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ON MINIMAXITY AND LIMIT OF RISKS RATIO OF
JAMES-STEIN ESTIMATOR UNDER THE BALANCED LOSS

FUNCTION

ABDENOUR HAMDAOUI1, ABDELKADER BENKHALED2, AND MEKKI TERBECHE3

Abstract. The problem of estimating the mean of a multivariate normal distribu-
tion by different types of shrinkage estimators is investigated. Under the balanced
loss function, we establish the minimaxity of the James-Stein estimator. When the
dimension of the parameters space and the sample size tend to infinity, we study
the asymptotic behavior of risks ratio of James-Stein estimator to the maximum
likelihood estimator. The positive-part of James-Stein estimator is also treated.

1. Introduction

Stein [22] showed that the maximum likelihood estimator (MLE) of the mean
θ = (θ1, . . . , θp)⊤ of a multivariate Gaussian distribution Np (θ, σ2Ip) is inadmissible in
mean squared sense when the dimension of the parameters space p ≥ 3. In particular,
he proved the existence of a class of estimators which achieve the smaller total mean
squared error regardless of the true θ. Perhaps the best known estimator of such kind is
James-Stein’s estimator introduced by James and Stein [16]. This one is a special case
of a larger class of estimators known as shrinkage estimators which is a combination of
a model with low bias and high variance, and a model with high bias but low variance.
Interestingly, the James-Stein estimator is itself inadmissible, and there exists a wide
class of estimators that outperform the MLE, see for example, Lindley [18], Baranchik
[1], Bhattacharya [7], Bock [8], Berger [5] and Berger and Wolpert [6]. Some of
them, found some particular minimax estimators. Selahattin et al. [19] provided
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several alternative methods for derivation of the restricted ridge regression estimator
(RRRE). Hansen [15] compared the mean-squared error of ordinary least squares
(OLS), James-Stein, and least absolute shrinkage and selection operator (LASSO)
shrinkage estimators and showed that neither James-Stein nor LASSO dominates
uniformly the other. Xie et al. [24] introduced a class of semi-parametric/parametric
shrinkage estimators and established their asymptotic optimality properties.

Casella and Hwang [9] have studied the estimation of the mean θ of the random
variable X ∼ Np (θ, Ip) when the dimension of parameters space p tends to infinity.
They showed that if the limit of the ratio ∥θ∥2 /p is a constant c > 0, then the risks ratio
of the James-Stein estimator δJS and the positive-part of the James-Stein estimator
δJS+, to the MLE, tends to a constant value c/(1 + c). Benmansour and Hamdaoui
[3] have taken the model X ∼ Np (θ, σ2Ip) where the parameter σ2 is unknown and
estimated by S2 (S2 ∼ σ2χ2

n). They established the same results given by Casella
and Hwang [9]. Hamdaoui and Benmansour [12] considered the same model given
by Benmansour and Hamdaoui [3], but this time, they studied the following class of
shrinkage estimators δϕ = δJS + l(S2ϕ(S2, ∥X∥2)/ ∥X∥2)X with l is a real parameter.
The authors showed that, when the sample size n and the dimension of parameters
space p tend to infinity, the estimators δϕ have a lower bound Bm = c/(1 + c) and
if the shrinkage function ϕ satisfies some conditions, the risks ratio R(δϕ, θ)/R(X, θ)
attains this lower bound Bm, in particular the risks ratios R(δJS, θ)/R(X, θ) and
R(δJS+, θ)/R(X, θ). Hamdaoui et al. [14] studied the limit of risks ratio of two forms
of shrinkage estimators. The first one has been introduced by Benmansour and
Mourid [4], δψ = δJS + l

(
S2ψ

(
S2, ∥X∥2

)
/ ∥X∥2

)
X, where ψ (·, u) is a function with

support [0, b], b ∈ R+ and satisfies some different conditions from the one given by
Hamdaoui and Benmansour [12]. The second is the polynomial form of shrinkage
estimator introduced by Li and Kio [17]. Hamdaoui and Mezouar [13] have treated
the general class of shrinkage estimators δϕ =

(
1 − S2ϕ

(
S2, ∥X∥2

)
/ ∥X∥2

)
X. They

showed the same results given by Hamdaoui and Benmansour [12], with different
conditions on the shrinkage function ϕ. Benkhaled and Hamdaoui [2] have considered
the model X ∼ Np (θ, σ2Ip) where σ2 is unknown. They studied two different forms of
shrinkage estimators of θ: estimators of the form δψ = (1 − ψ(S2, ∥X∥2)S2/ ∥X∥2)X,
and estimators of Lindley-Type given by δφ = (1−φ(S2, T 2)S2/T 2)(X−X)+X with
X = (1/p)∑p

i=1 Xi and T 2 = ∑p
i=1

(
Xi −X

)2
, that shrink the components of the

MLE X to the random variable X. The authors showed that if the shrinkage function
ψ (respectively φ) satisfies the new conditions different from the known results in the
literature, then the estimator δψ (respectively δφ) is minimax. When the sample size
and the dimension of parameters space tend to infinity, they studied the behavior
of risks ratio of these estimators to the MLE. Hamdaoui et al. [11] have studied the
minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal
mean in the Bayesian case. The authors have considered the model X ∼ Np (θ, σ2Ip)
where σ2 is unknown and have taken the prior law θ ∼ Np (υ, τ 2Ip). They constructed
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a modified Bayes estimator δ∗
B and an empirical modified Bayes estimator δ∗

EB. When
n and p are finite, they showed that the estimators δ∗

B and δ∗
EB are minimax. The

authors have also interested in studying the limits of risks ratios of these estimators,
to the MLE X, when n and p tend to infinity. The majority of these works has been
considered under the quadratic loss function.

In the field of the estimation of a multivariate normal mean under the balanced
loss function we cite for example, Farsipour and Asgharzadeh [10] have considered
the model: X1, . . . , Xn to be a random sample from a Np (θ, σ2) with σ2 known
and the aim is to estimate the parameter θ. They studied the admissibility of the
estimator of the form aX + b under the balanced loss function. Selahattin and Issam
[20] introduced and derived the optimal extended balanced loss function (EBLF)
estimators and predictors and discussed their performances.

In this work, we deal with the model X ∼ Np (θ, σ2Ip), where the parameter σ2

is unknown and estimated by S2 (S2 ∼ σ2χ2
n). Our aim is to estimate the unknown

parameter θ by shrinkage estimators deduced by the MLE. The criterion adopted for
comparing two estimators is the risk associated to the balanced loss function. The
paper is organized as follows. In Section 2, we recall some preliminaries that are useful
for our main results. In the first part of the Section 3, we study the minimaxity of the
James-Stein estimator and the positive-part of James-Stein estimator. In the second
part of this Section, we show that the positive-part of James-Stein estimator is not
only minimax but also dominates the James-Stein estimator. In Section 4, we treat
the asymptotic behavior of risks ratios of James-Stein estimator and the positive-part
of the James-Stein estimator to the MLE, when the dimension p tends to infinity
and the sample size n is fixed on one hand, and on the other hand when p and n
tend simultaneously to infinity. We compute lower and upper bounds of each risks
ratio, that allow us to calculate the limit of risks ratio. In Section 5, we graphically
illustrate some obtained results. We end the manuscript by giving an Appendix which
contains technical lemmas that are used in the proofs of our main results.

2. Preliminaries

We recall that if X is a multivariate Gaussian random Np (θ, σ2Ip) in Rp, then
∥X∥2

σ2 ∼ χ2
p (λ) where χ2

p (λ) denotes the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter λ = ∥θ∥2

2σ2 .
In the next we also recall the following results that are useful in our proofs.

Definition 2.1. Let U ∼ χ2
p (λ). For any measurable function f : R+ → R, χ2

p (λ)
integrable, we have

E [f(U)] = Eχ2
p(λ) [f(U)]

=
∫
R+
f(u)χ2

p (λ) du
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=
+∞∑
k=0

[∫
R+
f(u)χ2

p+2k (0) du
]
e

−
λ

2
(
λ
2

)k
k!

=
+∞∑
k=0

[∫
R+
f(u)χ2

p+2kdu

]
P

(
λ

2 ; dk
)
,

where P
(
λ
2

)
is a Poisson random variable with parameter λ

2 and χ2
p+2k is the central

chi-square distribution with p+ 2k degrees of freedom.

From the Definition 2.1, we deduce that if X ∼ Np (θ, σ2Ip) , then for p ≥ 3 we have

(2.1) E
(

1
∥X∥2

)
= 1
σ2E

(
1

p− 2 + 2K

)
,

where K ∼ P
(

∥θ∥2

2σ2

)
is a Poisson random variable with parameter ∥θ∥2

2σ2 .

Lemma 2.1 ([23]). Let X be a N (υ, σ2) real random variable and let f : R → R be
an indefinite integral of the Lebesgue measurable function, f ′ essentially the derivative
of f. Suppose also that E |f ′ (X)| < +∞. Then

E
[(
X − υ

σ

)
f (X)

]
= E (f ′ (X)) .

Now, let X ∼ Np (θ, σ2Ip) where σ2 is unknown and estimated by S2 (S2 ∼ σ2χ2
n).

And let the balanced loss function defined as: for any estimator δ of θ

(2.2) Lω(δ, θ) = ω∥δ − δ0∥2 + (1 − ω)∥δ − θ∥2,

where 0 ≤ ω < 1 and δ0 is the MLE. We associate to this balanced loss function the
risk function defined by

(2.3) Rω(δ, θ) = E(Lω(δ, θ)).

In this model, it is clear that the MLE is δ0 = X, its risk function is (1 − ω)pσ2.
Indeed, Rω(X, θ) = ωE(∥X −X∥2) + (1 −ω)E(∥X − θ∥2), where X ∼ Np (θ, σ2Ip),

then X−θ
σ

∼ Np (0, Ip), thus ∥X−θ∥2

σ2 ∼ χ2
p. Hence, E(∥X − θ∥2) = E(σ2χ2

p) = σ2p.
It is well known that δ0 is minimax and inadmissible for p ≥ 3, thus any estimator

which dominates it is also minimax.

3. Minimaxity

3.1. James-Stein estimator. Consider the estimator

(3.1) δa =
(

1 − a
S2

∥X∥2

)
X = X − a

S2

∥X∥2X,

where a is a real parameter.
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Proposition 3.1. Under the balanced loss function Lω, we have:

Rω(δa, θ) = (1 − ω)pσ2 + [a2σ2n(n+ 2) − 2a(1 − ω)σ2n(p− 2)]E
(

1
p− 2 + 2K

)
,

where K ∼ P
(

∥θ∥2

2σ2

)
is a Poisson random variable with parameter ∥θ∥2

2σ2 .

Proof.
Rω(δa, θ) = ωE(∥δa −X∥2) + (1 − ω)E(∥δa − θ∥2).

From the independence between two random variables S2 and ∥X∥2, we obtain

E(∥δa −X∥2) = E

(
∥ − a

S2

∥X∥2X∥2
)

= a2E(S2)E
(

1
∥X∥2

)

= a2E((σ2χ2
n)2)E

(
1

∥X∥2

)

= a2σ2n(n+ 2)E
(

1
p− 2 + 2K

)
,

where K ∼ P
(

∥θ∥2

2σ2

)
is a Poisson random variable with parameter ∥θ∥2

2σ2 and the last
equality according to the formula (2.1) and the fact that E((χ2

n)2) = n(n+ 2). Now,

E(∥δa − θ∥2) =E
(

∥X − a
S2

∥X∥2X − θ∥2
)

=E(∥X − θ∥2) + a2E(S2)2E

(
1

∥X∥2

)

− 2aE(S2)E
(〈

X − θ,
1

∥X∥2X

〉)
.

As

E

(〈
X − θ,

1
∥X∥2X

〉)
= E

[ p∑
i=1

(
yi − θi

σ

)
yi

∥y∥2

]
,

where for any i = 1, . . . , p, yi = xi

σ
∼ N

(
θi

σ
, 1
)

and by using Lemma 2.1, we get

E

[〈
X − θ,

1
∥X∥2X

〉]
=

p∑
i=1

E

(
∂

∂yi

1∑p
j=1 y

2
j

yi

)

=
p∑
i=1

E

[
1

∥y∥2 − 2y2
i

∥y∥4

]

= (p− 2)E
(

1
∥y∥2

)
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= (p− 2)E
(

1
p− 2 + 2K

)
,

where K ∼ P
(

∥θ∥2

2σ2

)
is a Poisson random variable with parameter ∥θ∥2

2σ2 and the last
equality comes from formula (2.1). Thus,

Rω(δa, θ) =ωa2σ2n(n+ 2)E
(

1
p− 2 + 2K

)

+ (1 − ω)
[
pσ2 + a2σ2n(n+ 2)E

(
1

p− 2 + 2K

)]

− 2a(1 − ω)σ2n(p− 2)E
(

1
p− 2 + 2K

)

= (1 − ω)pσ2 + [a2σ2n(n+ 2) − 2a(1 − ω)σ2n(p− 2)]E
(

1
p− 2 + 2K

)
.□

Using Proposition 3.1, we note that under the balanced loss function Lω, a sufficient
condition so that δa dominating the MLE X is

a ≥ 0 and a(n+ 2) − 2(1 − ω)(p− 2) ≤ 0,

which is equivalent to

(3.2) 0 ≤ a ≤ 2(1 − ω)(p− 2)
n+ 2 .

From Proposition 3.1 and the convexity of risk function Rω(δa, θ) on a, one can
easily show that the optimal value of a that minimizes the risk function Rω(δa, θ) is

α = (1 − ω)(p− 2)
n+ 2 .

For a = α, we obtain the James-Stein estimator

(3.3) δJS = δα =
(

1 − α
S2

∥X∥2

)
X =

(
1 − (1 − ω)(p− 2)

n+ 2
S2

∥X∥2

)
X.

It follows from Proposition 3.1 that the risk function of δJS is given by

(3.4) Rω(δJS, θ) = (1 − ω)pσ2 − (1 − ω)2(p− 2)2 n

n+ 2σ
2E

(
1

p− 2 + 2K

)
,

where K ∼ P
(

∥θ∥2

2σ2

)
.

From the formula (3.4), it is easy to see that Rω(δJS, θ) ≤ Rω(X, θ), then the
James-Stein estimator δJS dominates the MLE X, and thus it is minimax.
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3.2. Positive-Part of James-Stein estimator. We consider the positive-part of
James-Stein estimator defined by

(3.5) δ+
JS =

(
1 − α

S2

∥X∥2

)+

X =
(

1 − α
S2

∥X∥2

)
XI

α S2
∥X∥2 ≤1,

where
(
1 − α S2

∥X∥2

)+
= max

(
0, 1 − α S2

∥X∥2

)
. We recall that

(3.6) δ−
JS =

(
1 − α

S2

∥X∥2

)−

X =
(
α

S2

∥X∥2 − 1
)
XI

α S2
∥X∥2 ≥1,

where I
α S2

∥X∥2 ≥1 is the indicating function of the set
(
α S2

∥X∥2 ≥ 1
)
.

We note that the positive-part of James-Stein estimator δ+
JS has the form (3.1),

corresponding to a+ = min
{

(1−ω)(p−2)
n+2 , S2

∥X∥2

}
. Since a+ satisfies the relation (3.2), δ+

JS

dominates the MLE X under the balanced loss function Lω, thus δ+
JS is minimax.

3.3. Dominating the positive-part of James-Stein estimator to James-Stein
estimator. It is well known that the positive-part of James-Stein estimator dominates
the James-Stein estimator for the standard case where ω = 0 (see Baranchick [1]). In
this part, we show that this property remains valid for any 0 < ω < 1.

Theorem 3.1. Under the balanced loss function Lω, the positive-part of James-Stein
estimator δ+

JS dominates the James-Stein estimator δJS.

Proof.
Rω(δ+

JS, θ) = ωE(∥δ+
JS −X∥2) + (1 − ω)E(∥δ+

JS − θ∥2)
and

Rω(δJS, θ) = ωE(∥δJS −X∥2) + (1 − ω)E(∥δJS − θ∥2).
Baranchick [1] has showed that E(∥δ+

JS − θ∥2) ≤ E(∥δJS − θ∥2) for p ≥ 3 and all
(θ, σ) ∈ (Rp × R+). Then δ+

JS dominates δJS under the balanced loss function Lω, if
and only if E(∥δ+

JS −X∥2) − E(∥δJS −X∥2) ≤ 0. Now,

E(∥δ+
JS −X∥2) =E(∥δ+

JS − δJS + δJS −X∥2)
=E(∥δ+

JS − δJS∥2) + E(∥δJS −X∥2) + 2E[⟨δ+
JS − δJS, δJS −X⟩]

=E(∥δ−
JS∥2) + E(∥δJS −X∥2) + 2E[⟨δ−

JS, δJS −X⟩]

=E
∥∥∥∥∥
(
α

S2

∥X∥2 − 1
)
I
α S2

∥X∥2 ≥1X

∥∥∥∥∥
2
+ E(∥δJS −X∥2)

+ 2E
[〈(

α
S2

∥X∥2 − 1
)
I
α S2

∥X∥2 ≥1X,−α
S2

∥X∥2X

〉]

=E
[(
α2 S4

∥X∥2 + ∥X∥2 − 2αS2
)
I
α S2

∥X∥2 ≥1

]
+ E(∥δJS −X∥2)



466 A. HAMDAOUI, A. BENKHALED, AND M. TERBECHE

− 2E
[(
α2 S4

∥X∥2 − αS2
)
I
α S2

∥X∥2 ≥1

]
.

Then
E(∥δ+

JS −X∥2) − E(∥δJS −X∥2)

=E
[(
α2 S4

∥X∥2 + ∥X∥2 − 2αS2
)
I
α S2

∥X∥2 ≥1

]
− 2E

[(
α2 S4

∥X∥2 − αS2
)
I
α S2

∥X∥2 ≥1

]

=E
[(

∥X∥2 − α2 S4

∥X∥2

)
I
α S2

∥X∥2 ≥1

]

=E
[(

1
∥X∥2 (∥X∥2 − αS2)(∥X∥2 + αS2)

)
I(∥X∥2−αS2)≤0

]
≤0. □

4. Limits of Risks Ratios

4.1. Bounds and limit of the risks ratio of James-Stein estimator. In this
part, we study the limit of risks ratio of the James-Stein estimator δJS to the MLE
X, when the dimension p tends to infinity and the sample size n is fixed on one hand,
and on the other hand when p and n tend simultaneously to infinity. The following
lemma gives a lower and an upper bounds of the ratio Rω(δJS, θ)/Rω(X, θ), which
helps us to calculate the limit of risks ratio.

Lemma 4.1. Assume the estimator δJS given in (3.3). Under the balanced loss
function Lω, we have

1 − n(1 − ω)(p− 2)
(n+ 2)(p+ ∥θ∥2

σ2 )
≤ Rω(δJS, θ)

Rω(X, θ) ≤ 1 − n(1 − ω)(p− 2)2

(n+ 2)p(p− 2 + ∥θ∥2

σ2 )
.

Proof. From Lemma 2.1 of Hamdaoui and Benmansour [12], we have
1

p− 2 + ∥θ∥2

σ2

≤ E

(
1

p− 2 + 2K

)
≤ p

(p− 2)(p+ ∥θ∥2

σ2 )
.

Using the formula (3.4), we obtain the desired result. □

Theorem 4.1. Assume the estimator δJS given in (3.1), if limp→∞
∥θ∥2

pσ2 = c (c > 0),
then

i) limp→∞
Rω(δJS ,θ)
Rω(X,θ) = (1−(1−ω) n

n+2)+c
1+c ;

ii) lim
p→∞
n→∞

Rω(δJS ,θ)
Rω(X,θ) = ω+c

1+c .

Proof. i) Using Lemma 4.1 and under the condition lim
p→∞

∥θ∥2

pσ2 = c, we have

lim
p→∞

Rω(δJS, θ)
Rω(X, θ) ≤ 1 − (1 − ω) n

n+ 2 lim
p→∞

(p− 2)2

p

1
p

p−2
p

+ ∥θ∥2

pσ2





ON MINIMAXITY AND LIMIT OF RISKS RATIO OF JAMES-STEIN ESTIMATOR 467

= 1 − (1 − ω) n

n+ 2 lim
p→∞

(p− 2)2

p2
1

p−2
p

+ ∥θ∥2

pσ2


= 1 − (1 − ω) n

n+ 2
1

1 + c

=

(
1 − (1 − ω) n

n+2

)
+ c

1 + c

and

lim
p→∞

Rω(δJS, θ)
Rω(X, θ) ≥ 1 − (1 − ω) n

n+ 2 lim
p→∞

 p−2
p

p
p

+ ∥θ∥2

pσ2


= 1 − (1 − ω) n

n+ 2
1

1 + c

=

(
1 − (1 − ω) n

n+2

)
+ c

1 + c
.

ii) From Lemma 4.1 and under the condition limp→∞
∥θ∥2

pσ2 = c, we obtain

lim
p→∞
n→∞

Rω(δJS, θ)
Rω(X, θ) ≤ 1 − (1 − ω) lim

p→∞
n→∞

 n

n+ 2
(p− 2)2

p

1
p

p−2
p

+ ∥θ∥2

pσ2


= 1 − (1 − ω) 1

1 + c
= ω + c

1 + c

and

lim
p→∞
n→∞

Rω(δJS, θ)
Rω(X, θ) ≥ 1 − (1 − ω) lim

p→∞
n→∞

 n

n+ 2

p−2
p

p
p

+ ∥θ∥2

pσ2


= 1 − (1 − ω) 1

1 + c
= ω + c

1 + c
. □

Remark 4.1. As 0 ≤ ω < 1, then
1 − n

n+2 + c

1 + c
≤ (1 − (1 − ω)

n
n+2 + c

1 + c
< 1

and c/(1 + c) ≤ (ω + c)/(1 + c) < 1, thus for p tends to infinity and n is fixed, or
for p and n tend simultaneously to infinity, the limit of risks ratio of James-Stein
estimator δJS to the MLE X, is less than 1. Therefore, Theorem 4.1 show the stability
of minimaxity property of James-Stein estimator δJS for the large values of n and p.

4.2. Bounds and limit of the risks ratio of the positive-part of James-Stein
estimator. The results for the positive-part of James-Stein estimator δ+

JS are similar
to those for the ordinary James-Stein estimator δJS, although the calculations are a
bit more difficult. In the following proposition, we give the explicit formula of the risk
function of δ+

JS.
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Proposition 4.1. The risk function of the Positive-Part of James-Stein estimator
δ+
JS under the balanced loss function Lω, is
Rω(δ+

JS, θ) =Rω(δJS, θ)

+ E

[(
∥X∥2 − α2 S4

∥X∥2 + 2(1 − ω)σ2(p− 2)α S2

∥X∥2 − pσ2
)
I
α S2

∥X∥2 ≥1

]
.

Proof.
Rω(δ+

JS, θ) =ωE(∥δ+
JS −X∥2) + (1 − ω)E(∥δ+

JS − θ∥2)
=ωE(∥δ+

JS − δJS + δJS −X∥2) + (1 − ω)E(∥δ+
JS − δJS + δJS − θ∥2)

=ωE[∥δ+
JS − δJS∥2 + ∥δJS −X∥2 + 2⟨δ+

JS − δJS, δJS −X⟩]
+ (1 − ω)E[∥δ+

JS − δJS∥2 + ∥δJS − θ∥2 + 2⟨δ+
JS − δJS, δJS −X +X − θ⟩]

=[ωE(∥δJS −X∥2) + (1 − ω)E(∥δJS − θ∥2)] + E[∥δ+
JS − δJS∥2]

+ 2E[⟨δ+
JS − δJS, δJS −X⟩ + 2(1 − ω)⟨δ+

JS − δJS, X − θ⟩]
=Rω(δJS, θ) + E[∥δ+

JS − δJS∥2] + 2E[⟨δ+
JS − δJS, δJS −X⟩]

+ 2(1 − ω)E[⟨δ+
JS − δJS, X − θ⟩].

Now, we compute the expectations in the right side hand of the last equality.
E[∥δ+

JS − δJS∥2] = E[∥δ−
JS∥2]

= E

∥∥∥∥∥
(
α

S2

∥X∥2 − 1
)
I
α S2

∥X∥2 ≥1X

∥∥∥∥∥
2


= E

[(
α2 S4

∥X∥4 + 1 − 2α S2

∥X∥2

)
I
α S2

∥X∥2 ≥1∥X∥2
]

= E

[(
α2 S4

∥X∥2 + ∥X∥2 − 2αS2
)
I
α S2

∥X∥2 ≥1

]
,(4.1)

E[⟨δ+
JS − δJS, δJS −X⟩] = E[⟨δ−

JS, δJS −X⟩]

= E

[〈(
α

S2

∥X∥2 − 1
)
I
α S2

∥X∥2 ≥1X,−α
S2

∥X∥2X

〉]

= −E
[(
α2 S4

∥X∥2 − αS2
)
I
α S2

∥X∥2 ≥1

]
,(4.2)

and by using Lemma 2.1 of Shao and Strawdermen [21], we have

E[⟨δ+
JS − δJS, X − θ⟩] = E

[〈(
α

S2

∥X∥2 − 1
)
I
α S2

∥X∥2 ≥1X,X − θ

〉]

= σ2E

[(
(p− 2)α S2

∥X∥2 − p

)
I
α S2

∥X∥2 ≥1

]
.(4.3)

According to the formulas (4.1), (4.2) and (4.3) we get the desired result. □
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In the Theorem 3.1 we showed that Rω(δ+
JS, θ) ≤ Rω(δJS, θ)) for p ≥ 3 and all

(θ, σ) ∈ (Rp × R+), then the upper bound given in Lemma 4.1 plays the role of
the upper bound of Rω(δ+

JS, θ)/Rω(X, θ). Thus for calculate the limit of risks ratio
Rω(δ+

JS, θ)/Rω(X, θ), it suffices to determine a lower bound. The following proposition
gives a lower bound of risks ratio Rω(δ+

JS, θ)/Rω(X, θ).

Proposition 4.2. For all p ≥ 3, we have the following lower bound of the risks ratio
Rω(δ+

JS ,θ)
Rω(X,θ)

Rω(δ+
JS, θ)

Rω(X, θ) ≥ Rω(δJS, θ)
(1 − ω)pσ2 + p+ λ

(1 − ω)p

∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+4(λ, du)

− 4
p

∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p−2(λ, du)

− (p− 2)n
(1 − ω)p(n+ 2)

∫ +∞

0
P
(
χ2
n+4 ≥ u

α

)
χ2
p−2(λ, du).(4.4)

Proof. As ∥X∥2

σ2 ∼ χ2
p(λ) and S2

σ2 ∼ χ2
n, where λ = ∥θ∥2

σ2 , we have

σ2E

(
∥X∥2I αS2

∥X∥2 ≥1

)
=σ2E

(
χ2
p(λ)I

χ2
n≥

χ2
p(λ)
α

)

=σ2
∫ +∞

0

(∫ +∞

u
α

χ2
n(0, dt)

)
uχ2

p(λ, du)

=σ2p
∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+2(λ, du)

+ σ2λ
∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+4(λ, du).

The last equality is obtained by using the formula (6.1) of Lemma 6.1 Appendix with
h(u) =

∫+∞
u
α

χ2
n(0, dt). As the function P

(
χ2
n ≥ u

α

)
is non increasing on u and using

the formula (6.2) of Lemma 6.2, we obtain

σ2E

(
∥X∥2I αS2

∥X∥2 ≥1

)
≥qσ2(p+ λ)

∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+4(λ, du),(4.5)

σ2E

{(
2(p− 2) αS

2

∥X∥2 − 2p
)
I αS2

∥X∥2 ≥1

}
≥ − 4σ2E

(
I αS2

∥X∥2 ≥1

)

= − 4σ2
∫ +∞

0

(∫ +∞

u
α

χ2
n(0, dt)

)
χ2
p(λ, du)

= − 4σ2
∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p(λ, du)

≥ − 4σ2
∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p−2(λ, du).(4.6)



470 A. HAMDAOUI, A. BENKHALED, AND M. TERBECHE

The last inequality comes from formula (6.1). Now,

E

(
− α2S4

∥X∥2 I αS2
∥X∥2 ≥1

)
= −σ2α2

∫ +∞

0

(∫ +∞

u
α

t2χ2
n(0, dt)

)
1
u
χ2
p(λ, du)

≥ − σ2α

n+ 2

∫ +∞

0

(∫ +∞

u
α

t2χ2
n(0, dt)

)
χ2
p−2(λ, du).

The last inequality comes from formula (6.1), taking h(u) = 1
u

∫+∞
u
α

t2χ2
n(0, dt). How-

ever, using formula (6.1) again, we get∫ +∞

u
α

t2χ2
n(0, dt) = n

∫ +∞

u
α

tχ2
n+2(0, dt)

= n(n+ 2)
∫ +∞

u
α

χ2
n+4(0, dt)

= n(n+ 2)P
(
χ2
n+4 ≥ u

α

)
,

thus, we have

(4.7) E

(
− α2S4

∥X∥2 I αS2
∥X∥2 ≥1

)
≥ −σ2αn

∫ +∞

0
P
(
χ2
n+4 ≥ u

α

)
χ2
p−2(λ, du),

combining to the formulas (4.5), (4.6) and (4.7), we get the desired result. □

Theorem 4.2. Assume the estimator δ+
JS given in (3.5), if limp→∞

∥θ∥2

pσ2 = c (c > 0),
then

i) lim
p→∞

Rω(δ+
JS ,θ)

Rω(X,θ) = (1−(1−ω) n
n+2 )+c

1+c ;

ii) lim
p→∞
n→∞

Rω(δ+
JS ,θ)

Rω(X,θ) = ω+c
1+c .

Proof. In the one hand, from Theorem 3.1, we showed that Rω(δ+
JS, θ) ≤ Rω(δJS, θ)

for p ≥ 3 and all (θ, σ) ∈ (Rp × R+) and using Theorem 4.1, we have

(4.8) lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ) ≤
(1 − (1 − ω) n

n+2) + c

1 + c

and

(4.9) lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ) ≤ ω + c

1 + c
.

In the other hand, when p tends to infinity and n is fixed, we have α = (1−ω)(p−2)
n+2

tending to +∞. According to the Lebesque’s Theorem by taking for example, the
increasing sequel with p

(
fp(u) =

∫+∞
u
α

χ2
n(0, dt) = P

(
χ2
n ≥ u

α

))
and the fact that

lim
p→+∞

P
(
χ2
n ≥ u

α

)
= P

(
χ2
n ≥ 0

)
= 1, for all n ≥ 1,
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we obtain

(4.10) lim
p→+∞

∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+4(λ, du) = 1.

In the case where p and n tend simultaneously to infinity, we have

P
(
χ2
n ≥ u

α

)
= P

(
n∑
i=1

y2
i ≥ u(n+ 2)

p− 2

)
= P

(
1
n

n∑
i=1

y2
i ≥ u

p− 2 + 2u
n(p− 2)

)
,

where y1, y2, . . . , yn are independent Gaussian random variables centered and reduced.
Then by the strong law of large numbers, we have

lim
p→∞
n→∞

P
(
χ2
n ≥ u

α

)
= lim

p→∞
n→∞

P
(

1
n

n∑
i=1

y2
i ≥ u

p− 2 + 2u
n(p− 2)

)

= lim
p→∞
n→∞

P
(

1
n

n∑
i=1

y2
i ≥ 0

)
= P(1 ≥ 0) = 1.

Thus,

(4.11) lim
p→∞
n→∞

∫ +∞

0
P
(
χ2
n ≥ u

α

)
χ2
p+4(λ, du) =

∫ +∞

0
χ2
p+4(λ, du) = 1.

Using Proposition 4.2, formulas (4.10) and (4.11) and the condition

lim
p→∞

∥θ∥2

pσ2 = lim
p→∞

λ

p
= c,

leads to

lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ) ≥ lim
p→+∞

Rω(δJS, θ)
Rω(X, θ) + lim

p→+∞

[
p+ λ

(1 − ω)p − 4
p

− (p− 2)n
(1 − ω)p(n+ 2)

]

= lim
p→+∞

Rω(δJS, θ)
Rω(X, θ) +

1 − n
n+2

1 − ω
+ c

1 − ω

≥ lim
p→+∞

Rω(δJS, θ)
Rω(X, θ)

and

lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ) ≥ lim
p→∞
n→∞

Rω(δJS, θ)
Rω(X, θ) + lim

p→∞
n→∞

[
p+ λ

(1 − ω)p − 4
p

− (p− 2)n
(1 − ω)p(n+ 2)

]

= lim
p→∞
n→∞

Rω(δJS, θ)
Rω(X, θ) + c

1 − ω

≥ lim
p→∞
n→∞

Rω(δJS, θ)
Rω(X, θ) .

It follows from Theorem 4.1 that

(4.12) lim
p→+∞

Rω(δ+
JS, θ)

Rω(X, θ) ≥
(1 − (1 − ω) n

n+2) + c

1 + c



472 A. HAMDAOUI, A. BENKHALED, AND M. TERBECHE

and

(4.13) lim
p→∞
n→∞

Rω(δ+
JS, θ)

Rω(X, θ) ≥ ω + c

1 + c
.

Combining formulas (4.8), (4.9), (4.12) and (4.13) we get the desired result. □

5. Simulation Results

First, we illustrate graphically the risks ratios of the James-Stein estimator δJS
and the positive-part of James-Stein estimator δ+

JS to the MLE X as a function of
λ = ∥θ∥2/(2σ2) for various values of n, p and ω. Secondly, we give the tables that show
the values of risks ratios of the James-Stein estimator δJS and the positive-part of
James-Stein estimator δ+

JS to the MLE X according to divers values of λ = ∥θ∥2/(2σ2)
but this time we fix n and p and vary ω.

Figure 1. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 30, p = 8 and ω = 0.1

Figures 1–6 show that the risks ratios of the James-Stein estimator δJS and the
positive-part of James-Stein estimator δ+

JS to the MLE X are less than 1, thus the
estimators δJS and δ+

JS dominate the MLE X for large values of n and p. We also
observe that the gain increases if ω is near to 0 and decreases if ω is near to 1. Tables
1-6 illustrate this note.

In Table 1 and Table 2, we give the values of ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) for n = 50 and p = 10 and n = 100 and p = 10, respectively for
divers values of λ = (∥θ∥2)/(2σ2) and ω.
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Figure 2. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 8 and ω = 0.1

Figure 3. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 10 and ω = 0.4

From Tables 1–2, first, for any values of ω and λ = ∥θ∥2/(2σ2), the ratio
Rω(δ+

JS, θ)/Rω(X, θ) is less than the ratio Rω(δJS, θ)/Rω(X, θ), which shows that
the positive-part of James-Stein estimator δ+

JS dominates the James-Stein estimator
δJS. Secondly, on the one hand, if ω and λ = ∥θ∥2/(2σ2) are small, the ratios are close
to 0 than 1, and therefore the gain is very important. On the other hand, as much as
ω goes to 1, the gain will be small and the risks ratios are almost equal. In the case
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Figure 4. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50, p = 10 and ω = 0.6

Figure 5. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100, p = 10 and ω = 0.4

ω is near to 1 and λ is large, the gain is almost equal to zero and the risks ratios are
the same.
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Figure 6. The graphs of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100, p = 10 and ω = 0.6

Conclusion

In this work, we established the minimaxity of the James-Stein estimator δJS and the
positive-part of James-Stein estimator δ+

JS of a multivariate normal mean distribution
X ∼ Np (θ, σ2Ip) under the balanced loss function. If the limit of the ratio ∥θ∥2 /p is
a constant c > 0, the risks ratios Rω(δJS, θ)/Rω(X, θ) and Rω(δ+

JS, θ)/Rω(X, θ) tend
to the values less than 1, thus we ensured the stability of the minimaxity property
of the James-Stein estimator δJS and the positive-part of James-Stein estimator δ+

JS

even if the dimension of the parameter spaces p and the sample size n tend to infinity.
An extension of this work is to obtain the similar results in the case where the model
has a symmetrical spherical distribution.

6. Appendix

Lemma 6.1 (Bock [8]). Let X ∼ Np (θ, Ip) where X = (X1, . . . , Xp)⊤ and θ =
(θ1, . . . , θp)⊤, then for any measurable function h : [0,+∞[ → R

E
(
h
(
∥X∥2

)
X2
i

)
= E

[
h
(
χ2
p+2

(
∥θ∥2

))]
+θ2

iE
[
h
(
χ2
p+4

(
∥θ∥2

))]
.

Moreover,

E
(
h
(
∥X∥2

)
∥X∥2

)
= E

[
χ2
p

(
∥θ∥2

)
h
(
χ2
p

(
∥θ∥2

))]
= pE

[
h
(
χ2
p+2

(
∥θ∥2

))]
+ ∥θ∥2 E

[
h
(
χ2
p+4

(
∥θ∥2

))]
.(6.1)

Lemma 6.2 ([3]). Let f is a real function. If for p ≥ 3, Eχ2
p(λ) [f(U)] exists, then
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Table 1. The values of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 50 and p = 10

λ
risks
ratio ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.6 ω = 0.8 ω = 0.9

0.4
δJS
δ+
JS

0.3105
0.2416

0.3871
0.3671

0.4637
0.4261

0.5403
0.5015

0.6936
0.6854

0.8468
0.8462

0.9234
0.9223

1
δJS
δ+
JS

0.3715
0.3124

0.4414
0.3949

0.5112
0.4775

0.5810
0.5590

0.7207
0,7148

0.8603
0.8600

0.9302
0.9302

2
δJS
δ+
JS

0.4260
0.3766

0.4898
0.4522

0.5536
0.5272

0.6173
0.6007

0.7449
0.7408

0.8724
0.8722

0.9362
0.9362

3
δJS
δ+
JS

0,4728
0,4321

0,5314
0,5014

0,5900
0,5696

0,6485
0,6360

0,7657
0,7628

0,8828
0,8827

0,9414
0,9414

5
δJS
δ+
JS

0,5486
0,5220

0,5987
0,5802

0,6489
0,6370

0,6991
0,6922

0,7994
0,7980

0,8997
0,8996

0,9498
0,9498

10
δJS
δ+
JS

0,6719
0,6640

0,7084
0,7034

0,7448
0,7420

0,7813
0,7798

0,8542
0,8540

0,9271
0,9271

0,9635
0,9635

15
δJS
δ+
JS

0,7443
0,7422

0,7727
0,7715

0,8011
0,8005

0,8296
0,8293

0,8864
0,8863

0,9432
0,9432

0,9716
0,9716

20
δJS
δ+
JS

0,7912
0,7907

0,8144
0,8141

0,8376
0,8375

0,8608
0,8607

0,9072
0,9072

0,9536
0,9536

0,9768
0,9768

25
δJS
δ+
JS

0,8238
0,8237

0,8434
0,8433

0,8630
0,8629

0,8825
0,8825

0,9217
0,9217

0,9608
0,9608

0,9804
0,9804

30
δJS
δ+
JS

0,8477
0,8477

0,8646
0,8646

0,8816
0,8815

0,8985
0,8985

0,9323
0,9323

0,9662
0,9662

0,9831
0,9831

a) if f is monotone non-increasing we have

(6.2) Eχ2
p+2(λ) [f(U)] ≤ Eχ2

p(λ) [f(U)] ;

b) if f is monotone non-decreasing we have

(6.3) Eχ2
p+2(λ) [f(U)] ≥ Eχ2

p(λ) [f(U)] .
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Table 2. The values of risks ratios Rω(δJS, θ)/Rω(X, θ) and
Rω(δ+

JS, θ)/Rω(X, θ) as functions of λ for n = 100 and p = 10

λ
risks
ratio ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.6 ω = 0.8 ω = 0.9

0.4
δJS
δ+
JS

0.2970
0.2092

0.3751
0.3207

0.4532
0.4025

0.5313
0.5040

0.6876
0.6800

0.8438
0.8433

0.9219
0.9219

1
δJS
δ+
JS

0,3592
0,3020

0,4304
0,3857

0,5016
0,4694

0,5728
0,5519

0,7152
0,7098

0,8576
0,8573

0,9288
0,9288

2
δJS
δ+
JS

0,4147
0,3671

0,4798
0,4439

0,5448
0,5198

0,6098
0,5942

0,7399
0,7361

0,8699
0,8697

0,9350
0,9350

3
δJS
δ+
JS

0,4625
0,4235

0,5222
0,4937

0,5819
0,5627

0,6416
0,6300

0,7611
0,7585

0,8805
0,8804

0,9403
0,9403

5
δJS
δ+
JS

0,5397
0,5146

0,5909
0,5735

0,6420
0,6309

0,6932
0,6868

0,7954
0,7942

0,8977
0,8977

0,9489
0,9489

10
δJS
δ+
JS

0,6655
0,6582

0,7027
0,6982

0,7398
0,7373

0,7770
0,7757

0,8513
0,8511

0,9257
0,9257

0,9628
0,9628

15
δJS
δ+
JS

0,7393
0,7375

0,7683
0,7672

0,7972
0,7967

0,8262
0,8260

0,8841
0,8841

0,9421
0,9421

0,9710
0,9710

20
δJS
δ+
JS

0,7871
0,7867

0,8108
0,8105

0,8344
0,8343

0,8581
0,8580

0,9054
0,9054

0,9527
0,9527

0,9763
0,9763

25
δJS
δ+
JS

0,8203
0,8203

0,8403
0,8403

0,8603
0,8603

0,8802
0,8802

0,9202
0,9202

0,9601
0,9601

0,9800
0,9800

30
δJS
δ+
JS

0,8447
0,8447

0,8620
0,8620

0,8792
0,8792

0,8965
0,8965

0,9310
0,9310

0,9655
0,9655

0,9827
0,9827
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