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A NEW EXTENSION OF BANACH-CARISTI THEOREM AND ITS
APPLICATION TO NONLINEAR FUNCTIONAL EQUATIONS

NABANITA KONWAR1, PRADIP DEBNATH2, STOJAN RADENOVIĆ3, AND HASSEN AYDI4

Abstract. In this paper, we present a new extension of Banach-Caristi type the-
orem for multivalued mappings. We show that our result is not a consequence of
multivalued version of Banach contraction principle due to Nadler. We provide an
application of our result to the solution of functional equations.

1. Preliminaries

Caristi [4] introduced an important generalization of the Banach contraction prin-
ciple as follows.

Theorem 1.1 ([4]). Let (Λ, η) be a complete metric space (MS, in short) and ℑ :
Λ → Λ be a self-map satisfying

η(ς, ℑ(ς)) ≤ ϕ(ς) − ϕ(ℑ(ς)),
for all ς ∈ Λ, where ϕ : Λ → [0, ∞) is a lower semicontinous mapping. Then ℑ admits
a fixed point.

Caristi’s theorem has a close connection with Ekeland’s variational principle [7, 8].
Weston [20] established a characterization for the metric completeness in terms of
Caristi’s theorem. Agarwal and Khamsi [1] extended Caristi’s result to vector valued
metric spaces.

In 1969, Nadler [17] established a number of very significant fixed point results
for multivalued maps using the Hausdorff concept, i.e., by considering the distance
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between two arbitrary sets. Khan [12] studied some interesting common fixed points
for multivalued maps.

Let (Λ, η) be a complete MS and let CB(Λ) denote the class of all nonempty
closed and bounded subsets of Λ. Then for A,B ∈ CB(Λ), define the map H :
CB(Λ) × CB(Λ) → [0, ∞) by

H(A,B) = max
{

sup
ξ∈B

∆(ξ,A), sup
δ∈A

∆(δ,B)
}

,

where ∆(δ,B) = infξ∈B η(δ, ξ). H is called the Pompeiu-Hausdorff metric induced
by η.

Definition 1.1 ([17]). ς ∈ Λ is said to be a fixed point of the multivalued map
ℑ : Λ → CB(Λ) if ς ∈ ℑ(ς). The set of all fixed points of ℑ is denoted by Fix(ℑ).

Remark 1.1. In the MS (CB(Λ),H), ς ∈ Λ, is a fixed point of ℑ if and only if
∆(ς, ℑ(ς)) = 0.

The following results are important in the present context.

Lemma 1.1 ([3, 5]). Let (Λ, η) be a MS and U, V, W ∈ CB(Λ). Then
(a) ∆(µ, V ) ≤ η(µ, γ) for any γ ∈ V and µ ∈ Λ;
(b) ∆(µ, V ) ≤ H(U, V ) for any µ ∈ U ;
(c) ∆(µ, U) ≤ [η(µ, ν) + ∆(ν, U)] for all µ, ν ∈ Λ.

Lemma 1.2 ([17]). Let U, V ∈ CB(Λ) and let ς ∈ U . Then for any p > 0 there exists
ξ ∈ V such that

η(ς, ξ) ≤ H(U, V ) + p.

However, there may not be a point ξ ∈ V such that
η(ς, ξ) ≤ H(U, V ).

If V is compact, then such a point ξ exists, i.e., η(ς, ξ) ≤ H(U, V ).

Lemma 1.3 ([17]). Let {Un} be a sequence in CB(Λ) and limn→∞ H(Un, U) = 0 for
some U ∈ CB(Λ). If υn ∈ Un and limn→∞ η(υn, υ) = 0 for some υ ∈ Λ, then υ ∈ U .

Lemma 1.4 ([16]). If {ςn} is a sequence in a MS (Λ, η) such that there exists a
constant λ ∈ [0, 1) satisfying

η(ςn+1, ςn) ≤ λη(ςn, ςn−1), for all n ≥ 1,

then the sequence {ςn} is Cauchy.

Caristi type conditions have been applied to multivalued mappings by Jachymski
[10], Feng and Liu [9], Latif and Kutbi [15] and many more. Also, generalized Caristi’s
fixed point theorems have been studied by Latif [14], Suzuki [19], and several others.

Recently, Khojateh et al. [13] gave some applications of Caristi’s theorem in MS,
whereas Karapinar et al. [11] extended the Banach and Caristi type theorems to
b-metric spaces. In the present paper, we introduce a new extension of Banach and
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Caristi type theorem to a complete MS for multivalued mappings. In Section 2, we
present the main result and in Section 3 we provide an application of our result to the
solution of a particular type of nonlinear functional equations. For some recent work on
the application of multivalued fixed point results to the solution of functional/integral
equations, we refer to [2, 6, 18].

2. Main Results

In this section, we present our main result which is a new extension of Banach-
Caristi theorem.

Theorem 2.1. Let (Λ, η) be a complete MS and ℑ : Λ → CB(Λ) be a multivalued
map such that ℑ(ς) is compact for each ς ∈ Λ. Suppose that the function ϕ : Λ → R
satisfies the following conditions:

(a) ϕ is bounded below (i.e., inf ϕ(ς) > −∞);
(b) ∆(ς, ℑ(ς)) > 0 implies H(ℑ(ς), ℑ(ξ)) ≤ (ϕ(ς) − ϕ(ξ))η(ς, ξ) for all ξ ∈ Λ.

Then ℑ has a fixed point.

Proof. Consider ς0 ∈ Λ and choose ς1 ∈ ℑ(ς0). Since ℑ(ς1) is compact, by Lemma 1.2,
we can select ς2 ∈ ℑ(ς1) satisfying η(ς1, ς2) ≤ H(ℑ(ς0), ℑ(ς1)). Similarly, we can choose
ς3 ∈ ℑ(ς2) satisfying η(ς2, ς3) ≤ H(ℑ(ς1), ℑ(ς2)) and so on.

Continuing in this way, we construct a sequence {ςn}∞
n=0 satisfying

η(ςn, ςn+1) ≤ H(ℑ(ςn−1), ℑ(ςn)).
We assume that ςn /∈ ℑ(ςn) (i.e., ∆(ςn, ℑ(ςn)) > 0) for all n ≥ 0, since otherwise we
obtain a fixed point and the proof is completed.

Let αn = η(ςn−1, ςn). Using condition (b), we have
αn+1 = η(ςn, ςn+1) ≤ H(ℑ(ςn−1), ℑ(ςn))

≤ (ϕ(ςn−1) − ϕ(ςn))η(ςn−1, ςn)
= (ϕ(ςn−1) − ϕ(ςn))αn.(2.1)

So, 0 < αn+1
αn

≤ ϕ(ςn−1) − ϕ(ςn) for each n ∈ N.
Thus, the sequence {ϕ(ςn)} is positive and non-increasing (i.e., bounded and mono-

tone). Hence, it converges to some r ≥ 0.
Further, for each n ∈ N,

n∑
k=1

αk+1

αk

≤
n∑

k=1
(ϕ(ςk−1) − ϕ(ςk))

= (ϕ(ς0) − ϕ(ς1)) + (ϕ(ς1) − ϕ(ς2)) + · · · + (ϕ(ςn−1) − ϕ(ςn))
= (ϕ(ς0) − ϕ(ςn))
→ ϕ(ς0) − r as n → ∞.

Therefore, ∑∞
n=1

αn+1
αn

< ∞, which implies that limn→∞
αn+1

αn
= 0. Thus, for λ ∈ (0, 1),

there exists n0 ∈ N such that αn+1
αn

≤ λ for all n ≥ n0. This implies that η(ςn+1, ςn) ≤
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λη(ςn, ςn−1) for all n ≥ n0. Using Lemma 1.4, we see that the sequence {ςn} is Cauchy
and since (Λ, η) is complete, ςn → ς as n → ∞ for some ς ∈ Λ.

We claim that ς is a fixed point of ℑ. We have
∆(ς, ℑ(ς)) ≤ [η(ς, ςn+1) + ∆(ςn+1, ℑ(ς))] (using (c) of Lemma 1.1)

≤ [η(ς, ςn+1) + H(ℑ(ςn), ℑ(ς))] (using (b) of Lemma 1.1)
≤ [η(ς, ςn+1) + (ϕ(ςn) − ϕ(ς))η(ςn, ς)] (using (b) of the hypothesis)
→ 0 as n → ∞.

Therefore, ∆(ς, ℑ(ς)) = 0, i.e., ς ∈ ℑ(ς). □

Remark 2.1. It should be noted that the right hand side of Caristi’s condition from
Theorem 1.1 does not depend on the distance function, whereas in our condition
from Theorem 2.1, the right hand side depends on the distance function. As such,
Theorem 2.1 should better be treated as a variant of a Caristi type result instead of
a generalization of the same. This is more so, because one can observe that when
ℑ is a single-valued mapping, our result does not reduce to original Caristi’s result.
For these reasons our result does not bear a direct connection with the multivalued
results studied in [9, 10, 15].

Next, we provide an example to validate Theorem 2.1.

Example 2.1. Consider Λ = {0, 1, 2} and η : Λ × Λ → [0, ∞) be defined as η(0, 1) = 1,
η(0, 2) = 2, η(1, 2) = 1, η(ς, ς) = 0 and η(ς, ξ) = η(ξ, ς) for all ς, ξ ∈ Λ. Then (Λ, η) is
a complete MS. Define the multivalued map ℑ : Λ → CB(Λ) by

ℑ(ς) =
{

{0}, if ς ̸= 2,
{0, 2}, if ς = 2.

Also, define ϕ : Λ → R by ϕ(0) = 0, ϕ(1) = 5 and ϕ(2) = 3. Clearly, (Λ, η)
is a complete MS and ℑ(ς) is compact for each ς ∈ Λ. Further, we observe that
∆(ς, ℑ(ς)) > 0 for ς = 1. Indeed, we have

∆(0, ℑ0) =∆(0, {0}) = 0,

∆(1, ℑ1) =∆(1, {0}) = 1,

∆(2, ℑ2) =∆(2, {0, 2}) = 0.

Now,
H(ℑ1, ℑ0) =H({0}, {0}) = 0,

H(ℑ1, ℑ1) =0,

H(ℑ1, ℑ2) =H({0}, {0, 2}) = 2.

Hence, it is easy to see that
H(ℑ1, ℑ0) ≤ (ϕ(1) − ϕ(0))η(1, 0),
H(ℑ1, ℑ1) ≤ (ϕ(1) − ϕ(0))η(1, 1),
H(ℑ1, ℑ2) ≤ (ϕ(1) − ϕ(0))η(1, 2).
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Therefore, all conditions of Theorem 2.1 are satisfied and we see that ℑ has a fixed
point. Here, Fix(ℑ) = {0, 2}.

Remark 2.2. Note that H(ℑ1, ℑ2) = 2 > η(1, 2) = 1. Hence, Theorem 2.1 is not a
consequence of the multivalued version of the Banach contraction principle due to
Nadler [17].

3. Application to Functional Equations

Mathematical optimization problems often make use of dynamic programming to
obtain the optimal solution. In many such optimal problems, the corresponding
dynamical program gets boiled down to solve a functional equation of the form:
(3.1) u(t) = sup

s∈V
{g(t, s) + G(t, s, u(h(t, s)))}, t ∈ W,

where h : W × V → W , g : W × V → R and G : W × V × R → R. Let M and N be
Banach spaces. W ⊂ M is called a state space and V ⊂ N is called a decision space.
The process under study is a multistage process. We define the following:

•B(W ) := the collection of all bounded and closed real functions on W ;
•∥f∥ := supt∈V |f(t)|, f ∈ B(W ).
The metric induced by ∥ · ∥ is given by

(3.2) η(f1, f2) = sup
t∈W

|f1(t) − f2(t)|, f1, f2 ∈ B(W ).

Then (B(W ), ∥·∥) is a Banach space. Further, define the operator ℑ : B(W ) → B(W )
by
(3.3) ℑ(f)(t) = sup

s∈V
g(t, s) + G(t, s, f(h(t, s))),

for all f ∈ B(W ) and t ∈ W . To prove an existence result, we need the following
theorem.

Theorem 3.1. Let ℑ : B(W ) → B(W ) be defined by (3.3). Let ℑ be upper semi-
continuous satisfying:

(a) g and G are bounded and continuous;
(b) for all f1, f2 ∈ B(W ) we have

0 <η(f1, f2) < 1 ⇒ |G(t, s, f1(t)) − G(t, s, f2(t))| ≤ 1
2η2(f1, f2),

η(f1, f2) ≥1 ⇒ |G(t, s, f1(t)) − G(t, s, f2(t))| ≤ 2
3η2(f1, f2),(3.4)

where t ∈ W and s ∈ V .
Then (3.1) has a bounded solution.

Proof. Let ϵ > 0 and t ∈ W . Since (B(W ), η) is complete for f1, f2 ∈ B(W ) and ϵ > 0
there exist s1, s2 ∈ V such that
(3.5) ℑ(f1)(t) ≥ g(t, s1) + G(t, s1, f1(h(t, s1))),



414 N. KONWAR, P. DEBNATH, S. RADENOVIĆ, AND H. AYDI

but
(3.6) ℑ(f1)(t) < g(t, s1) + G(t, s1, f1(h(t, s1))) + ϵ

and
(3.7) ℑ(f2)(t) ≥ g(t, s2) + G(t, s2, f2(h(t, s2))).
But,
(3.8) ℑ(f2)(t) < g(t, s2) + G(t, s2, f2(h(t, s2))) + ϵ.

Consider the function δ : (0, ∞) → (0, ∞) defined by

δ(ς) =


ς2

2 , if 0 < ς < 1,

2
3ς, if ς ≥ 1.

Then (3.4) reduces to
(3.9) |G(t, s, f1(t)) − G(t, s, f2(t))| ≤ δ(η(f1, f2)).
We observe that δ(ς) < ς for all ς ∈ (0, ∞). From (3.6), (3.7) and (3.8), we have that

ℑ(f1)(t) − ℑ(f2)(t) < |G(t, s1, f1(h(t, s1))) − G(t, s2, f2(h(t, s2)))| + ϵ

≤ δ(η(f1, f2)) + ϵ.(3.10)
Similarly, we have

ℑ(f2)(t) − ℑ(f1)(t) < δ(η(f1, f2)) + ϵ.(3.11)
From (3.10) and (3.11)

|ℑ(f2)(t) − ℑ(f1)(t)| < δ(η(f1, f2)) + ϵ.(3.12)
Thus,
(3.13) η(ℑ(f1), ℑ(f2)) < δ(η(f1, f2)) + ϵ.

Since ϵ > 0 is arbitrary, we obtain
(3.14) η(ℑ(f1), ℑ(f2)) ≤ δ(η(f1, f2)) < η(f1, f2),
(since δ(ς) < ς, for each ς ∈ (0, ∞)). Now, define ϕ : B(W ) → R such that ϕ(f) =
[∥f∥]2, where f ∈ B(W ) and [·] denotes the greatest integer function. Now, all such
functions fi ∈ B(W ) which satisfy η(fi, (fj)) > 0, i ̸= j, we observe that

η(ℑ(f1), ℑ(f2)) ≤ δ(η(f1, f2)) < η(f1, f2) ≤ |ϕ(f1) − ϕ(f2)|η(f1, f2),
(since in this case |ϕ(f1)−ϕ(f2)| ≥ 1). Thus, we observe that Theorem 2.1 is applicable
to the operator ℑ, so ℑ has a fixed point f ∗ ∈ B(W ), which in turn is a bounded
solution of the functional equation (3.1). □
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