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CHARACTERIZATION OF ORDERED SEMIHYPERGROUPS BY
COVERED HYPERIDEALS

MD FIROJ ALI1 AND NOOR MOHAMMAD KHAN2

Abstract. After introducing the notions of the Green’s relation J, hyper J-class
and covered hyperideal in an ordered semihypergroup, some important properties of
the hyper J-class and covered hyperideals are studied. Then maximal and minimal
hyperideals of an ordered semihypergroup are defined and some vital results have
been proved. We also define a hyperbase of an ordered semihypergroup and prove
the existence of a hyperbase under certain conditions in an ordered semihypergroup.
In an ordered semihypergroup, after defining the greatest covered hyperideal and
the greatest hyperideal, some results about these hyperideals are proved. Finally,
in a regular ordered semihypergroup, we show that, under some conditions, each
hyperideal is also a covered hyperideal.

1. Introduction and Prelinimaries

In 1934, Marty [16] introduced the concept of a hyperstructure, in particular, the
hypergroup theory in the 8th Congress of Scandinavian Mathematicians. The beauty
of hyperstructure is that in hyperstructures, composition of two elements is a set.
Thus the notion of algebraic hyperstructures is a generalization of classical notion
of algebraic structures. The concept of ordered semihypergroup is a generalization
of the concept of ordered semigroup and was introduced by Heidari and Davvaz
in [11]. Thereafter it was studied by several authors. Davvaz et al. [1, 2, 11, 17]
studied some properties of hyperideals, bi-hyperideals and quasi-hyperideals in ordered
semihypergroups. In [7, 9], Fabrici introduced the notion of a covered ideal and, in
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[20], Xie generalized the notion of a covered ideal for ordered semigroups. Thereafter,
Thawhat Changphas and Pisan Summaprab [4] discussed the structure of an ordered
semigroup containing covered ideals. Later on Saber Omidi and Bijan Davvaz [18]
discussed the notion of a covered γ- hyperideal in an ordered γ-semihypergroup.

A hyperoperation on a set S (̸= ∅) is a map ◦ : S ×S → P⋆(S), where P⋆(S) denotes
the power set of S except {∅}. Then (S, ◦) is a hypergroupoid. The image of the pair
(a, b) in S × S is denoted by a ◦ b.

A hypergroupoid (S, ◦) is called a semihypergroup if for all x1, x2, x3 ∈ S

(x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3).
It means that ⋃

t∈x1◦x2
t ◦ x3 = ⋃

r∈x2◦x3
x1 ◦ r.

For any T1, T2 ∈ P⋆(S), we denote
T1 ◦ T2 =

⋃
t∈T1,t′∈T2

t ◦ t′.

Instead of {x1} ◦ T1 and T2 ◦ {x1} we shall write, in whatever follows, x1 ◦ T1 and
T2 ◦ x1, respectively. We shall write An for A ◦ A ◦ A ◦ · · · ◦ A (n-copies of A) in the
sequel without further mention.

Definition 1.1. Let ≤ be an ordered relation on a set S (̸= ∅). The triplet (S, ◦, ≤)
is called an ordered semihypergroup if (S, ◦) is a semihypergroup and (S, ≤) is a
partially ordered set such that: for all t1, t2, t ∈ S, t1 ≤ t2 implies t1 ◦ t ≤ t2 ◦ t and
t ◦ t1 ≤ t ◦ t2. Here t1 ◦ t ≤ t2 ◦ t means that for any w ∈ t1 ◦ t there exists w′ ∈ t2 ◦ t
such that w ≤ w′.

A subset H (̸= ∅) of an ordered semihypergroup S is called a subsemihypergroup
of S if H ◦ H ⊆ H. We note that for every x, y, z, u, v, w ∈ S such that x ◦ y ≤ z ◦ w
and u ≤ v, we obtain x ◦ y ◦ u ≤ z ◦ w ◦ v.

For L ⊆ S, let (L] = {t ∈ S | t ≤ h for some h ∈ L}. Throughout this paper S
denotes an ordered semihypergroup until or unless it is mentioned.

Definition 1.2. A subset W (̸= ∅) of S is called a right (resp. left) hyperideal of S if
(a) W ◦ S ⊆ W (resp. S ◦ W ⊆ W );
(b) (W ] ⊆ W .

W becomes a hyperideal if it is both a right hyperideal and a left hyperideal of S.
The set of all hyperideals of S shall be denoted, in whatever follows, by I⋆.

Definition 1.3. A proper hyperideal W of S is called minimal if W does not contain
any hyperideal of S. Equivalently, if for any U ∈ I⋆ such that U ⊆ W , we have
U = W . The proper hyperideal W of S is called maximal if for any V ∈ I⋆ such
that W ⊂ V , we have V = S. Equivalently, if for any V ∈ I⋆ such that W ⊆ V , we
have V = W . Finally, S is called simple if S has no proper hyperideals. The ordered
semihypergroup S is called regular if for any a1 ∈ S there exists t ∈ S such that
a1 ∈ (a1 ◦ t ◦ a1]. Equivalently, W ⊆ (W ◦ S ◦ W ] for every W ⊆ S.
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For an ordered semihypergroup S, the hyperideal J(a) generated by the element a
of S is equal to (a ∪ S ◦ a ∪ a ◦ S ∪ S ◦ a ◦ S].

In Section 2 of the paper, after defining the notions of Green’s relation I and covered
hyperideal, some important properties of Green’s relation I and covered hyperideals of
an ordered semihypergroup are obtained as the main results while Section 3 deals with
the structural properties of ordered semihypergroups containing covered hyperideals.

2. Basic Properties of Covered Hyperideals

The Green’s relation I on S, an ordered semihypergroup, is defined by, for t, t′ ∈ S,
t I t′ if and only if J(t) = J(t′).

For any t ∈ S, Tt is I-hyperclass of t. Let D be the collection of all I-hyperclasses of
S. Define an order ‘≼’ on D by: for any t, t′ ∈ S,

Tt ≼ T ′
t if and only if J(t) ⊆ J(t′).

Then it is easy to verify that (D,≼) is a quasi-ordered set.
The following result easily follows.

Lemma 2.1. Let t be any element of S such that T (t) ⊈ K for any principal hyperideal
K of S. Then the I-hyperclass Tt is maximal.

Lemma 2.2. Let K be any subset of S. Then K is a maximal I-hyperclass of S if
and only if S \ K is a maximal hyperideal of S.

Proof. First we consider that K is a maximal I-hyperclass of S. Then K = Tt for
some t ∈ S. We now show that S \ Tt is a hyperideal of S. For this let h ∈ S and
t′ ∈ S \ Tt, then t′ /∈ Tt ⇒ J(t) ̸= J(t′). Let y ∈ h ◦ t′. Then either J(y) = J(t) or
J(y) ̸= J(t). If J(y) ̸= J(t) then the proof is obvious. If J(y) = J(t), then we have
y ∈ h ◦ t′ ⊆ S ◦ J(t′) ⊆ J(t′) and J(y) = J(t) ̸= J(t′). Since Tt′ and Tt are disjoint
I-hyperclasses of S, we have y /∈ Tt ⇒ y ∈ S \ Tt. Thus S ◦ S \ Tt ⊆ S \ Tt. Similarly,
we may show that (S \ Tt) ◦ S ⊆ S \ Tt. Let u ∈ S \ Tt and v ∈ S be such that v ≤ u.
So we have v ∈ (v] ⊆ (u] ⊆ J(u) and thus, J(v) ⊆ J(u) ⇒ Tv ≼ Tu. If v ∈ Tt, since
Tt is maximal, so Tv is also maximal I-hyperclass of S. Thus we have Tt = Tu. So
u ∈ Tt, a contradiction. Hence, v ∈ S \ Tt and S \ Tt is a hyperideal of S. Now it
remains to show the maximality of S \ Tt. For this take any hyperideal L of S such
that S \ Tx ⊂ L. Then there exists w ∈ L \ (S \ Tt). Thus w ∈ Tt. Now, for any
y ∈ Tt, we have

J(y) = J(x) = J(w) ⊆ L,

and, so, Tt ⊆ L. Hence, S = L. This shows that S \ Tt is a maximal hyperideal of S.
Conversely suppose that S \ K is a maximal hyperideal of S. Take z ∈ S \ (S \ K).

So z ∈ K. If t ∈ Tz, then J(t) = J(z) ⊆ K. Thus t ∈ K. Hence, Tz ⊆ K.
Since S \ K ⊂ (S \ K) ∪ J(z) and S \ K is a maximal hyperideal of S, we have
(S \ K) ∪ J(z) = S. It now follows that for any t′ ∈ K, J(t′) = J(z). Thus, for
t′ ∈ K, t′ ∈ Tz ⇒ K ⊆ Tz. Hence, K = Tz. If Tz is not maximal I-hyperclass of S,
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then there exists e ∈ S such that Tz ⪵ Te. This implies that J(z) ⊂ J(e) and, so, by
hypothesis, J(e) ⊆ S \ K. As e /∈ Tz = K ⇒ e ∈ S \ K. Thus, z ∈ S \ K. This is a
contradiction as z ∈ Tz. Hence, Tz is a maximal I-hyperclass of S. □

Definition 2.1. Any proper hyperideal K of an ordered semihypergroup S is called
a covered hyperideal of S if K ⊆ (S ◦ (S \ K) ◦ S]. The set of all covered hyperideals
of S shall be denoted, in whatever follows, by CH.

Example 2.1. Let S = {u, v, w, x}. Define the hyper operation (◦) on S by the
following table:

◦ u v w x
u {u} {u, v} {u, w} {u}
v {u} {u, v} {u, w} {u}
w {u} {u, v} {u, w} {u}
x {u} {u, v} {u, w} {u}

.

Define order on S as ≤= {(u, u), (v, v), (w, w), (x, x), (v, u), (w, u)}. Then (S, ◦, ≤) is
an ordered semihypergroup. Now, it may easily be verified that B = {u, v, w} is a
covered hyperideal of S.

Example 2.2. Let S = {u, v, w, x, y}. Define the hyper operation (◦) on S by the
following table:

◦ u v w x y
u {u, v} {u, v} {u, v} {u, v} {u, v}
v {u, v} {u, v} {u, v} {u, v} {u, v}
w {u, v} {u, v} {w} {w} {y}
x {u, v} {u, v} {w} {x} {y}
y {u, v} {u, v} {w} {w} {y}

.

Define order on S as ≤= {(u, u), (v, v), (w, w), (x, x), (y, y), (u, w), (u, x), (u, y), (v, w),
(v, x), (v, y), (w, x), (w, y)}. Then (S, ◦, ≤) becomes an ordered semihypergroup. One
may easily verify that the sets A1 = {u, v} and A2 = {u, v, w, y} are covered hyper-
ideals of S.

Proposition 2.1. Let A1, A2 be different proper hyperideals of S such that A1∪A2 = S.
Then none of them is covered hyperideal of S.

Proof. On contrary, assume that A1 is a covered hyperideal of S. Since A1 ∪ A2 = S,
we have S \ A1 ⊆ A2 and S \ A2 ⊆ A1. Thus we have

A1 ⊆ (S ◦ (S \ A1) ◦ S] ⊆ (S ◦ A2 ◦ S] ⊆ A2.

Therefore, S = A2. This is a contradiction. By the similar argument, we may show
that if A2 is a covered hyperideal of S, then S = A1. This is again a contradiction.
Hence, the result hold. □

The following corollary follows easily from Proposition 2.1.
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Corollary 2.1. If an ordered semihypergroup S contains two or more maximal hy-
perideal, then none of them is a covered hyperideal of S.

Proposition 2.2. Let A1, A2 be covered hyperideals of S. Then A1 ∪ A2 ∈ CH.

Proof. Let A1 and A2 ∈ CH. Then A1 ⊆ (S ◦ (S \ A1) ◦ S] and A2 ⊆ (S ◦ (S \ A2) ◦ S].
Clearly A1∪A2 is a hyperideal of S. To show that A1∪A2 ∈ CH, take any z ∈ (A1∪A2).
If z ∈ A1, then z ∈ (s1◦t◦s2] for some s1, s2 ∈ S and t ∈ S\A1. In case t ∈ S\(A1∪A2),
then z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S]. Again, if t ∈ (A1 ∪ A2), then t ∈ A2 ⊆ (s′

1 ◦ t′ ◦ s′
2]

for s′
1, s′

2 ∈ S and t′ ∈ S \ A2. Now z ∈ (s1 ◦ t ◦ s2] ⊆ (s1 ◦ (s′
1 ◦ t′ ◦ s′

2] ◦ s2] ⊆
(S ◦ S ◦ t′ ◦ S ◦ S] ⊆ (S ◦ t′ ◦ S]. If t′ ∈ A1, then t ∈ (s′

1 ◦ t′ ◦ s′
2] ⊆ (S ◦ A1 ◦ S] ⊆ A1.

This is a contradiction. Hence, t′ ∈ S \ (A1 ∪ A2) and, so, z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S].
In a similar way we may show that if z ∈ A2, then z ∈ (S ◦ (S \ (A1 ∪ A2)) ◦ S]. Hence,
the result follows. □

Proposition 2.3. Let A1 be any hyperideal of S and A2 ∈ CH. Then A1 ∩ A2 ∈ CH.

Proof. First we prove that A1 ∩A2 is a non-empty hyperideal of S. For this, let t ∈ A1
and t′ ∈ A2, then we have t ◦ t′ ⊆ A1 ◦ A2 ⊆ A1 ◦ S ⊆ A1. Also, t ◦ t′ ⊆ A1 ◦ A2 ⊆
S ◦ A2 ⊆ A2. Thus, t ◦ t′ ⊆ A1 ∩ A2 ⊆ S. Clearly, (A1 ∩ A2) ◦ S ⊆ A1 ◦ S ⊆ A1
and (A1 ∩ A2) ◦ S ⊆ A2 ◦ S ⊆ A2. Thus (A1 ∩ A2) ◦ S ⊆ A1 ∩ A2. In a similar way
we may show that S ◦ (A1 ∩ A2) ⊆ A1 ∩ A2. Also, as (A1 ∩ A2] ⊆ (A1] = A1 and
(A1 ∩ A2] ⊆ (A2] = A2, we have (A1 ∩ A2] ⊆ A1 ∩ A2. Now, as A1 ∩ A2 ⊆ A2 ⊆
(S ◦ (S \ A2) ◦ S] ⊆ (S ◦ (S \ (A1 ∩ A2)) ◦ S], A1 ∩ A2 is a covered hyperideal of S. □

Corollary 2.2. If A1 and A2 ∈ CH, then A1 ∩ A2 ∈ CH.

Combining Proposition 2.2 and Corollary 2.2, we have the following.

Theorem 2.1. For an ordered semihypergroup S, CH is a sublattice of the lattice of
all hyperideals of S.

3. Covered Hyperideals in Ordered Semihypergroups

Theorem 3.1. An ordered semihypergroup S contains a covered hyperideal if it is not
simple.

Proof. Proof of this theorem is similar to the proof of Theorem 3.10 of [18]. □

Theorem 3.2. If an ordered semihypergroup S contains covered hyperideals, then
every covered hyperideal of S is minimal if and only if any two distinct covered
hyperideals of S are disjoint.

Proof. Proof of this theorem is similar to the proof of Theorem 3.9 of [18]. □

Corollary 3.1. Let (S, ◦, ≤) be an ordered semihypergroup. If S is not simple, then
each covered hyperideal of S is minimal if and only if any two distinct covered hyper-
ideals of S are disjoint.
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Theorem 3.3. Let K be any proper hyperideal of a regular ordered semihypergroup
S. If for every J(t) ⊆ K, there exists t′ ∈ S \ K such that J(t) ⊆ J(t′), then every
proper hyperideal of S is a covered hyperideal of S.

Proof. Clearly (S◦S] ⊆ S. As S is regular, S ⊆ (S◦S◦S] ⊆ (S◦S] ⊆ S ⇒ S = (S◦S].
Now suppose that for any hyperideal K of S and t ∈ K such that J(t) ⊆ K, there
exists t′ ∈ S \ K such that J(t) ⊆ J(t′). As S = (S ◦ S], we get S = (S ◦ S ◦ S]. Then
t′ ≤ s1 ◦ s2 ◦ s3 for some s1, s2, s3 ∈ S. If s2 ∈ K, then t′ ∈ (S ◦ K ◦ S] ⊆ (K] = K.
This is a contradiction. Therefore, t′ ∈ S \ K. Also, t′ ∈ (S ◦ (S \ K) ◦ S] ⇒ J(t′) ⊆
(S ◦ (S \ K) ◦ S]. Now t ∈ J(t) ⊆ J(t′) ⊆ (S ◦ (S \ K) ◦ S]. Hence, K ∈ CH. □

The following example illustrates Theorem 3.3.

Example 3.1. In Example 2.2, one may easily check that (S, ◦, ≤) is a regular ordered
semihypergroup. Consider the subset K = {u, v, w, y} of S. Then K is a hyperideal
of S such that J(u) ⊆ K. For x ∈ S \ K, J(t) ⊆ J(x) for all t ∈ S. Then, by the
hypothesis of the Theorem 3.3, K becomes covered hyperideal of S.

Proposition 3.1. Let K be any hyperideal of a regular order semihypergroup S. Then
any covered hyperideal L of K is also a covered hyperideal of S.

Proof. As being a hyperideal of S, K is also a subsemihypergroup of S. Let h ∈ K ⊆ S.
Since S is regular, there exists t′ ∈ S such that h ≤ h ◦ t′ ◦ h ≤ h ◦ t′ ◦ (h ◦ t′ ◦ h) =
h ◦ (t′ ◦ h ◦ t′) ◦ h. As K is a hyperideal of S, we have t′ ◦ h ◦ t′ ⊆ S ◦ K ◦ S ⊆ K.
Therefore, h ∈ (h ◦ K ◦ h]. Hence, K is a regular subsemihypergroup of S.

Now we show that L is a hyperideal of S. For this, take any u ∈ L ⊆ K and s ∈ S.
Then u ◦ s ⊆ K. For any v ∈ u ◦ s ⊆ K, there exists h ∈ K such that

v ≤ v ◦ h ◦ v ⊆ (u ◦ s) ◦ h ◦ (u ◦ s)
⊆ L ◦ (S ◦ K ◦ S) ◦ S

⊆ L ◦ K ◦ S

⊆ L ◦ K ⊆ L ( as L is a hyperideal of K).

Therefore, u ◦ s ⊆ L. By the similar argument we may show that s ◦ u ⊆ L. Also,
if l ∈ L ⊆ K and t ∈ S such that t ≤ l ⇒ t ∈ K. As L is a hyperideal of K, it
follows that t ∈ L. Hence L is a hyperideal of S. Again, by hypothesis, we have
L ⊆ (K ◦ (K \ L) ◦ K] ⊆ (S ◦ (K \ L) ◦ S] ⊆ (S ◦ (S \ L) ◦ S] (since ϕ ̸= K \ L ⊆ S \ L).
Hence, K ∈ CH. □

The following example shows that the condition of the Proposition 3.1 on S to be
regular ordered semihypergroup is a sufficient condition.

Example 3.2. Let S = {v, w, x, t}. Define a hyper operation (◦) on S by the following
table:
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◦ v w x t
v {v} {v, w} {v, x} {v}
w {v} {v, w} {v, x} {v}
x {v} {v, w} {v, x} {v}
t {v} {v, w} {v, x} {v}

.

Define an order on S as ≤= {(v, v), (w, w), (x, x), (t, t), (w, v), (x, v)}. Then (S, ◦, ≤)
is an ordered semihypergroup but not a regular ordered semihypergroup. For the
subsets K = {v, w, x}, L1 = {w} and L2 = {x} of S, one may easily verify that K is
a hyperideal of S and each Li (i = 1, 2) is a covered hyperideal of both K and S.

Definition 3.1. A non-empty subset HB of S is called a two-sided hyperbase of S if
(a) S = (HB ∪ HB ◦ S ∪ S ◦ HB ∪ S ◦ HB ◦ S];
(b) If D ⊆ HB such that S = (D ∪ D ◦ S ∪ S ◦ D ∪ S ◦ D ◦ S], then D = HB.

Maximal I-hyperclasses of S may be realized as the compliments of maximal hy-
perideals of S. The complement of a maximal hyperideal Ht of S, in the sequel, will
be denoted by H t.

In the followings, to provide examles of hyperbases of ordered semihypergroups,
examples of ordered semihypergroups are taken from [19] and [2], respectively.

Example 3.3. Let S = {u, v, w, x, y, z}. Define a hyper operation (◦) on S by the
following table:

◦ u v w x y z
u {x, y} {x, y} {x, y} {x, y} {x, y} {x, y}
v {x, y} {x, y} {x, y} {x, y} {x, y} {x, y}
w {x, y} {x, y} {x, y} {x, y} {x, y} {x, y}
x {x, y} {y} {x, y} {x, y} {x, y} {x, y}
y {x, y} {y} {x, y} {x, y} {x, y} {x, y}
z {u} {v} {w} {x} {y} {z}

.

Define an order on S as ≤= {(u, u), (v, v), (w, w), (x, x), (x, u), (x, w), (x, z), (y, y),
(y, u), (y, v), (y, w), (y, x), (y, z), (z, z)}. Then (S, ◦, ≤) is an ordered semihyper-
group. Consider the subset HB = {z} of S. Then, clearly, S ◦ HB = S and, hence,
S = (HB ∪ HB ◦ S ∪ S ◦ HB ∪ S ◦ HB ◦ S]. So HB is a hyperbase of S.

Example 3.4. Let S = {u, v, w, x, t}. Define a hyper operation (◦) on S by the
following table:

◦ u v w x t
u {u} {u} {u} {u} {u}
v {u} {u, v} {u} {u, x} {u}
w {u} {u, t} {u, w} {u, w} {u, t}
x {u} {u, v} {u, x} {u, x} {u, v}
t {u} {u, t} {u} {u, w} {u}

.

Define an order on S as ≤= {(u, u), (v, v), (w, w), (x, x), (t, t), (u, v), (u, w), (u, x),
(u, t)}. (S, ◦, ≤) is an ordered semihypergroup may easily be checked. Consider the
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subsets HB = {v} and H ′
B = {x} of S. It is easy to verify that both HB and H ′

B are
hyperbases of S.

A covered hyperideal A of an ordered semihypergroup S is called the greatest
covered hyperideal of S if it contains every covered hyperideal of S. The greatest
covered hyperideal A of S will be denoted by Ag in the sequel.

Theorem 3.4. If S is not hypersimple and contains a two-sided hyperbase HB of
S, then S has the greatest covered hyperideal Ag. Moreover, Ag = (S3] ∩ Ĥ, where
Ĥ = ⋂

t∈α
Ht, where {Ht}t∈α is the family of all maximal hyperideals of S.

Proof. Containment of hyperbase HB implies the existence of maximal hyperideals in
S and Ht = S \ H t, where H t is a maximal I-hyperclass. Since ϕ ̸= Ĥ = ⋂

t∈α
Ht =⋂

t∈α
S \ H t = S \ ⋃

t∈α
H t. It is easy to verify that Ĥ and (S3] are hyperideals of S. Let

K = (S3] ∩ Ĥ. We show that K ∈ CH. For this, let h ∈ K be any element. Then
h ∈ (S3] ⇒ h ∈ (S ◦ t′ ◦ S] for some t′ ∈ S. If t′ ∈ HB, then ∃ c ∈ HB such that
t′ ∈ J(c) and, hence, t′ ∈ (S ◦ c∪ c◦S ∪S ◦ c◦S] i.e. t′ is at least in one of the subsets:
(S ◦ c], (c ◦ S], (S ◦ c ◦ S]. Then, for all these subsets, we have (S ◦ t′ ◦ S] ⊆ (S ◦ c ◦ S]
and, hence, h ∈ (S ◦ c ◦ S] for c ∈ HB. Thus, for any h ∈ K, ∃ c ∈ HB such
that h ∈ (S ◦ c ◦ S] ⊆ (S ◦ HB ◦ S] ⊆ (S ◦ (S \ Ĥ) ◦ S] ⊆ (S ◦ (S \ K) ◦ S].
Therefore K ⊆ (S ◦ (S \ K) ◦ S]. It now remains to show that K is the greatest
covered hyperideal of S. To show this, let L be any covered hyperideal of S. Then
L ⊆ (S ◦ (S \ L) ◦ S] ⊆ (S3]. Since L ∈ CH, L can not contain any maximal I-
hyperclass. So L ⊆ S \ H t for every t ∈ α. Therefore, L ⊆ ⋂

t∈α
S \ H t = ⋂

t∈α
Ht = Ĥ.

Hence, L ⊆ (S3] ∩ Ĥ = K. Therefore, any covered hyperideal is contained in K, i.e.,
K = Ag. □

Lemma 3.1. Let S be any ordered semihypergroup having the greatest covered hyper-
ideal Ag. If Ag ⊆ (S ◦ S ◦ S], then

(a) every I-hyperclass in (S3] \ Ag is maximal;
(b) J(t) = (S ◦ t ◦ S] for all t ∈ (S3] \ Ag.

Proof. First we assume that Ag ⊂ (S3]. Then, we have (S3] \ Ag ̸= ϕ. To show
the second part let t ∈ (S3] \ Ag. Since Ag is a hyperideal of S, the I-hyperclass
Tt ⊆ (S3] \ Ag. Thus t ∈ (S ◦ t′ ◦ S] for some t′ ∈ S and (S ◦ t ◦ S] ⊆ (S ◦ t′ ◦ S]. Since
(S ◦ t′ ◦ S] ⊆ J(t′), we have J(t) ⊆ J(t′). Now suppose to the contrary that t′ /∈ Tt. So
Tt ̸= T ′

t . We claim that t′ ∈ S \ J(t). For this, if t′ ∈ J(t), then J(t) = J(t′) ⇒ Tt =
T ′

t , which is impossible. Thus we have J(t) ⊆ (S ◦ (S \ J(t)) ◦ S] and, so, J(t) ∈ CH.
By Proposition 2.2, Ag ∪ J(t) ∈ CH. As t /∈ Ag, we, thus, have Ag ⊂ Ag ∪ J(t). This
is a contradiction. Hence, t′ ∈ Tt and J(t) ⊆ (S ◦ t′ ◦ S] ⊆ J(t′) = J(t).

Thus, J(t) = (S ◦ t′ ◦ S] = J(t′). So, obviously (S ◦ t ◦ S] ⊆ J(t). Now there are two
possibilities: if t′ ≤ t, then J(t) = (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S] ⇒ J(t) ⊆ (S ◦ t ◦ S]. If
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t′ ≤ t is not true, then t′ ∈ (S ◦ t ∪ t ◦ S ∪ S ◦ t ◦ S]. Now, if t′ ∈ (S ◦ t], then we have
S ◦ t′ ◦ S ⊆ S ◦ (S ◦ t] ◦ S ⊆ (S ◦ (S ◦ t] ◦ S] ⊆ (S ◦ S ◦ t ◦ S] ⊆ (S ◦ t ◦ S].

Similarly, for t′ ∈ (t ◦ S] ∪ (S ◦ t ◦ S], we may show that (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S].
Therefore, J(t) = J(t′) = (S ◦ t′ ◦ S] ⊆ (S ◦ t ◦ S].

To prove the reverse part, let Tt be a I-hyperclass in (S3] \ Ag. On contrary assume
that Tt is not maximal. Then, by Lemma 2.1, J(t) ⊂ J(t′) for some t′ ∈ S. So
t ∈ J(t′). This implies that t ∈ (t′] ∪ (S ◦ t′] ∪ (t′ ◦ S] ∪ (S ◦ t′ ◦ S]. For such t, we
may easily prove that (S ◦ t ◦ S] ⊆ (S ◦ t′ ◦ S] ⇒ J(t) ⊆ (S ◦ t′ ◦ S]. Now, as
t′ ∈ S \ J(t), J(t) is a covered hyperideal of S. Hence Ag ⊂ Ag ∪ J(t), a contradiction.
Therefore, every I-hyperclass in (S3] \ Ag is maximal. □

Theorem 3.5. Let S be any ordered semihypergroup having the greatest covered
hyperideal Ag. If

(a) Ag ⊂ (S ◦ S ◦ S];
(b) neither Tt ≼ Tt′ nor Tt′ ≼ Tt for any t, t′ ∈ S \ (S2],

then S contains a hyperbase.

Proof. Suppose that Ag ⊂ (S3] and t, t′ ∈ S \ (S2] such that they are incomparable.
Since Ag is a covered hyperideal of S, we have

Ag ⊆ (S ◦ (S \ Ag) ◦ S] ⊆ (S3] ⊆ (S2] ⊆ S.

Let C1 = {Tt | t ∈ S \(S2]}, C2 = {Tt | t ∈ (S2]\(S3]}and C3 = {Tt | t ∈ (S3]\Ag}.
Let K be the set containing all the elements from the members of C1 and C3. Then, it
is easy to verify that K is a hyperbase of S. To show that S = J(K) = (K ∪ S ◦ K ∪
K ◦ S ∪ S ◦ K ◦ S], we only need to show that Ag, (S3] \ Ag, (S2] \ (S3], and S \ (S2]
are subsets of J(K).

(i) Let z ∈ Ag. Then z ∈ (S ◦ (S \ Ag) ◦ S] ⇒ z ∈ (S ◦ y ◦ S] for some y ∈ S \ Ag.
Clearly y ∈ Tt for some t ∈ (S \ (S2]) ∪ ((S2] \ (S3]) ∪ ((S3] \ Ag). Now, by the
construction of K, if t ∈ (S \ (S2]) ∪ ((S3] \ Ag), then we have y ∈ J(K). Hence
z ∈ J(K). If t ∈ (S2] \ (S3], then t ≤ u1 ◦ u2 for some u1, u2 ∈ S Since t /∈ (S3], we
have u1, u2 ∈ S \ (S2]. It implies that t ∈ J(K) and, so, y ∈ J(K). Thus, we have
z ∈ J(K).

(ii) If z ∈ (S3] \ Ag. Then there exists x1 ∈ K such that z ∈ J(x1). Therefore
z ∈ J(K).

(iii) If z ∈ (S2] \ (S3], then one may prove in a similar way as in the Case (i).
(iv) If z ∈ S \ (S2], then there exists x2 ∈ K such that z ∈ J(x2) ⊆ J(K).
Now, we show the minimality of K satisfying S = J(K). By Lemma 3.1, every

Tt ∈ C3 is maximal. Also every Tt ∈ C1 is maximal since for any elements t, t′ ∈ S\(S2],
neither Tt ≼ Tt′ nor Tt′ ≼ Tt. Let L ⊂ K such that S = (L ∪ S ◦ L ∪ L ◦ S ∪ S ◦ L ◦ S]
and let z ∈ K \L. Then z ≤ z′ for some z′ ∈ (L∪S ◦L∪L◦S ∪S ◦L◦S] ⇒ z′ ∈ J(l)
for some l ∈ L. Thus, J(z) ⊂ J(l), a contradiction to the construction of K. Hence,
the proof is completed. □
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A hyperideal A of S is called the greatest hyperideal of S if every proper hyperideal
of S is contained in A. The greatest hyperideal A, if exists, will be denoted by A⋆ in
the sequel.

Theorem 3.6. The greatest hyperideal A⋆ of S is a covered hyperideal of S if and
only if (S2] = (S3].

Proof. First we assume that A⋆ ∈ CH. So A⋆ ⊆ (S◦(S\A⋆)◦S]. Since A⋆ is a maximal
hyperideal of S, it follows that S \ A⋆ = Ta is the unique maximal I-hyperclass of S.
Then either (S2] ⊂ S or (S2] = S. If (S2] = S, then the proof is obvious. If (S2] ⊂ S,
then either (S3] = (S2] or (S3] ⊂ (S2].

If (S3] ⊂ (S2], then A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] ⊆ (S3] ⊂ (S2]. Hence S \ A⋆ would
contain at least two different I-hyperclasses, each from (S2] \ (S3] and S \ (S2]. This
is a contradiction to the fact that S \ A⋆ contains only one maximal J-class. Thus
(S2] = (S3].

Conversely, suppose that S contains A⋆ and (S2] = (S3]. Then show that A⋆

is a covered hyperideal of S. For this, take any z ∈ A⋆. Then, for any element
c ∈ Ta = S \ A⋆, we have J(c) = S. Thus z ∈ J(c). However, z ∈ A⋆ and
c ∈ Ta = S \ A⋆, hence z ̸= c. Therefore, z ∈ (c ◦ S ∪ S ◦ c ∪ S ◦ c ◦ S]. If z ∈ (c ◦ S] or
z ∈ (S ◦ c], then, clearly z ∈ (S2]. If z ∈ (S ◦ c ◦ S], then z ∈ (S3]. But, by hypothesis,
(S2] = (S3]. Therefore, z ∈ (S3], i.e., z ∈ (S ◦ d ◦ S] for some d ∈ S = J(c). If d = c,
then, clearly d ∈ (S ◦ c ◦ S]. If d ≠ c, then d ∈ (c ◦ S ∪ S ◦ c ∪ S ◦ c ◦ S]. Again, if
d ∈ (c ◦ S], then, clearly (S ◦ d ◦ S] ⊆ (S ◦ c ◦ S ◦ S] ⊆ (S ◦ c ◦ S]. The same relation
may be shown if d ∈ ((S ◦ c]) ∪ ((S ◦ c ◦ S]). Thus, z ∈ (S ◦ d ◦ S] ⊆ (S ◦ c ◦ S]
and c ∈ Ta = S \ A⋆. This shows that, for any z ∈ A⋆, we have z ∈ (S ◦ c ◦ S] and
c ∈ Ta = S \ A⋆. Hence, A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] i.e. A⋆ ∈ CH. □

Theorem 3.7. Suppose S has only one maximal hyperideal K. If K ∈ CH, then
K = A⋆.

Proof. Let L be any proper hyperideal of S. Then it is easy to verify that L ⊆ K,
otherwise we shall get a contradiction to the Proposition 2.1. Hence, K = A⋆. □

The following example illustrates that the converse of the Theorem 3.7 is not be
true in general.

Example 3.5. Let S = {u, v, w, x}. Define a hyper operation (◦) on S by the following
table:

◦ u v w x
u {u} {v} {u} {v}
v {v} {u} {v} {u}
w {u} {v} {u} {v}
x {v} {u} {v} {u}

.

Define an order on S as ≤= {(u, u), (v, v), (w, w), (x, x), (u, w)}. The proof that
(S, ◦, ≤) is an ordered semihypergroup is an easy exercise. Consider the subset K =
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{u, v, w} of S. Then it is easy to verify that K is the only maximal hyperideal of S.
As any proper hyperideal of S is contained in K, Thus, K = A⋆. Now S \ A⋆ = {x},
S ◦ x ◦ S = {u, v}. So, A⋆ ⊈ (S ◦ (S \ A⋆) ◦ S]. Hence, A⋆ is not a covered hyperideal
of S.

Theorem 3.8. If every proper hyperideal of S is a covered hyperideal of S, then either
of the followings is true:

(1) S contains A⋆;
(2) S = (S ◦ S] and for any proper hyperideal K and for every hyperideal J(t) of

S such that J(t) ⊆ K, there exists y ∈ S \ K such that J(t) ⊂ J(y) ⊂ S.

Proof. Take any a, b ∈ S. If Ta and Tb are maximal I-hyperclasses of S such that
Ta ̸= Tb, then, by Lemma 2.2, Aa = S \ Ta and Ab = S \ Tb are maximal proper
hyperideals of S. So, by Corollary 2.1, none of them is a covered hyperideal of S.
This is a contradiction. Thus S has no different maximal I-hyperclasses. Hence either
S contains one maximal I-hyperclass or S does not contain any maximal I-hyperclass.
Let the only maximal I-hyperclass Ta be contained in S. Then Aa = S \ Ta is a
maximal hyperideal of S. By hypothesis, Aa ∈ CH. Thus, by Theorem 3.7, Aa = A⋆.

For the second possibility, suppose that S does not contain any maximal I-hyperclass.
We need to show that S = (S ◦ S]. For this, suppose that (S ◦ S] ⊂ S. Then ∃
c ∈ S \ (S ◦ S]. We claim that the principal hyperideal J(c) ⊊ S. If J(c) = S, then
S has a maximal I-hyperclass which is impossible. Hence J(c) ⊂ S. By hypothesis,
J(c) ∈ CH, i.e., J(c) ⊆ (S ◦ (S \ J(c)) ◦ S]. Then c ∈ (S ◦ S ◦ S] ⊆ (S ◦ S]. This is a
contradiction.

Now let K be any proper hyperideal of S and let the principal hyperideal J(t) ⊆ K.
By hypothesis, K ⊆ (S◦(S\K)◦S]. So ∃ y ∈ S\K such that t ∈ (S◦y◦S] ⇒ J(t) ⊆
J(y) ⊆ S. As y ∈ S \ K, J(t) ⊂ J(y). Since S contains no maximal I-hyperclass, we
have J(y) ⊂ S, as required. □

Theorem 3.9. Let (S, ◦, ≤) be an ordered semihypergroup. If
(1) S contains the greatest hyperideal A⋆ such that A⋆ ∈ CH or
(2) S = (S2] and for any proper hyperideal K and for every hyperideal J(t) of S

such that J(t) ⊆ K, there exists y ∈ S \ K such that J(t) ⊆ J(y),
then every proper hyperideal of S is a covered hyperideal of S.

Proof. Let K be any proper hyperideal of S. First, suppose that the condition (1)
holds. Then K ⊆ A⋆ and S \ A⋆ ⊆ S \ K. Since A⋆ ∈ CH, we have

K ⊆ A⋆ ⊆ (S ◦ (S \ A⋆) ◦ S] ⊆ (S ◦ (S \ K) ◦ S].

Therefore, K ∈ CH.
Secondly we assume that S satisfies the condition (2). Let h ∈ K ⇒ J(h) ⊆ K. By

the condition (2), we have J(h) ⊂ J(y) for some y ∈ S \ K. Since S = (S2] ⇒ S =
(S3]. Thus, y ∈ (S ◦ b ◦ S] for some b ∈ S. As y ∈ S \ K, we thus have b ∈ S \ K.
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Therefore, h ∈ (S ◦ b ◦ S] ⊆ (S ◦ (S \ K) ◦ S] and, so, K ⊆ (S ◦ (S \ K) ◦ S]. Hence,
K ∈ CH. □
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4. Open Problems

(1) Is it true that the greatest hyperideal A∗ of an ordered semihypergroup S is a
covered hyperideal of S if and only if S = (S ◦ S]?

(2) Suppose an ordered semihypergroup (S, ◦, ≤) contains only one maximal hy-
perideal K. Does K ∈ CH if K = A∗, the greatest hyperideal of S?

5. Conclusion

In ordered semigroups and ordered semihypergroups, ideals and hyperideals, play
an important role to discuss the nature of the structure of ordered semigroups and
ordered semihypergroups. Nowadays the hyperideal theory has been extensively
studied by several authors. In ordered semihypergroups different types of hyperideals
such as bi-hyperideals, quasi-hyperideals have been studied. These notions had been
widely studied by several authors in different algebraic structures (see [1, 2, 12, 19]).
In this paper, we have enhanced the understanding of ordered semihypergroups by
introducing the concept of a covered hyperideal in an ordered semihypergroup. We
have also introduced the notion of a hyperbase in an ordered semihypergroup and
proved some vital results.
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