
Kragujevac Journal of Mathematics
Volume 47(3) (2023), Pages 403–407.

ON ZERO FREE REGIONS FOR DERIVATIVES OF A
POLYNOMIAL

MOHAMMAD IBRAHIM MIR1, ISHFAQ NAZIR1, AND IRFAN AHMAD WANI2

Abstract. Let Pn denote the set of polynomials of the form

p(z) = (z − a)m
n−m∏
k=1

(z − zk),

with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m. For the polynomials of the form
p(z) = z

∏n−1
k=1(z − zk), with |zk| ≥ 1, where 1 ≤ k ≤ n − 1, Brown [2] stated the

problem “Find the best constant Cn such that p′(z) does not vanish in |z| < Cn”. He
also conjectured in the same paper that Cn = 1

n . This problem was solved by Aziz
and Zarger [1]. In this paper, we obtain the results which generalizes the results of
Aziz and Zarger.

1. Introduction and statement of results

Let p(z) = ∏n
k=1(z − zk) be a complex polynomial of degree n. The classical Gauss-

Lucas theorem states that every critical point of a complex polynomial p of degree at
least 2 lies in the convex hull of its zeros. This theorem has been further investigated
and developed. About the location of critical point relative to each individual zero,
a possible answer is given by the famous conjecture known in literature as Sendov’s
conjecture.
Conjecture 1 (Sendov’s Conjecture). If all the zeros of a polynomial p(z) lie in |z| ≤ 1,
then for any zero z0 of p, the disc |z − z0| ≤ 1 contains at least one critical point of p.

This conjecture has attracted much attention. About 100 papers have been pub-
lished related to this conjecture. This conjecture has so far been verified for general
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polynomials of degree less than or equal to 8. However the problem is still unproved
in general.

In connection with this conjecture, Brown [2] observed that, if p(z) = z(z − 1)n−1,
then p′( 1

n
) = 0 and posed the following problem.

“Let p(z) = z
∏n−1

k=1(z − zk), with |zk| ≥ 1, where 1 ≤ k ≤ n − 1. Find the best
constant Cn such that p′(z) does not vanish in |z| < Cn”.

However, Brown himself conjectured that Cn = 1
n
. This problem has been settled

by Aziz and Zarger [1], in fact they proved the following.

Theorem 1.1. If p(z) = z
∏n−1

k=1(z − zk) is a polynomial of degree n, with |zk| ≥ 1,
where 1 ≤ k ≤ n − 1, then p′(z) does not vanish in |z| < 1

n
.

As a generalization of Theorem 1.1, N. A. Rather and F. Ahmad [3] have proved
the following result.

Theorem 1.2. Let p(z) = (z − a)∏n−1
k=1(z − zk) with |a| ≤ 1 be a polynomial of degree

n with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − 1, then p′(z) does not vanish in the region∣∣∣∣z −
(

n − 1
n

)
a

∣∣∣∣ <
1
n

.

The result is best possible as is shown by the polynomial
p(z) = (z − a)(z − eiα)n−1, 0 ≤ α < 2π.

N. A. Rather and F. Ahmad also proved the following result in the same paper.

Theorem 1.3. Let p(z) = (z − a)m∏n−m
k=1 (z − zk) be a polynomial of degree n with

|a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then p′(z) has (m − 1) fold zero at z = a and
remaining (n − m) zeros of p′(z) lie in the region∣∣∣∣z −

(
n − m

n

)
a
∣∣∣∣ ≥ m

n
.

The result is best possible as is shown by the polynomial
p(z) = (z − a)m(z − eiα)n−m, 0 ≤ α < 2π.

Zarger and Manzoor [4] have extended Theorem 1.1 to the second derivative p′′(z)
of a polynomial of the form p(z) = zm∏n−m

k=1 (z − zk), with |zk| ≥ 1 for 1 ≤ k ≤ n − m.
In fact they proved the following.

Theorem 1.4. If p(z) = zm∏n−m
k=1 (z − zk) with |zk| ≥ 1 for 1 ≤ k ≤ n − m, then the

polynomial p′′(z) does not vanish in 0 < |z| < m(m−1)
n(n−1) .

Zarger and Manzoor [4] also obtained the following result for the polynomial p(m)(z),
m ≥ 1.

Theorem 1.5. If p(z) = zm∏n−m
k=1 (z − zk) is a polynomial of degree n with |zk| ≥ 1

for 1 ≤ k ≤ n − m, then the polynomial p(m)(z), m ≥ 1, does not vanish in |z| <
m!

n(n−1)···(n−m+1) .
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In this paper, we first prove the following theorem which generalize the result of
Theorem 1.4.
Theorem 1.6. Let p(z) = (z − a)m∏n−m

k=1 (z − zk) be a polynomial of degree n with
|a| ≤ 1, and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then p′′(z) has (m − 2) fold zero at z = a
and remaining (n − m) zeros lie in the region∣∣∣∣∣z −

(
1 − m(m − 1)

n(n − 1)

)
a

∣∣∣∣∣ ≥ m(m − 1)
n(n − 1) .

Proof. We can write
p(z) = (z − a)mQ(z),

where Q(z) = ∏n−m
k=1 (z − zk), then by Theorem 1.3, the polynomial

p′(z) = (z − a)m−1R(z),
where R(z) = (z − a)Q′(z) + mQ(z) has (m − 1) fold zero at z = a and remaining
(n − m) zeros lie in the region ∣∣∣∣z −

(
n − m

n

)
a
∣∣∣∣ ≥ m

n
.

Now, consider the polynomial

(1.1) S(z) = p′
(

m

n
z + n − m

n
a
)

or
S(z) =

(
m

n

)m−1
(z − a)m−1R

(
m

n
z + n − m

n
a
)

,

then S(z) is a polynomial of degree n−1 with (m−1) fold zero at z = a and remaining
(n − m) zeros lie in |z| ≥ 1.

Now, applying Theorem 1.3 to the polynomial S(z), the derivative S ′(z) has (m−2)
fold zero at z = a and remaining (n − m) zeros lie in the region∣∣∣∣∣z −

(
(n − 1) − (m − 1)

n − 1

)
a

∣∣∣∣∣ ≥ m − 1
n − 1 ,

which is equivalent to ∣∣∣∣z −
(

n − m

n − 1

)
a
∣∣∣∣ ≥ m − 1

n − 1 .

Replacing z by n
m

z +
(

m−n
m

)
a, in equation (1.1) and differentiating, we obtain

p′′(z) = (z − a)m−2T (z),
where T (z) = (z − a)R′(z) + (m − 1)R(z).

Applying above, we see p′′(z) has (m − 2) fold zero at z = a and remaining (n − m)
zeros lie in the region ∣∣∣∣∣z −

(
1 − m(m − 1)

n(n − 1)

)
a

∣∣∣∣∣ ≥ m(m − 1)
n(n − 1) .

This completes the proof. □
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Remark 1.1. For a = 0, it reduces to Theorem 1.4.

Our next result generalizes Theorem 1.5 to the polynomial of the form p(z) =
(z − a)m∏n−m

k=1 (z − zk) with |a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m.

Theorem 1.7. If p(z) = (z − a)m∏n−m
k=1 (z − zk) be a polynomial of degree n with

|a| ≤ 1 and |zk| ≥ 1 for 1 ≤ k ≤ n − m, then the polynomial p(m)(z), m ≥ 1, has all
its zeros in the region∣∣∣∣∣z −

(
1 − m!

n(n − 1) · · · (n − m + 1)

)
a

∣∣∣∣∣ ≥ m!
n(n − 1) · · · (n − m + 1) .

Proof. We can write

p(z) = (z − a)m
n−m∏
k=1

(z − zk)

or
p(z) = (z − a)mQ(z),

where Q(z) = ∏n−m
k=1 (z − zk), |zk| ≥ 1, 1 ≤ k ≤ n − m.

From the proof of Theorem 1.6, we can write
p′′(z) = (z − a)m−2T (z),

where T (z) = (z − a)R′(z) + (m − 1)R(z). Also, p′′(z) has (m − 2) fold zero at z = a
and remaining (n − m) zeros lie in∣∣∣∣∣z − n(n − 1) − m(m − 1)

n(n − 1) a

∣∣∣∣∣ ≥ m(m − 1)
n(n − 1) .

Now, consider the polynomial

(1.2) U(z) = p′′
(

m(m − 1)
n(n − 1) z + n(n − 1) − m(m − 1)

n(n − 1) a

)
or

U(z) =
(

m(m − 1)
n(n − 1)

)m−2

(z − a)m−2T

(
m(m − 1)
n(n − 1) z + n(n − 1) − m(m − 1)

n(n − 1) a

)
.

Then U(z) has (m − 2) fold zero at z = a and remaining (n − m) zeros lie in |z| ≥ 1.
Again, applying Theorem 1.3 to U(z), which is a polynomial of degree n − 2, the

derivative U ′(z) has (m − 3) fold zero at z = a and remaining (n − m) zeros lie in∣∣∣∣∣z −
(

n − 2 − (m − 2)
n − 2

)
a

∣∣∣∣∣ ≥ m − 2
n − 2 ,

which is equivalent to ∣∣∣∣z −
(

n − m

n − 2

)
a
∣∣∣∣ ≥ m − 2

n − 2 .

Replacing z by n(n−1)
m(m−1)z + m(m−1)−n(n−1)

m(m−1) a, in (1.2) and differentiating, we obtain

p′′′(z) = (z − a)m−3V (z),
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where V (z) = (z −a)T ′(z)+(m−2)T (z) has (m−3) fold zero at z = a and remaining
(n − m) zeros lie∣∣∣∣∣z −

(
1 − m(m − 1)(m − 2)

n(n − 1)(n − 2)

)
a

∣∣∣∣∣ ≥ m(m − 1)(m − 2)
n(n − 1)(n − 2) .

Proceeding similarly, for any positive integer m = 1, 2, . . . , n − 1, we see that the
polynomial p(m)(z) has all its zeros in the region∣∣∣∣∣z −

(
1 − m!

n(n − 1) · · · (n − m + 1)

)
a

∣∣∣∣∣ ≥ m!
n(n − 1) · · · (n − m + 1) .

This completes the proof. □

Remark 1.2. For a = 0, it reduces to Theorem 1.5.

Remark 1.3. For m = 1, it reduces to Theorem 1.2.

Remark 1.4. For a = 0 and m = 1, it reduces to the result of Aziz and Zarger.
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