all bounded
linear operators L : V' — W. B(V, W) itself is a Banach space with the operator norm

defined by ||L|| = sup ||L(v)| . We denote
veS(V)

(5.1) lally = sup
vesS(V)

Y

Z QU
k

for a € 1°, provided that the series on the right hand side is finite which is the case
whenever V is a BK space and a € V7 [39]. Also L is said to be compact if D(V) =V
for the domain of V' and for every bounded sequence (v,) in V, the sequence (L(v,,))
has a convergent subsequence in W. We denote the class of all such operators by
c(V,W).

The Hausdorff measure of noncompactness of a bounded set () in a metric space V'
is defined by

x(Q) :inf{5>O:QC US(vi,ri), v eV, rm<e i=1,2,...,n, neN},
i=1
where S(v;, ;) is the open ball centered at v; and radius r; for each i = 1,2,...,n. One
may refer to [8,11,17,27,32,34] for more details on compact operators and Hausdorff
measure of non-compactness. We need following lemmas for our investigation.

Lemma 5.1. ﬁ’? = Vo, Eg = {, and 05 = {,, where 1 < p < oo. Further, if V €

{1,0,,0}, then |||, = |lall,s holds for all a € VB, where |||\ is the natural norm
on VP,

Lemma 5.2. ([39, Theorem 4.2.8]). Let V and W be BK -spaces. Then we have
(V,W) C B(V,W), that is, every A € (V,W) defines a linear operator L, € B(V, W),
where La(v) = A(v) for allv € V.

Lemma 5.3. ([28, Theorem 2.25, Corollary 2.26]). Let V' and W be Banach spaces
and L € B(V,W). Then we have

(5.2) IL]l = X (L(S(V))) = x(L(B(V)))
and
(5.3) LeC(V,W) if and only if |L[, =0.

Lemma 5.4. ([28, Theorem 1.23]). Let V D ¢ be a BK space. If A € (V,W) then
HLall = 1Al vwy = supy [[Anlly < oo.
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Lemma 5.5. ([28, Theorem 2.15]). Let Q be a bounded subset of the normed space
V, where V is £,, 1 < p < o0, or cg. If P, : V. — V s the operator defined by
P, (vg,v1,v9...) = (vo,v1,02...,0,,0,0,...) for all v = (vg) € V, then

r—00

x(Q) = lim (sup (1 — PT)(U)H) . where I is the identity operator on V.
veQR

Lemma 5.6. ([33, Theorem 3.7)). Let V D ¢ be a BK-space. Then the following
statements hold.

(a) If A€ (V,co), then ||Lall, = limsup,,_,, |Anlly, and La is compact if and only
if lim,, o0 || An)3, = 0.
(b) If V has AK and A € (V,c), then

1 X %
—limsup |4, — o]}, < [[Lal|, < limsup ||A, — aff;,
2 n—oo X n—oo
and Ly is compact if and only if lim,,_, | A, — ]}, = 0, where a = (o) with
ap = lim,, o api for all k € N.

(c) If A € (V,l), then 0 < [|Lall, < limsup, . [|A.lly and La is compact if
and only if lim,,_, || An |y, = 0.

Lemma 5.7. ([33, Theorem 3.11]). Let V D ¢ be a BK-space. If A € (V,{), then
>4 4] )
.

neN neN
) = 0, where N, is the

< ||L <4 lim | su
)= =

lim | sup
T—00 ]\7e -
*

and Ly is compact if and only if lim,_, (sup > A,
NeN, |[neN Vv
subcollection of N consisting of subsets of N with elements that are greater than r.

Lemma 5.8. ([33, Theorem 4.4, Corollary 4.5]). Let V O ¢ be a BK-space and let
4l =
m=0

mll - Then, the following statements hold.
1%

(a) If A€ (V,esg), then HLAH = limsup,,_,, HAn|\ET‘L/]7bS) and Ly is compact if and

only if lim, o || An H (Vps) = 0-
(b) If V has AK and A € (V cs), then
Z Ap —all < |Lall, < hmsup
m=0 Vv

*

ZA

m=0

— hm sup
n—oo

\4

and L is compact if and only if im,, o |0 _o A — ally, = 0, where a = (ay),
with ap = limy, 00 > oo @mk for all k € N.
(c) If A€ (V,bs), then 0 < |[Lal|, < limsup,,_, ||A||E@7bs) and L4 is compact if

and only if lim, oo || Al|l1,,) = .
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Define an associated matrix F' = (f,) of the infinite matrix A = (a,x) by

o a/nk j s F( O{—I—l)

j= k+1

for all n, k € N.

Lemma 5.9. Let V' be a sequence space and A = (an) be an infinite matriz. If
A€ (ri(AP*),V), then F € (£, V) and Av = Fu for all v € ri(AP*), where A and
F are related by (5.4) and 1 < p < oo.

Theorem 5.1. Let 1 < p < oo and s = p%l. Then we have the following.

(a) If A € (ri(AB), ¢o), then | Lall, = limsup, o0 (S |furl)*
(b) If A € (ri(AP*),c), then

1 . s s . s\
5 lim sup (Z | ke — fx] ) <|[|Lall, <limsup (Z | frr — fil ) a
n—00 & n—00 k
where f = (fx) and fr, = lim, o fur for each k € N.
(c) If A € (ri(AP),€), then 0 < ||Lall, < limsup,, . (k| farl”)* -
(d) If A € (ri(AP*), 0y), then
lim (AN ey oy < [1Eally < 4 Tim AN gm0y 0

r—00

W =

w |=

where ||A||( 4(ABa) 01) = = SUPnen, (Zk |ZnGN fnk|8> , 7 €N,

(e) If A e (rg(ABa),cso), then |[Lal|, = liznﬁs;ip (k132 o fokl®)®
(f) If A € (ri(AP*), cs), then

; lim sup <Z

n—oo k

1
s

1

S)
s
Y

-

s

) < el < s (3

k

Z fmk - .]Ek
m=0

)

Z fmk - f~k
m=0

where f = (fi) with fr, = lim, o0 (X0 _g fmk) for each k € N.
(g) If A € (ri(AP),bs), then 0 < 1Ll < hmsup <

0 =

Proof.  (a) Using Lemma 5.1, one can notice that

0 = (Z ‘fnk|s> ! , fornéeN.
k

Hence, using Lemma 5.6 (a), we get the desired result.
(b) We have

1Aulig asey = I1Eal;, =

|Fn—f|£ |F, — f|€s <Z|fnk—fk ) ,  for each n € N.
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Now, let A € (r(AP*),¢), then from Lemma 5.1, we have F € ({p, ¢). Then
we write, using Lemma 5.6 (b),

1 . * . *
g limsup |Fy — fll, < [|Lall, < lmsup [[F, = flf, .
n—oo n—oo

This implies

1 1
1 ) < s ) s s
ihmsup <Z|fnk_fk| ) < |[Lall, <limsup (Z’fnk_fk| ) :

which is the desired result.
(¢) The proof is similar to that of (a) and (b) except that we employ Lemma 5.6
(c) instead of Lemma 5.6 (a) or 5.6 (b).
3) 1

Zp ZS k

Let A € (ri(AP®),¢,). Then F € (¢, () by Lemma 5.9. Hence, using Lemma
5.7, we get
ep)

lim | sup
r—00 NEN,

This implies

*

S F,

neN

- |I> R,

neN

ank

neN

*

>

neN

>

neN

) < HLAHX < 4-T1L1£1o (sup

0 NEN,

0= 12al, < timsup (S 17l")
n (o) k

as desired.
(e) It is clear that

* *

@ =

n

> A,

m=0

n

> F,

m=0

n

> F,

m=0

r(8)

p

O k Im=0

Hence, by using Lemma 5.8 (a), we get the desired result.

(f) This is similar to the proof of part (e) with part (b) of Lemma 5.8 instead of
part (a) of Lemma 5.8.

(g) This is similar to the proof of Part (e) with part (c¢) of Lemma 5.8 instead of
Part (a) of Lemma 5.8. O

Now, we have the following corollaries.

Corollary 5.1. Let 1 < p < o0.

(a) Let A € (ri(AP),co), then L is compact if and only if limy o (34 | frkl”)
0.

1
s
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(b) Let A € (ri(AP*),c), then Ly is compact if and only if

il (Z | ok = fk:\s> =0
k

(c) Let A € (ri(AP*), L), then Ly is compact if and only if limy, o (S | fur]”)
0.
(d) Let A € (ri(AP*), ), then L is compact if and only if

A, (;3}3 (Z > S )) =0.

k IneN
(e) Let A € (rg(ABa), ¢So), then L is compact if and only if

lim sup <Z z": Jmk 8) . 0.

(f) Let A € (ri(AP*),cs), then Ly is compact if and only if

o &
lim sup <Z ) =0.

n—oo k
(g) Let A € (ri(AP),bs), then Ly is compact if and only if

s L
lim sup (Z z": fmk )S =0.
Theorem 5.2. The following statements hold.
(a) [fA c (rgo(ABo‘)aCO)’ then ”LAHX = hin_}solipzk: ’fnk‘ .
(b) If A € (ri (AP*),c), then

1. .
s (1 = ) < 2l < s (X1~ ).

where f = (fx) and fr = Jim fur for each k € N.
(c) If A€ (ri (A®), 0,), then 0 < [ Lall, < lHmsup,, o 3 | farl -
(d) If A € (r&,(AP9), (1), then

lim || A[|{; ) < |Lally, < 4 lim [|A](

700 (& (AB),0 (ré(AB),t1)

@ =

n

fmk - f
m=0

where [|A ase) 0y = SUDNex, (i [Snen farl) 7 € N,
(¢) If A € (ri,(AP), csp), then [|Lall, = limsup, o (S5 [Shg futl)
(f) If A € (ri (AB*),cs), then

;limSUp (Z 2": Fote = i

Z fmk_fk:

m=0

).

) < || Lall, < limsup (Z

k
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where f = (fk) with fi, = limy,_e0 (X0 _o fmk) for each k € N.
(g) If A € (ri,(AP),bs), then 0 <||Lall, <limsup, . (Sg [Xh—o frurl) -

Proof. The proof is analogous to the proof of Theorem 5.1. U
Similarly, we have the following result.

Corollary 5.2. The following statements hold.

(a) Let A € (1% (ABY), cy), then L4 is compact if and only if lim, o0 > | far| = 0.

(b) Let A € (r4 (AB?), ¢), then Ly is compact if and only if im,, o0 (Xk | frr — fr|)
=0.

(c) Let A € (1% (ABY), 1..), then Ly is compact if and only if lim, o0 34 | fur| = 0.

(d) Let A € (r? (AB%), ¢y), then L, is compact if and only if

o e )

k IneN
(e) Let A € (ri (AP%),csp), then Ly is compact if and only if

lim sup (Z ) = 0.

n—o0 k

(f) Let A € (ri (AB),cs), then L4 is compact if and only if

lim sup (Z ) =0.

n—oo k
(g) Let A € (r9 (AB?) bs), then La is compact if and only if

lim sup (Z ) =0.
n—oo k
Theorem 5.3. The following statements hold.
(a) If A € (r{(APY), co), then |Lall, = limsup, . (supy | fuxl) -
(b) If A € (r{(AB?),c), then

n

fmk
m=0

n

fmk - f
m=0

n

fmk
m=0

1. .
g ms (sup s = 1) < 12al, < s (supl s = £l

n—oo

), lo), then 0 < [[L4ll, <limsup, . (supy [fuxl) -
) £1), then || Lall, = limy oo (supg 2202, [ furl) -
AB) csq), then | Lall,, = limsup,,_,« (supy [X5—0 fimkl) -
),cs), then

n

m=0

m=0

1
—limsup | sup < ||Lal|, <limsup | sup :
2 n—oo k X n—00 k

where f = (fk) with f, = lim,_eo (> o fmk) for each k € N.
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(8) If A € (r{(A5),bs), then 0 < || Lall, <limsup, o (supy [S5—o fmkl)

Proof. The proof is analogous to the proof of Theorem 5.1. U
Similarly, we have the following result.

Corollary 5.3. The following statements hold.
(a) Let A € (r{(AB%) cy), then Ly is compact if and only if

nh—>nc}o <Sllip |fnk|> = 0.
(b) Let A € (r{(AP%),c), then L, is compact if and only if
piing (St}ip | ok — fk|> =0.
c) Let A € (r{(AB®), (), then Ly is compact if and only if
1
ﬁ&(%PMM>—0
(d) Let A € (r{(AP),ty), then L4 is compact if and only if
lim (Sgp;|fnk|> = 0.
e) Let A € (r{(AB®), csy), then Ly is compact if and only if
1
m=0
(f) Let A € (ri(AP*),cs), then L4 is compact if and only if

m=0

n—o0

lim sup (sup
k

n—oo

lim sup <sup
k
(g) Let A € (r{(AB%),bs), then L4 is compact if and only if

> fn]) =0

m=0
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