
Kragujevac Journal of Mathematics
Volume 47(4) (2023), Pages 531–538.

COMPUTING THE H2-NORM OF A FRACTIONAL-ORDER
SYSTEM USING THE STATE-SPACE LINEAR MODEL

AOUDA LAKEB1, ZINEB KAISSERLI1, AND DJILLALI BOUAGADA1

Abstract. The main purpose of the present paper is to establish an alternative
approach to compute the H2-norm for a fractional-order transfer function of the first
kind based on Caputo fractional derivative. The key idea behind this new approach
is the use of the concept of the parahermitian transfer matrices and the state-space
realization. Numerical examples are presented to illustrate the new approach.

1. Introduction

In the last few years, many researchers pointed out that fractional derivatives
revealed to be a more adequate tool for the description of properties of various real
materials and in different fields [3, 8, 9, 11–13, 15]. Among these fields, dynamic
systems appear since they can be described and modelled using fractional derivatives
[3, 8, 11,15].

One of the most important problems in modelling and control of dynamic systems is
to compute the impulse response energy, known, also, as the H2-norm, for a fractional-
order transfer function. The H2-norm often arises in control theory and can be used
to measure the precision of a rational approximation of a fractional transfer function
and inversely [1, 10, 14, 15]. More than that, the H2-norm is a useful measure for
assessing the system’s performance.

In the literature, several methods have been proposed to compute the H2-norm
for the fractional transfer function, most of them use an analytic or an algebraic
formulation [1, 10, 15]. However, in this paper, an alternative method is provided to
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calculate the H2-norm for the fractional transfer function of the first kind associated
with the fractional-order linear system. The main concept of this new approach is
the use of the state-space realization consisting of parameters that are extracted from
the fractional-order transfer function and then a transformation of the parahermitian
matrix which let it invariant. Finally, the general expression of the H2-norm is derived
thanks to some concepts and some conditions set out.

The rest of the paper is organized as follows. In Section 2, mathematical concepts
and the definition of the H2-norm are recalled. Section 3 describes the new approach
for computing the H2-norm for the fractional transfer function of the first kind
associated with a fractional linear system. In Section 4, some examples are presented
to show the performance of the proposed method. Concluding remarks are drawn in
the last section.

2. Preliminaries

The H2-norm of a rational transfer function matrix appears among other systems
norms [2,7]. It is used in several contexts and domains [8,10,14,15], some of them use
it to measure the intensity of the response to standard excitations. An added benefit
is that different systems can be compared using the H2-norm. The definition of the
H2-norm is presented in the following.

Let {a, b, c} be a state-space representation of a linear system and let G(s) =
c(s − a)−1b for some s ∈ C be its transfer function. The H2-norm of such system is
defined as [15]

∥G∥2
H2

= 1
2π

∫ +∞

−∞
G(jω)G∗(jω) dω,

where s = jω, with j = ej π
2 and j2 = −1.

Note that, for G(−jω) = G∗(jω), we get [15]∫ 0

−∞
G(jω)G∗(jω)dω =

∫ +∞

0
G(jω)G∗(jω)dω,

then
∥G∥2

H2
= 1

π

∫ +∞

0
G(jω)G∗(jω)dω.

Let us recall that the main concept of this paper is to provide a numerical expression
for computing the H2-norm of a rational transfer function matrix of the first kind
using the state-space representation and a transformation of the parahermitian matrix
which will be determined later under some conditions.

For this purpose, we will use the Schur complement [6], where the function G can
be written through a block matrix as

SG(s) =
[

s − a b
−c 0

]
,

with respect to its right block entry.
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The transfer function G is proper, thus, its conjugate transpose

G∗(s) = b(−s − a)−1c,

is the Schur complement of the corresponding system matrix SG∗

SG∗(s) =
[

−s − a c
−b 0

]
.

Using simple algebraic manipulation on the matrices SG and SG∗ it follows

Sϕ(s) =

 0 −s − a c
s − a −b2 0
−c 0 0

 .

Note that the matrix Sϕ is also known as the parahermitian matrix where its
corresponding parahermitian transfer function is

(2.1) ϕ(s) = c(s − a)−1b2(−s − a)−1c.

3. The H2-Norm of Fractional-Order Systems

A generalized fractional-order state-space model consisting of the parameters
{a, b, c, α} can be represented as

(3.1)
{Dαx(t) = ax(t) + bu(t),

y(t) = cx(t),
where x, u, y ∈ R∗ are respectively the state, the input and the output and a ∈ R∗

−
and b, c ∈ R∗ with a null initial condition and Dα, where n − 1 ≤ α < n, for some
n ∈ N∗, is the α fractional-order derivation of the function x in the sense of the
Caputo derivative, given by [4]

Dαx(t) = 1
Γ[n − α]

∫ t

0

x(n)(τ)
(t − τ)α−n+1 dτ, x(n)(τ) = dnx(τ)

dτn
, n ∈ N∗.

For almost s ∈ C we assume that the pencil (1, a) is regular which is equivalent to
(sα − a) ̸= 0.

From the system (3.1), the transfer function G can be extracted. Indeed, by the
means of the Laplace transform [12], the direct input-output relation of the system
(3.1) is written as

Y (s) = c(sα − a)−1b U(s), for all s ∈ C.

However,
Y (s) = G(s) U(s), for all s ∈ C,

then, in time domain, the fractional transfer function associated with the system (3.1)
is given by

G(s) = c(sα − a)−1b, for all s ∈ C,
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which has the generalized state-space realization consisting on {a, b, c, α}. Its H2-
norm, in the frequency domain, is then obtained from the following definition [15]

∥G∥2
H2

= 1
π

∫ +∞

0
G(jω)G∗(jω)dω,

with s = jω, sα = (jω)α and ωα = ω̃.
Then, for the fractional system (3.1) and in the frequency domain, the so-called

parahemitian transfer function (formula (2.1)) becomes
ϕ(ω̃) = c(jαω̃ − a)−1b2(jα

ω̃ − a)−1c,

which is also the Schur complement of the so-called system matrix Sϕ

Sϕ(ω̃) =

 0 j
α
ω̃ − a c

jαω̃ − a −b2 0
−c 0 0

 .

It is well known that the parahermitian matrix can be transformed under row
and column matrices transformations that leave the system state-space realization
{a, b, c, α} invariant [6,16]. Therefore, the matrix Sϕ(ω̃) can be transformed into the
following matrix

Sϕ̃(ω̃) =

 0 j
α
ω̃ − a c

jαω̃ − a f p c
−c −c p 0

 ,

where
f = (jαω̃ − a)p + p(jα

ω̃ − a) − b2,

with p satisfying a condition given thereafter.
The existence of the value of

p = b2

2
(
cos

(
απ
2

)
ω̃ − a

) ,

solution of the equation f = 0 allows the matrix Sϕ̃(ω̃) to become

Sϕ̃(ω̃) =



0 j
α
ω̃ − a c

jαω̃ − a 0 c b2

2
(
cos

(
απ
2

)
ω̃ − a

)
−c − c b2

2
(
cos

(
απ
2

)
ω̃ − a

) 0

 .

In this case, the Schur complement of Sϕ̃ can be written as

ϕ̃(ω̃) = − c2 b2

2 j a sin
(

απ
2

) [ 1
ω̃ − a e− απ

2 j
− 1

ω̃ − a e
απ
2 j

]
.

Thus, the H2-norm of the transfer function G is

∥G∥2
H2

= 1
2π

∫ +∞

−∞
G(jω)G∗(jω)dω
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= 1
απ

∫ +∞

0
ω̃

1
α

−1 ϕ̃(ω̃) dω̃

= − c2 b2

2 π j a α sin
(

απ
2

) [∫ +∞

0

( 1
ω̃ − a e− απ

2 j
− 1

ω̃ − a e
απ
2 j

)
ω̃

1
α

−1 dω̃
]

.(3.2)

The expression (3.2) can be readily computed for α = 1. Nevertheless, for 1
2 < α < 2

with α ̸= 1, we will use the Mellin integral transform [5] where the obtained result is
presented in the following theorem.
Theorem 3.1. Assuming that 1

2 < α < 2 and α ̸= 1. Then the H2-norm of the
fractional-order transfer function G, with generalized state-space realization {a, b, c, α},
where a ∈ R∗

−, b, c ∈ R∗ and (sα − a) ̸= 0 for almost s ∈ C is defined as

∥G∥2
H2

= −
b2 c2 (−a)

1
α

−2 cot
(
απ

2

)
α sin

(
π
α

) .

The above theorem which is the main result of this paper present numerical formula
for computing the H2-norm for a fractional-order transfer function of the first kind
represented by the generalized state-space realization.
Remark 3.1. For α = 1 we get

∥G∥2
H2

= −c2b2

2a
.

Moreover, the same technique can be applied for any transfer function represented by
a regular differential linear system written in a state-space as

(3.3)
{

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

where x ∈ Rq is the state vector, u ∈ Rm is the input vector, y ∈ Rp is the output
vector and A ∈ Rq×q, B ∈ Rq×m, and C ∈ Rp×q with a null initial condition.

In this case, the H2-norm of the transfer function G(s) = C (sI − A)−1 B, with
generalized state-space realization {A, B, C} and det(sI − A) ̸= 0 for almost s ∈ C is
defined as

∥G∥2
H2

= tr
(
CPCT

)
.

The matrix P is a solution of the Lyapunov equation
AP + PAT + BBT = 0,

where AT , BT and CT are respectively the transpose of the matrices A, B and C.

4. Numerical Examples

The algorithm has been tested for different examples, and compared to the existed
methods in the state-of-art. The presented examples are taken from the references
[10,14] to validate our method. All examples have been performed using a Matlab
code.
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Example 4.1. Consider the system (3.3)

A =


−1 0 0 1
0 −1 4 −3
1 −3 −1 −3
0 4 2 −1

 , B =


0 1
0 0

−1 0
0 0

 and C =
[
−1 0 1 0
0 1 0 1

]
.

The corresponding transfer function is

G(s) =


−s3 − 3s2 − 13s + 5

s4 + 4s3 + 36s2 + 92s + 43
−6s2 − 22s − 16

s4 + 4s3 + 36s2 + 92s + 43

−s3 − 2s2 − 31s − 48
s4 + 4s3 + 36s2 + 92s + 43

6s + 16
s4 + 4s3 + 36s2 + 92s + 43

 .

Thus, using Remark 3.1, the H2-norm of the fractional transfer function G is

∥G∥H2 = 1.1751,

which is the same result when using the method presented in [14].

Example 4.2. Consider the transfer function G(s) = k
sα+λ

associated with the following
system {Dα x(t) = − λ x(t) + k u(t),

y(t) = x(t),

with 1
2 < α < 2, λ ∈ R∗

+ and k ∈ R∗.
The transfer function G satisfies the conditions of Theorem 3.1. Thus, the H2-norm

of the transfer function G is given by

∥G∥2
H2 =

−k2λ
1
α −2 cot(α π

2 )
α sin( π

α) , if 1
2 < α < 2 and α ̸= 1,

k2

2λ
, if α = 1.

For α ∈
]

1
2 , 2

[
, the obtained results are similar to the ones in [10]. For simplicity, if

we take k = 1 and λ = 2, the comparison between both methods is plotted versus α
in Figure 1.

5. Conclusion

In this paper, an efficient algorithm is proposed to compute the H2-norm for a
fractional transfer function of the first kind associated with a fractional differential
linear system. The approach consists of using the state-space realization and the
parahermitian matrix and is based on the use of transformation matrices satisfying
some conditions mentioned above. The extension of the proposed method for other
types of systems, which are some of the most significant applications, will be discussed
in a separate paper.
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Figure 1. Comparison of the values of the H2-norm between our
method and the method presented in [10] for G(s) = 1

sα+2 and 1
2 < α < 2.
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