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SOME RESULTS CONCERNED WITH HANKEL DETERMINANT
BULENT NAFI ORNEK!

ABSTRACT. In this paper, we discuss different versions of the boundary Schwarz
lemma and Hankel determinant for X («) class. Also, for the function f(z) =
2+ 32?2 4 c32% + -+ defined in the unit disc such that f € X(a), we estimate a
modulus of the angular derivative of f(z) function at the boundary point zy with
f(20) = 135 and f'(20) = ﬁ That is, we shall give an estimate below |f”(zo)|
according to the first nonzero Taylor coefficient of about two zeros, namely z = 0

and z; # 0. The sharpness of this inequality is also proved.

1. INTRODUCTION

Let A denote the class of functions f(z) = z + 22?4+ ¢32* + - - - which are analytic
in £ = {z:|z| <1}. Also, X (a) be the subclass of A consisting of all functions f
which satisfy

2
< !/

(1.1) (f(z)) fi(z) —al <1,
where a € C. There are a lot of interesting studies regarding inequality (1.1) [16,17,24].
The certain analytic functions which is in the class of X («) on the unit disc F
are considered in this paper. The subject of the present paper is to discuss some
properties of the function f(z) which belongs to the class of X (a) by applying
Schwarz lemma. Schwarz lemma is a highly popular topic in electrical engineering.
As exemplary applications, the use of positive real functions and boundary analysis
of these functions for circuit synthesis can be given. Moreover, it is also possible to
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utilize Schwarz lemma for the analysis of transfer functions in control engineering and
to design multi-notch filter structures in signal processing [14,15].

Let f € A. The ¢*" Hankel determinant of f for n > 0 and ¢ > 1 is stated by
Noonan and Thomas [23] as

Cp, Cnt+1 -+ Cpyg—1
Cn+1 Cny2 ... Cntq
H,(n) = : : : : , ¢ =1
Cntq—1 Cntq -+ Cn42q—2

From the Hankel determinant for n = 1 and ¢ = 2, we have

Hy(1) = e c5.
Cy C3
Similarly, for u = z — z; and f € A, we have
A Am+1 - Omys—1
Ds(m) = a/m;—i_l awi_‘_z a”?"'s 5 a; = 1.
Um4s—1 Am4s - Am425—2

From the Hankel determinant for m = 1 and s = 2, we have

Here, the Hankel determinant Hy(1) = ¢3 — ¢3 and Do(1) = a3 — a3 are well-known as
Fekete-Szeg6 functional [22]. In [23], authors have obtained the upper bounds of the
Hankel determinant |cocy — ¢2|. Also, in [20], author have obtained the upper bounds
the Hankel determinant A%*). Moreover, in [21], authors have given bounds for the
Second Hankel determinant for class M,,. In [1], Schwarz lemma at the boundary has
been examined for a class K of analytic functions, and the modulus of the second
derivative has been estimated from below in terms of Hankel determinants Hs(1).

We will obtain consideration for f”(z) from below by using Hy(1) and Ds(1) deter-
minants. In this consideration, the coefficients in Taylor expansion of f(z) at z =0
and z = z; points are used. The functions we use for our main results are as follows.
The relationship between the Fekete-Szeg6 function, that is the Hankel determinant
H,(1), and the second derivative of the function will be considered. In this considera-
tion, the Taylor coefficients that form the analytic function f(z) and the coefficients
that form the Hankel determination will be correlated. In this correlation, Schwarz
lemma and its results will be used.

Let f € K («) and consider the following function

2
t(z) = (ffz)> f'(Z)—OéZ1—a+(03—C§)ZQ+(204—4c2c3+2c§)z3+...,
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It is an analytic function in £ and ¢(0) = 1 — a. Consider the function

_ R(2) _ t(z) —t(0)
T(z) = %, R(z) = 13002 0)t()

Here, T'(z) is an analytic function in £, T(0) = 0 and |T'(2)| < 1 for z € E.

Several studies on Schwarz lemma exist in literature as it has a wide applicability
area. Some examples are about being estimated from below the modulus of the
derivative of the function at some boundary point of the unit disc which is also called
as boundary version of Schwarz lemma. The classical Schwarz lemma implies the
inequality

(1.2) [f'(20)] = 1

which is known as the Schwarz lemma on the boundary, and also as a part of the
Lindelof principle. The inequality (1.2) and its generalizations have important aplica-
tions in geometric theory of functions [2-7,13-15,15,18]. Mercer [10] proves a version
of the Schwarz lemma where the images of two points are known. Also, he considers
some Schwarz and Carathéodory inequalities at the boundary, as consequences of a
lemma due to Rogosinski [11]. In addition, he obtains an new boundary Schwarz
lemma, for analytic functions mapping the unit disk to itself [12]. In [9], authors have
given simple proofs of various versions of the Schwarz lemma for real-valued harmonic
functions and for holomorphic (more generally harmonic quasiregular, shortly HQR)
mappings with the strip codomain. In [8], the authors have given different applications
of the Schwarz lemma and the Jack lemma.

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel (see
[19]). In addition, the second derivative of the function f(z) will be considered from
below. Therefore, here the existence of the second derivative gives the result of the
Julia-Wolff lemma.

Lemma 1.1 (Julia-Wolff lemma). Let f be an analytic function in E, f(0) =0 and
f(E) C E. If, in addition, the function f has an angular limit f(zo) at zo € OF,
|f(20)| = 1, then the angular derivative f'(z) exists and 1 < |f'(z0)| < oc.

Corollary 1.1. The analytic function f has a finite angular derivative f'(zo) if and
only if f' has the finite angular limit f'(zo) at zo € OF.

2. MAIN RESULTS

In this section, we discuss different versions of the boundary Schwarz lemma and
Hankel determinant for X («) class. Also, for the function f(2) = 2+ 922 +c323 + - - -
defined in the unit disc such that f € K(«a), we estimate a modulus of the angular
derivative of f(z) function at the boundary point 2o with f(20) = %% and f'(z) = H#a
That is, we shall give an estimate below |f”(zy)| according to the first nonzero Taylor

coefficient of about two zeros, namely z = 0 and z; # 0. The sharpness of this
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inequality is also proved. Motivated by the results of the work presented in [2], the
following result has been obtained.

Theorem 2.1. Let f € X («) and (f(zzll)>2f’(z1) =1 for 0 < |z| < 1. Suppose that,
for some zy € OF, f has an angular limit f(zo) at zo, f(z0) = =22 and f'(20) = IJ%Q

1+a
Then we have the inequality

(2.1)
, laf? 1= laf  (1=[1=a’)|a]® = [Ha(1)]
|f (ZO)|Z 2 2 2 2 2
(1-11-af)|1+al L=al” (1= =al?) |zl + [Hx(1)]
A 1—|n)
x |14+ = ——51],
[ B |1-z/
where

A=(1— 1 =aP) [l + D) (1 - |2) [Ha(D)] = (11— o) [Da(1)] |21
— (1= 1= af’) [Hs(1)] 2],

B=(1-1—af) |a|' + [Da()] (1 [21]*) | Ha(1)] + (1 1 — af*)? | Do(1)] |2
+ (1= 11— af*) [Ha(1)] 2]

This result is sharp for a € R, with equality for each possible value of |Ho(1)| and
[ D2(1)].

Proof. Let
(2) = —2
2 =1 2V
In addition, let A : E — E be an analytic and a point z; € F in order to satisfy
h(z) — h(z z—z
CLha) | | 222 gy
1 —h(z)h(z) 1 —7Z1z
and
(2] + lg(2)]
(2.2) h(2)] < :
1+ [h(21)a(2)]

by Schwarz-pick lemma [6]. If p : E — E is analytic function and 0 < |z;]| < 1, letting

(2) = —
2 (1-p(0)p(2))
in (2.2), we obtain
p(21)—p(0)
PO Jo(2)
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and
)]+ |- 15

Cllg(2)]
(2.3) Ip(2)] < T
|C]+g(=)] ’
1+ [p(0)] 12| 11

where

plz1) —p(0)
21 (1= p(O)p(=1))

Without loss of generality, we will assume that zy = 1. If we take

p(Z)— ’
22(1Z:zzllz)
then
Hy(1) . Do) (1= Jarf?)
PO e T T a4
and

Dy(1)(1-121[?) L ()
(17\17042)2% (17|17a\2)z%

Do) (1-1=11)*
A1 (1 + (1—|1—a\2)z% (1—\1—a|2)zf
where |C| < 1. Let [p(0)| = 8 and

C:

Dy(1) (11 %)° L] ma
(1—|1—a\2)z% (1—|1—o¢|2)z%
T= . .
Dy (1) (12| Hj(1)
4l <1 T map) | [l )
From (2.3), we get
+ 2| T
[R(2)| < |21 |a(2)[* Lq
L+ 5| | T
and
1 [R)| | L+ 612l e — A1 e ~ e o st
1—|zf ~ (1= 12]) (1+ 82| Sl
Let k(z) =1+ [ 7] 1T++T‘|qq(z) and 7(z) = 1+ T |q(2)|. Therefore, we obtain
1 —|R(z)] 1 1— |2 fg(2) [ 1— 2% [g(2)]
> T i o I AP
T R O W T = R S e
1 —|z[q(2)] 1— 2] lq(z)|
2.4 LN T— 2
(2.4) o1l la(2)] —— 2] + Bz |
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Since
. L T+q(2)] '\ _
lim7(2) = lim (1+ Tlg(z)]) = 1+ T.
i zmz |V
c Lol gy
im =i+j——s,
S [e] =af
for nonnegative integers ¢ and j and
5 z—2z |? (1_121|2> (1—]z|2)
L—|g(z)" =1—|—| = — :
1 —7=12 |1 — Z12|
passing to the angular limit in (2.4) gives
2 1— |z’ L—|af*
R'(1)| > <3+3+T 3+3———5
TOEE e U T—af
1— |z 1— |z
+B8 1+ —F | AT |1 +3——3
|1—21| |1—Zl|
1—|nf 1-8 1-T1—|n)
=242 + 1+ .
1—z 1+8 14+ T -z
Moreover, since
_ |H2(1)] 2 2
1-8 1—1p©)] '~ nep)mp  (L=[1—a’) |z’ = [H(1)]
1 1 0] O T (11 _ P2 2 ,
T8 1Ol 14 B (1= - af) [+ ()

2
Dy(1)(1-12112)
(17|17a|2)z%

Hy(1)
(17|170¢\2)z%

Dy(1)(1—1%112)?

1—
1—T B |z1|<1+ (17|17a‘2)z%
1+T

Ho(1)
(17|17a|2)z%

)
)

Dy(1)(1—712)*
(1—\1—&\2)2%

1

(17\17(1\2)z§

Hp(1)
(1—\1—a|2)z%

J’_

Hy(1)
(17\17(1\2)25

and
2] (14 Dx)(1-la1)’ | | wp(1) |20 | ma
1—=T B 1 (1—\1—a|2)z% (1—|1—a\2)z% (1—|1—0¢‘2)Z% (1_|1_O“2)Z% A1
1+T /32(1)(1—|Z1\2)2 Ha(1) Dz(l)(l—\Z1|2)2 Hy(1) ' E’
|Zl‘ (1 + (1_‘1_042)3% (1—|1—o¢\2>2% + (1—|1_04‘2)Z% * (1—|1—a|2>z%

where

A= (1= 1= aP)’ | + D)) (1 = af*) [V = (1= 11 = o) |D2(D)] |2
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— (1= 1= al) [Ha(V)] |21,
Bi= (1= 1= aP)" " + 1D2(] (1 = J2?) [ Ha(D)] + (1= 1 = a?) " [ Da(1)] |
+ (1= 1= af?) |Ho(1)] 2],

we obtain
1112 (1=11=al*) |z - |Hs(1 Ay 1 — |22
P PP ET Chalinla DL '2()'[1+2-‘21'2],
L=zl (1= —af?) |zl + [Ha(1) By |1 — 2|

where

Ay = (11— af) |z + 1D2(D)] (1~ 2?) | Ha(D)] — (1= 11— o) [Da(1)] 2]
— (1= =al?) [Ha(1)]|z],

By = (1= L= af) [aaf' +|D2(V)] (1 = 2a*) " [Ha(D)] + (1 = L= ) [Do(1)] |
+ (1= 1= af?) [Ha(1)]|21]

From definition of R(z), we have

R(5)= MOy,
(1-#0)t(=2))
and ,
7)) =l ol

Thus, we obtain the inequality (2.1).
In order to show that the inequality (2.1) is sharp, choose arbitrary real numbers
(1-]1—af?)|z1]?

(1=l=a?)”

21, and y such that 0 < z < (1 -1 —oz|2) 4%, 0<y <

Let
2
2 x
% (1-laf) - 5
K = 1 5 L .
2\ y =z
a(1-(-1a) 4 3)
Let
zZ—z
x + > K+177112
2 2 z—z
9 [ Z— 21 z 1+K177112
(2.5) R(z) =z — L
1—=12 Kt 7=
1 + X —Z1Z2
237K AL
1—212

From (2.5), with the simple calculations, we obtain

R//(O) R//(zl)

2~ " T T
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and
2 1 2\2 2\2
) 1— |z 22—2 %—yﬂbﬁh|)$—y@fﬁh” 21+ 12
R(l):2+21 2 2 | 4 2\ 2 o\ 2
(1—z)" 2zt zl—y(l—\zl\)m+y(1—|21])zl—mzl
Choosing suitable signs of the numbers z;, x and y, we conslude from the last
equality that the inequality (2.1) is sharp. O
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