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QUASILINEAR PARABOLIC PROBLEM WITH p(x)-LAPLACIAN
OPERATOR BY TOPOLOGICAL DEGREE

MUSTAPHA AIT HAMMOU1

Abstract. We prove the existence of a weak solution for the quasilinear parabolic
initial boundary value problem associated to the equation

ut − ∆p(x)u = h,

by using the Topological degree theory for operators of the form L + S, where L is a
linear densely defined maximal monotone map and S is a bounded demicontinuous
map of class (S+) with respect to the domain of L.

1. Introduction

Let Ω be a bounded domain in RN , N ≥ 2, with a Lipschitz boundary denoted by ∂Ω.
Fixing a final time T > 0, we denote by Q the cylinder Ω×]0, T [ and Γ = ∂Ω×]0, T [
its lateral surface. We consider the following quasilinear parabolic initial-boundary
problem:

(1.1)


∂u

∂t
− ∆p(x)u = h, in Q,

u(x, t) = 0, in Γ,
u(x, 0) = u0(x), in Ω,

where ∆p(x)u := div (|∇u|p(x)−2∇u) is the p(x)-Laplacian applied on u, defined from

V :=
{

u ∈ Lp−(0, T ; W
1,p(·)
0 (Ω)) : |∇u| ∈ Lp(·)(Q)

}
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introduced and discussed in [7,22] (and that we think it is a reasonable framework to
discuss our problem) to its dual V∗. The variable exponent p(·) : Ω → [1, +∞[ is a
Log-Hölder continuous function only dependent on the space variable x (see definitions
below). The right-hand side h is assumed to belong to V∗ and u0 lies in L2(Ω).

The importance of investigating these problems lies in their occurrence in mod-
eling various physical problems involving strong anisotropic phenomena related to
electrorheological fluids [19], the processes of filtration in complex media [4], image pro-
cessing [10], mathematical biology [13], stratigraphy problems [15], and also elasticity
[23].

Problems similar to the problem (1.1) are treated by several authors (see for instance
[14, 22] and references therein) where the proved independently the existence of at
least a weak solution for these problems.

In this work, we prove the existence of solutions for the quasilinear parabolic initial
boundary value problem (1.1) using another approach: that of Topological degree
theory.

The use of the theory of topological degrees is an efficient tool for solving some
elliptical PDEs even in variable exponent spaces without resorting to variational
methods (see [1–3]). This theory has recently been used also to solve some fractional
differential equations (see [5, 18, 20, 21]). In this paper, we will use this approach to
solve a parabolic problem in a space also with variable exponent.

The rest of this paper is organized as follows. In Section 2, we state some mathemat-
ical preliminaries about the functional framework where we will treat our problem. In
Section 3, we introduce some classes of operators and then the associated topological
degree. We will prove the main results in Section 4.

2. Preliminaries

We first recall some basic properties of variable exponent Lebesgue and Sobolev
spaces (see [8, 11,12,16,17] for more details).

Let
p− := essinfx∈Ω p(x) and p+ := esssupx∈Ω p(x).

We will make use of the following assumption
(2.1) 1 < p− ≤ p(x) ≤ p+ < +∞.

An interesting feature of generalized variable exponent Sobolev space is that smooth
functions are not dense in it without additional assumptions on the exponent p(·).
However, when the exponent satisfies the following so-called log-Hölder condition

(∃C > 0) |p(x) − p(y)| log
(

e + 1
|x − y|

)
≤ C, for all x, y ∈ Ω,

then C∞
0 (Ω) is dense in Lp(·)(Ω) (see [8, Theorem 3.7] and [11, Section 6.5.3]) and we

have the Poincaré inequality (see [12, Theorem 8.2.4] and [16, Theorem 4.3])

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω), for all u ∈ W
1,p(·)
0 (Ω),
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where the constant C > 0 depends only on Ω and the function p.
In particular, the space W

1,p(·)
0 (Ω) has a norm ∥ · ∥

W
1,p(·)
0 (Ω) given by

∥u∥
W

1,p(·)
0 (Ω) = ∥∇u∥Lp(·)(Ω), for all u ∈ W

1,p(·)
0 (Ω),

which equivalent to ∥ · ∥W 1,p(·)(Ω). Moreover, the embedding W
1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) is

compact (see [17]).
We extend a variable exponent function p : Ω → [1, +∞[ to Q → [1, +∞[ by setting

p(x, t) = p(x) for all (x, t) ∈ Q.
As in [7], we consider the following functional space

V :=
{

u ∈ Lp−(0, T ; W
1,p(·)
0 (Ω)) : |∇u| ∈ Lp(·)(Q)

}
,

which is a separable and reflexive Banach space endowed with the norm
|u|V := ∥u∥

Lp− (0,T ;W 1,p(·)
0 (Ω)) + ∥∇u∥Lp(·)(Q)

or the equivalent norm
∥u∥V := ∥∇u∥Lp(·)(Q).

Note that, under the assumption (2.1), we have

(2.2) ∥u∥p−

Lp(·)(Q) − 1 ≤
∫

Q
|u|p(x) dxdt ≤ ∥u∥p+

Lp(·)(Q) + 1.

Remark 2.1. ([7, Lemma 3.1]). C∞
0 (Q) is dense in V. Moreover we have the following

continuous dense embedding

Lp+(0, T ; W
1,p(·)
0 (Ω)) ↪→d V ↪→d Lp−(0, T ; W

1,p(·)
0 (Ω)).

For the corresponding dual spaces, we have

L(p−)′(0, T ; W −1,p′(·)(Ω)) ↪→ V∗ ↪→ L(p+)′(0, T ; W
−1,p′(·)
0 (Ω)).

3. Classes of Mappings and Topological Degree

Let X be a real separable reflexive Banach space with dual X∗ and with continuous
pairing ⟨·, ·⟩ and let Ω be a nonempty subset of X. The symbol → (⇀) stands for
strong (weak) convergence.

We consider a multi-values mapping T from X to 2X∗ (i.e., with values subsets of
X∗). With each such map, we associate its graph

G(T ) = {(u, w) ∈ X × X∗ : w ∈ T (u)}.

The multi-values mapping T is said to be monotone if for any pair of elements
(u1, w1), (u2, w2) in G(T ), we have the inequality

⟨w1 − w2, u1 − u2⟩ ≥ 0.

T is said to be maximal monotone if it is monotone and maximal in the sense of graph
inclusion among monotone multi-values mappings from X to 2X∗ . An equivalent
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version of the last clause is that for any (u0, w0) ∈ X×X∗ for which ⟨w0−w, u0−u⟩ ≥ 0,
for all (u, w) ∈ G(T ), we have (u0, w0) ∈ G(T ).

We recall that a mapping T : D(T ) ⊂ X → Y is demicontinuous if for any (un) ⊂ Ω,
un → u implies T (un) ⇀ T (u). T is said to be of class (S+) if for any (un) ⊂ D(T )
with un ⇀ u and lim sup⟨Tun, un − u⟩ ≤ 0, it follows that un → u.

Let L be a linear maximal monotone map from D(L) ⊂ X to X∗ such that D(L)
is dense in X. For each open and bounded subset G on X, we consider the following
classes of operators:

FG :={L + S : Ḡ ∩ D(L) → X∗ | S is bounded, demicontinuous map
of class (S+) with respect to D(L) from Ḡ to X∗},

HG :={L + S(t) : Ḡ ∩ D(L) → X∗ | S(t) is a bounded homotopy of class
(S+) with respect to D(L) from Ḡ to X∗}.

Note that the class HG (class of admissible homotopies) includes all affine homotopies
L + (1 − t)S1 + tS2 with (L + Si) ∈ FG, i = 1, 2.

We introduce the topological degree for the class FG due to Berkovits and Musto-
nen [6].

Theorem 3.1. Let L be a linear maximal monotone densely defined map from
D(L) ⊂ X to X∗. There exists a topological degree function

d : {(F, G, h) : F ∈ FG, G an open bounded subset in X, h /∈ F (∂G ∩ D(L))} → Z

satisfying the following properties.
(a) (Existence) If d(F, G, h) ̸= 0, then the equation Fu = h has a solution in

G ∩ D(L).
(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that

h ̸∈ F [(Ḡ \ (G1 ∪ G2)) ∩ D(L)], then we have

d(F, G, h) = d(F, G1, h) + d(F, G2, h).

(c) (Invariance under homotopies) If F (t) ∈ HG and h(t) /∈ F (t)(∂G ∩ D(L)) for
all t ∈ [0, 1], where h(t) is a continuous curve in X∗, then

d(F (t), G, h(t)) = constant, for all t ∈ [0, 1].

(d) (Normalization) L + J is a normalising map, where J is the duality mapping
of X into X∗, that is,

d(L + J, G, h) = 1, whenever h ∈ (L + J)(G ∩ D(L)).

Theorem 3.2. Let L + S ∈ FX and h ∈ X∗. Assume that there exists R > 0 such
that

(3.1) ⟨Lu + Su − h, u⟩ > 0,

for all u ∈ ∂BR(0) ∩ D(L). Then (L + S)(D(L)) = X∗.
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Proof. Let ε > 0, t ∈ [0, 1] and
Fε(t, u) = Lu + (1 − t)Ju + t(Su + εJu − h).

Since 0 ∈ L(0) and by using the boundary condition (3.1), we see that
⟨Fε(t, u), u⟩ = ⟨t(Lu + Su − h), u⟩ + ⟨(1 − t)Lu + (1 − t + tε)Ju, u⟩

≥ ⟨(1 − t)Lu + (1 − t + tε)Ju, u⟩
= (1 − t)⟨Lu, u⟩ + (1 − t + tε)⟨Ju, u⟩
≥ (1 − t + tε)∥u∥2 = (1 − t + tε)R2 > 0.

That is 0 /∈ Fε(t, u). Since J and S + εJ are continuous, bounded and of type (S+),
{Fε(t, ·)}t∈[0,1] is an admissible homotopy. Therefore, by invariance under homotopy
and normalisation, we obtain

d(Fε(t, ·), BR(0), 0) = d(L + J, BR(0), 0) = 1.

Hence, there exists uε ∈ D(L) such that 0 ∈ Fε(t, ·). Letting ε → 0+ and t = 1, we
have h ∈ Lu + Su for some u ∈ D(L). Since h ∈ X∗ is arbitrary, we conclude that
(L + S)(D(L)) = X∗. □

4. The Main Result

Lemma 4.1. The operator S := −∆p(x) defined from V to V∗ by

⟨Su, v⟩ =
∫

Q
|∇u|p(x)−2∇u∇vdxdt, for all u, v ∈ V,

is bounded, continuous and of class (S+).

Proof. Let t ∈]0, T [ and denote by A the operator defined from W
1,p(x)
0 (Ω) to

W −1,p′(x)(Ω) by

⟨Au(x, t), v(x, t)⟩ =
∫

Ω
|∇u(x, t)|p(x)−2∇u(x, t)∇v(x, t)dx,

for all u(·, t), v(·, t) ∈ W
1,p(x)
0 (Ω). Then

⟨Su, v⟩ =
∫ T

0
⟨Au(x, t), v(x, t)⟩dt, for all u, v ∈ V.

It is known by [9, Theorem 3.1] that A is bounded, continuous and of class (S+); then
it is the same for S. □

Our main result is the following existence theorem.

Theorem 4.1. Let h ∈ V∗ and u0 ∈ L2(Ω). There exists at least one weak solution
u ∈ D(L) of problem (1.1) in the following sense

−
∫

Q
uvt dxdt +

∫
Q

|∇u|p(x)−2∇u∇vdxdt =
∫

Q
hvdxdt,

for all v ∈ V.
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Proof. Let L be the operator defined from V ⊃ D(L) to V∗, where
D(L) = {v ∈ V : v′ ∈ V∗, v(0) = 0},

by
⟨Lu, v⟩ = −

∫
Q

uvtdxdt, for all u ∈ D(L), v ∈ V.

The operator L is generated by ∂/∂t via the relation

⟨Lu, v⟩ =
∫ T

0
⟨u′(t), v(t)⟩dt, for all u ∈ D(L), v ∈ V.

One can verify, as in [24] that L is a densely defined maximal monotone operator.
By the monotonicity of L (⟨Lu, u⟩ ≥ 0 for all u ∈ D(L)) and by (2.2), we get

⟨Lu + Su, u⟩ ≥ ⟨Su, u⟩ =
∫

Q
|∇u|p(x)dxdt ≥ ∥∇u∥p−

Lp(·)(Q) − 1 = ∥u∥p−

V − 1,

for all u ∈ V.
Since the right side of the above inequality approaches ∞ as ∥u∥V → ∞, then for

each h ∈ V∗ there exists R = R(h) such that ⟨Lu + Su − h, u⟩ > 0 for
all u ∈ BR(0) ∩ D(L). By applying Theorem 3.1, we conclude that the equation
Lu + Su = h is solvable in D(L), that is, (1.1) admits at least one-weak solution. □

Conclusion and future remark
So, we have used the theory of topological degree to solve a parabolic problem in a

space with variable exponent. We hope in a future work to solve other parabolic prob-
lems by generalization of (1.1), by replacing, for example, the p(x)-Laplacian operator
by a Leray-Lions type operator −div a(x, t, ∇u) under some suitable conditions.

Acknowledgements. I would like to thank the referee(s) for his comments and
suggestions on the manuscript.
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