L^{∞}-ASYMPTOTIC BEHAVIOR OF A FINITE ELEMENT METHOD FOR A SYSTEM OF PARABOLIC QUASI-VARIATIONAL INEQUALITIES WITH NONLINEAR SOURCE TERMS

DJABER CHEMSEDDINE BENCHETTAH ${ }^{1,2}$

Abstract

This paper is an extension and a generalization of the previous results, cf. [$3,6,8,11$]. It is devoted to studying the finite element approximation of the non coercive system of parabolic quasi-variational inequalities related to the management of energy production problem. Specifically, we prove optimal L^{∞}-asymptotic behavior of the system of evolutionary quasi-variational inequalities with nonlinear source terms using the finite element spatial approximation and the subsolutions method.

1. Introduction

This paper is concerned with the semi-implicit time scheme combined with a finite element spatial approximation for a system of parabolic quasi-variational inequalities with nonlinear source terms: Find $\left(u^{1}, \ldots, u^{J}\right) \in\left(L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)\right)^{J}$ satisfying

$$
\left\{\begin{array}{l}
\frac{\partial u^{i}}{\partial t}+A^{i} u^{i} \leq f^{i}\left(u^{i}\right) \text { in } \Phi, \tag{1.1}\\
u^{i} \leq M u^{i}, \quad i=1, \ldots, J, \\
\left(\frac{\partial u^{i}}{\partial t}+A^{i} u^{i}-f^{i}\left(u^{i}\right)\right)\left(u^{i}-M u^{i}\right)=0 \text { in } \Phi, \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \Sigma .
\end{array}\right.
$$

[^0]Here A^{i} denotes uniformly second order elliptic operators on a bounded convex domain Ω in $\mathbb{R}^{J}, J \geq 1$ with smooth boundary $\partial \Omega$ and Φ set in $\mathbb{R}^{J} \times \mathbb{R}$ defined as $\Phi=\Omega \times[0, T]$, with $T<+\infty, \Sigma=\partial \Omega \times[0, T]$.
$f^{i}\left(u^{i}\right)$ are J nonlinear and Lipschitz functions with Lipschitz constant $\alpha<\beta$ and satisfying the following condition

$$
\begin{equation*}
f^{i} \in\left(L^{2}\left((0, T), L^{\infty}(\Omega)\right) \cap C^{1}\left((0, T), H^{-1}(\Omega)\right)\right)^{J}, \quad f^{i}>0, \text { also is increasing. } \tag{1.2}
\end{equation*}
$$

This system arises from the management of energy production problems (see [4] and the references therein). In the case studied here, $M u^{i}$ represents a "cost function" and the prototype encountered is

$$
\begin{equation*}
M u^{i}(x)=\mathbf{k}+\inf _{\mu \neq i} u^{\mu}, \quad \text { where } \mathbf{k}>0 \text { and } \mu>0 \tag{1.3}
\end{equation*}
$$

and we know by [25] on page 243 that M satisfies some proprieties as M is a concave operator, i.e.,

$$
M(\delta u+(1-\delta) v) \geq \delta M(u)+(1-\delta) M(v), \quad \text { for all } u, v \in C(\Omega)
$$

and it also satisfies

$$
M(u+\eta)=M(u)+\eta, \quad \text { for all } \eta \in \mathbb{R}
$$

where \mathbf{k} represents the switching cost. It is positive when the unit is "turned on" and equal to zero when the unit is "turned off".

Many results on error estimates for the classical obstacle problems, system of stationary and evolutionary quasi-variational and variational inequalities have been achieved in this norm, (cf., e.g., $[1-3,5,9,18,20,22]$).

Moreover, in [11] Boulaaras, Bencheikh and Haiour established quasi-optimal $L^{\infty}{ }_{-}$ asymptotic behavior of the system of parabolic quasi-variational inequality related the management of energy production problems with mixed boundary condition using a discrete algorithm based on a θ-scheme combined with a finite element spatial approximation, that is, for $\theta \geq \frac{1}{2}$

$$
\left\|U_{h}^{n}-U^{\infty}\right\|_{\infty} \leq C\left[h^{2}|\log h|^{3}+\left(\frac{1}{1+\theta \Delta t}\right)^{n}\right]
$$

and for $0 \leq \theta<\frac{1}{2}$

$$
\left\|U_{h}^{n}-U^{\infty}\right\|_{\infty} \leq C\left[h^{2}|\log h|^{3}+\left(\frac{2}{2+\beta \theta(1-2 \theta) \rho\left(A^{i}\right)}\right)^{n}\right]
$$

where $\rho\left(A^{i}\right)$ is the spectral radios of the elliptic operator A^{i} and U_{h}^{n}, the discrete solution of the system of QVIs calculated at the moment-end $T=n \Delta t$ for an index of the time discretization $k=1, \ldots, n$, and U^{∞}, the asymptotic continuous solution of the system of QVIs.

Also, in [8] Boulaaras, Haiour proved quasi-optimal L^{∞}-asymptotic behavior of the evolutionary Hamilton-Jacobi-Bellman equations using the semi-implicit scheme with
respect to the t-variable combined with a finite element spatial approximation where $k=\Delta t$, that is

$$
\left\|U_{h}^{n}-U^{\infty}\right\|_{\infty} \leq C^{*}\left[h^{2}|\log h|^{3}+\left(\frac{1+k c}{1+k \beta}\right)^{n}\right]
$$

where U_{h}^{n}, the discrete solution of the evolutionary Hamilton-Jacobi-Bellman equations calculated at the moment-end $T=n \Delta t$ for an index of the time discretization $k=$ $1, \ldots, n$ and U^{∞}, the asymptotic continuous solution of the evolutionary Hamilton-Jacobi-Bellman equations.

In [14] Boulbrachene, Cortey Dumont established optimal L^{∞}-error estimate of a finite element approximation of the Hamilton-Jacobi-Bellman (HJB) equations using the discrete regularity introduced by Cortey Dumont in [20], that is

$$
\left\|u-u_{h}\right\|_{\infty} \leq C h^{2}|\log h|^{2}
$$

where u, the continuous solution of the Hamilton-Jacobi-Bellman (HJB) equations, and u_{h}, the discrete solution of the Hamilton-Jacobi-Bellman (HJB) equations.

In a recent work in [7] Bencheikh, Boulaaras and Haiour also established optimal L^{∞} asymptotic behavior for a system of parabolic quasi-variational inequalities related to stochastic control problems using the regularization of the obstacles appearing in the discrete system of QVIs "the discrete regularity", they have the following estimation

$$
\left\|U_{h}(T, \cdot)-U^{\infty}(\cdot)\right\|_{\infty} \leq C\left[h^{2}|\log h|^{2}+\left(\frac{1}{1+\theta \Delta t}\right)^{N}\right]
$$

where $U_{h}(T, \cdot)$, the discrete solution of the system of parabolic quasi-variational inequalities related to stochastic control problems calculated at the moment-end $T=N \Delta t$ for an index of the time discretization $k=1, \ldots, N$, and $U^{\infty}(\cdot)$, the asymptotic continuous solution of the system of parabolic quasi-variational inequalities related to stochastic control problems.

In this paper we propose a new proof to get the optimal L^{∞}-asymptotic behavior of the system of parabolic QVIs with nonlinear source terms without going through the discrete regularity of the obstacles appearing in the discrete system of QVIs and we improve the convergence order in works of Boulaaras, Haiour $[8,9]$ and Boulaaras, Bencheikh and Haiour [11] for the system of parabolic quasi-variational inequalities.

The subsolutions method (see $[14,17,21]$) characterizes the continuous solution (resp. the discrete solution) as the least upper bound of the set of continuous subsolutions (resp. the discrete subsolution) will also be crucial to determine the convergence order.

The approximation method developed in this paper stands on the construction a sequence of continuous subsolution denoted $\beta^{k}=\left(\beta^{1, k}, \ldots, \beta^{J, k}\right)$ such that

$$
\beta^{i, k} \leq u^{i, k} \quad \text { and } \quad\left\|\beta^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}, \quad \text { for all } k \geq 1, i=1,2, \ldots, J,
$$

and the construction of a sequence of discrete subsolution $\alpha_{h}^{k}=\left(\alpha_{h}^{1, k}, \ldots, \alpha_{h}^{J, k}\right)$ such that

$$
\alpha_{h}^{i, k} \leq u_{h}^{i, k} \quad \text { and } \quad\left\|\alpha_{h}^{i, k}-u^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}, \quad \text { for all } k \geq 1, i=1,2, \ldots, J
$$

to obtain

$$
\max _{1 \leq i \leq J}\left\|u^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}, \quad \text { for all } k \geq 1
$$

In this situation, we establish the optimal L^{∞}-asymptotic behavior of the system of parabolic QVIs, that is

$$
\left\|U_{h}^{N}-U^{\infty}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u_{h}^{i, N}-u^{i, \infty}\right\|_{\infty} \leq C\left[\left.h^{2} \ln h\right|^{2}+\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}\right]
$$

The paper is organized as follows. In Section 2, we consider system of continuous quasi-variational inequalities and we give some related qualitative properties. In Section 3, we characterize the discrete solution as a fixed point of a contraction. In Section 4, we introduce two auxiliary problems which allow us to define sequences of continuous and discrete subsolutions. In Section 5, we present the main result of the paper.

2. The Continuous Problem

2.1. Notations, Assumptions. Let $a_{j p}^{i}(x), a_{p}^{i}(x), a_{0}^{i}(x)$ in $L^{\infty}(\Omega) \cap C^{2}(\bar{\Omega}), x \in$ $\bar{\Omega}, j, p=1, \ldots, S$, are sufficiently smooth coefficients and satisfying the following conditions:

$$
\sum_{j, p=1}^{S} a_{j p}^{i}(x) \zeta_{j} \zeta_{p} \geqq \gamma|\zeta|^{2}, \quad \text { for all } \zeta \in \mathbb{R}^{S}, \gamma>0, x \in \bar{\Omega}
$$

and

$$
\begin{equation*}
a_{j p}^{i}=a_{p j}^{i}, \quad a_{0}^{i}(x) \geqslant \beta>0, \quad \beta \text { is a constant. } \tag{2.1}
\end{equation*}
$$

We define the second order differential operators A^{i} :

$$
A^{i}=-\sum_{j, p=1}^{S} a_{j p}^{i}(x) \frac{\partial^{2}}{\partial x_{j} \partial x_{p}}+\sum_{p=1}^{S} a_{p}^{i}(x) \frac{\partial}{\partial x_{p}}+a_{0}^{i}(x)
$$

and the associated variational forms for any $u, v \in H_{0}^{1}(\Omega)$

$$
a^{i}(u, v)=\int_{\Omega}\left(\sum_{j, p=1}^{S} a_{j p}^{i}(x) \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{p}}+\sum_{p=1}^{S} a_{p}^{i}(x) \frac{\partial u}{\partial x_{p}} v+a_{0}^{i}(x) u v\right) d x .
$$

We shall also need the following notations

$$
\|W\|_{\infty}=\max _{1 \leq i \leq J}\left\|w^{i}\right\|_{\infty}, \quad \text { for all } W=\left(w^{1}, w^{2}, \ldots, w^{J}\right) \in \prod_{i=1}^{J} L^{\infty}(\Omega)
$$

where $\|\cdot\|_{\infty}$ denotes the well-known L^{∞}-norm, (\cdot, \cdot) be the inner product in $L^{2}(\Omega)$.
2.2. The system of continuous parabolic quasi-variational inequalities. The problem (1.1) can be approximated by the following system of continuous parabolic quasi-variational inequalities: Find $U=\left(u^{1}, u^{2}, \ldots, u^{J}\right) \in\left(L^{2}\left((0, T), H_{0}^{1}(\Omega)\right)\right)^{J}$ solution for:

$$
\left\{\begin{array}{l}
\left(\frac{\partial u^{i}}{\partial t}, v^{i}-u^{i}\right)+a^{i}\left(u^{i}, v^{i}-u^{i}\right) \geqq\left(f^{i}\left(u^{i}\right), v^{i}-u^{i}\right) \tag{2.2}\\
u^{i} \leq M u^{i}, \quad v^{i} \leq M u^{i}, \quad 1 \leq i \leq J \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Now, we apply the semi-implicit scheme of the system to the continuous parabolic quasi-variational inequalities (2.2). Therefore, we seek a sequence of elements $u^{i, k} \in$ $\left(H_{0}^{1}(\Omega)\right)^{J}, 1 \leq i \leq J$, which approaches $u^{i}\left(t_{k}\right), t_{k}=k \Delta t$, with initial data $u^{i, 0}$. Thus, we have $k=1, \ldots, N$,

$$
\left\{\begin{array}{l}
\left(\frac{u^{i, k}-u^{i, k-1}}{\Delta t}, v^{i}-u^{i, k}\right)+a^{i}\left(u^{i, k}, v^{i}-u^{i, k}\right) \geqq\left(f^{i, k}\left(u^{i, k}\right), v^{i}-u^{i, k}\right), \tag{2.3}\\
u^{i, k} \leq M u^{i, k}, \quad v^{i} \leq M u^{i, k}, \quad 1 \leq i \leq J, \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

2.2.1. Existence and uniqueness of continuous solution of the system of parabolic QVIs. Let us recall just the main steps leading to the existence of a unique solution to system (2.3). For more details, we refer the reader to [4].

A fixed point mapping associated with the continuous problem.
Let $\mathbb{H}^{+}=\left(L_{+}^{\infty}(\Omega)\right)^{J}=\left\{V=\left(v^{1}, \ldots, v^{J}\right)\right.$ such that $\left.v^{i} \in L_{+}^{\infty}(\Omega)\right\}$, where $L_{+}^{\infty}(\Omega)$ is the positive cone of $L^{\infty}(\Omega)$.

We introduce the following mapping:

$$
\begin{align*}
& T: \mathbb{H}^{+} \rightarrow\left(L^{\infty}(\Omega)\right)^{J} \tag{2.4}\\
& W \rightarrow T W=\zeta^{k}=\left(\zeta^{1, k}, \ldots, \zeta^{J, k}\right),
\end{align*}
$$

we note $\zeta^{i, k}=\partial\left(F^{i, k}\left(w^{i}\right), M w^{i}\right) \in\left(H_{0}^{1}(\Omega)\right)^{J}$ for all $i=1, \ldots, J$, the solution of the following problem:

$$
\left\{\begin{array}{l}
b^{i}\left(\zeta^{i, k}, v^{i}-\zeta^{i, k}\right) \geqq\left(f^{i, k}\left(w^{i}\right)+\lambda w^{i}, v^{i}-\zeta^{i, k}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \\
\zeta^{i, k} \leq M w^{i}, \quad v^{i} \leq M w^{i},
\end{array}\right.
$$

where $F^{i, k}\left(w^{i}\right)=f^{i, k}\left(w^{i}\right)+\lambda w^{i}$.

An iterative continuous algorithm.

Let us also define the vector $U^{0}=\left(u^{1,0}, \ldots, u^{J, 0}\right)$, where $u^{i, 0}$ is the solution to the continuous equation:

$$
b^{i}\left(u^{i, 0}, v^{i}\right)=\left(g^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J},
$$

where $g^{i, 0}$ is a linear and a regular function.

Now we give the following continuous algorithm

$$
\begin{equation*}
u^{i, k}=T u^{i, k-1}, \quad k=1, \ldots, N, i=1, \ldots, J, \tag{2.5}
\end{equation*}
$$

or

$$
U^{k}=T U^{k-1},
$$

where $U^{k}=\left(u^{1, k}, \ldots, u^{J, k}\right)$ is the solution of the problem (2.3).
Remark 2.1. We denote

$$
\mathbb{C}=\left\{W \in \mathbb{H}^{+} \mid 0 \leq W \leq U^{0}\right\},
$$

where $U^{0}=U_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{J}\right), \mathbb{H}^{+}=\left(L_{+}^{\infty}(\Omega)\right)^{J}$. Since $f^{i, k}(\cdot) \geq 0$, combining comparison results in variational inequalities with simple induction, we obtain $U^{k}=$ $\left(u^{1, k}, \ldots, u^{J, k}\right) \geq 0$ for all $k=1, \ldots, N$ and $T W \geq 0$.

Similarly as in [12], the mapping T is monotone increasing for the stationary free boundary problem with nonlinear source term. Then it can be easily verified that

$$
U^{2}=T U^{1} \leq T U^{0}=U^{1} \leq U^{0}
$$

thus, inductively,

$$
U^{k+1}=T U^{k} \leq U^{k} \leq \cdots \leq U^{0}, \quad \text { for all } k=1, \ldots, N,
$$

and also it can be seen that the sequence U^{k} stays in \mathbb{C}.
According to assumption (1.2), f is increasing, for $k=1, \ldots, N, i=1, \ldots, J$, and using the Remark 2.1, we have

$$
f\left(U^{k}\right) \leq f\left(U^{k-1}\right)
$$

or

$$
f\left(u^{i, k}\right) \leq f\left(u^{i, k-1}\right)
$$

which implies

$$
\left\{\begin{array}{l}
\left(\frac{u^{i, k}}{\Delta t}, v^{i}-u^{i, k}\right)+a^{i}\left(u^{i, k}, v^{i}-u^{i, k}\right) \geqq\left(f^{i, k}\left(u^{i, k-1}\right)+\frac{u^{i, k-1}}{\Delta t}, v^{i}-u^{i, k}\right), \tag{2.6}\\
u^{i, k} \leq M u^{i, k}, \quad v^{i} \leq M u^{i, k}, \quad 1 \leq i \leq J \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Then, the problem (2.6) can be reformulated into the following coercive continuous system of elliptic quasi-variational inequalities (EQVIs)

$$
\left\{\begin{array}{l}
b^{i}\left(u^{i, k}, v^{i}-u^{i, k}\right) \geqq\left(f^{i, k}\left(u^{i, k-1}\right)+\lambda u^{i, k-1}, v^{i}-u^{i, k}\right), \quad u^{i, k} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \tag{2.7}\\
u^{i, k} \leq M u^{i, k}, \quad v^{i} \leq M u^{i, k}, \quad 1 \leq i \leq J, \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \partial \Omega,
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
b^{i}\left(u^{i, k}, v^{i}-u^{i, k}\right)=\lambda\left(u^{i, k}, v^{i}-u^{i, k}\right)+a^{i}\left(u^{i, k}, v^{i}-u^{i, k}\right), \quad u^{i, k} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\lambda=\frac{1}{\Delta t}=\frac{N}{T}, \quad k=1, \ldots, N
\end{array}\right.
$$

Then the bilinear form $b(\cdot, \cdot)$ is strongly coercive see [26]. There exist two constants $\lambda>0$ and $\gamma>0$ such that:

$$
b^{i}(v, v)=a^{i}(v, v)+\lambda\|v\|_{L^{2}(\Omega)}^{2} \geqq \gamma\|v\|_{H_{0}^{1}(\Omega)}^{2}, \quad \text { for all } v \in H_{0}^{1}(\Omega)
$$

Let $\mathbb{C}=\left\{W \in \mathbb{H}^{+} \mid 0 \leq W \leq U^{0}\right\}$, where $U^{0}=U_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{J}\right)$ and $F^{i, k}\left(w^{i}\right)=$ $f^{i, k}\left(w^{i}\right)+\lambda w^{i}, \tilde{F}^{i, k}\left(\tilde{w}^{i}\right)=f^{i, k}\left(\tilde{w}^{i}\right)+\lambda \tilde{w}^{i} \in\left(L^{\infty}(\Omega)\right)^{J}$ be the corresponding righthand sides to the continuous PQVIs and \mathbf{k} and $\tilde{\mathbf{k}}$ be two parameters that are defined in (1.2) and (1.3).

A monotonicity property

Proposition $2.1([16,20])$. If $F^{i, k}\left(w^{i}\right) \leq F^{i, k}\left(\tilde{w}^{i}\right)$ and $\mathbf{k} \leq \widetilde{\mathbf{k}}$, then

$$
u^{i, k}=\partial\left(F^{i, k}\left(w^{i}\right), \mathbf{k}\right) \leq \tilde{u}^{i, k}=\partial\left(F^{i, k}\left(\tilde{w}^{i}\right), \tilde{\mathbf{k}}\right) .
$$

Proposition 2.2 ([8,12]). Under the previous assumption and notations (1.2), (2.1), (2.4), the mapping T is a contraction in \mathbb{H}^{+}with contraction constant $\frac{\alpha+\lambda}{\beta+\lambda}$. Therefore, T admits a unique fixed point which coincides with the continuous solution of the system of parabolic QVIs (2.7).

Proposition 2.3 ([8]). Under the conditions of Proposition 2.2 and notations (1.2), (2.1), (2.4), we have the following estimate of geometric convergence

$$
\left\|U^{k}-U^{\infty}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u^{i, k}-u^{i, \infty}\right\|_{\infty} \leq\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{k}\left\|U^{\infty}-U^{0}\right\|_{\infty}
$$

where U^{∞} is an asymptotic continuous solution of the following system of QVIs

$$
\left\{\begin{array}{l}
b^{i}\left(u^{i, \infty}, v^{i}-u^{i, \infty}\right) \geq\left(f^{i}\left(u^{i, \infty}\right)+\lambda u^{i, \infty}, v^{i}-u^{i, \infty}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \\
u^{i, \infty} \leq M u^{i, \infty}, \quad i=1, \ldots, J .
\end{array}\right.
$$

Lipschitz dependence with respect to the right-hand sides and the parameter k

Proposition 2.4 ([14,21]). Under the conditions of Proposition 2.1. Then we have:

$$
\max _{1 \leq i \leq J}\left\|u^{i, k}-\tilde{u}^{i, k}\right\|_{\infty} \leq C \max _{1 \leq i \leq J}\left(|\mathbf{k}-\tilde{\mathbf{k}}|+\left\|F^{i, k}-\tilde{F}^{i, k}\right\|_{\infty}\right) .
$$

Characterization of the solution of the system (2.7) as the envelope of continuous subsolutions

Definition $2.1([4]) . Z=\left(z^{1}, \ldots, z^{J}\right) \in\left(H_{0}^{1}(\Omega)\right)^{J}$ is said to be a continuous subsolution for the system of quasi-variational inequalities (2.7) if

$$
\left\{\begin{array}{l}
b^{i}\left(z^{i, k}, v^{i}\right) \leq\left(f^{i, k}\left(z^{i, k-1}\right)+\lambda z^{i, k-1}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, v^{i} \geqq 0 \\
z^{i, k} \leq M z^{i, k}, \quad i=1, \ldots, J, k=1, \ldots, N
\end{array}\right.
$$

Let \mathbb{Y} denote the set of such continuous subsolutions.
Theorem $2.1([4,21])$. The solution of the system (2.7) is the maximum element of the set \mathbb{Y}.

3. The Discrete Problem

Let Ω be decomposed into triangles and let τ_{h} denote the set of all those elements, $h>0$ is the mesh size. We assume the family τ_{h} is regular and quasi-uniform. We consider $\varphi_{l}, l=1,2, \ldots, m(h)$, are the nodal basis functions defined by $\varphi_{l}\left(M_{s}\right)=\delta_{l s}$ where $M_{s}, s=1, \ldots, m(h)$, is a vertex of the considered triangulation and r_{h} is the usual interpolation operator.

Let \mathbb{V}_{h} denote the standard piecewise linear finite element space

$$
\begin{aligned}
\mathbb{V}_{h}= & \left\{u^{i} \in\left(L^{2}\left(0, T, H_{0}^{1}(\Omega)\right) \cap C\left(0, T, H_{0}^{1}(\bar{\Omega})\right)\right)^{J}\left|u^{i}\right|_{k_{i}} \in P_{1},\right. \\
& \left.k_{i} \in \tau_{h}^{i} \text { and } u^{i}(\cdot, 0)=u_{0}^{i} \text { in } \Omega, u^{i}=0 \text { on } \partial \Omega\right\} .
\end{aligned}
$$

P_{1} denotes the space of polynomials with degree no more than 1 and $\mathbb{B}^{i}, 1 \leq i \leq J$, denote the finite element matrices defined by

$$
\left(\mathbb{B}^{i}\right)_{l s}=b^{i}\left(\varphi_{l}, \varphi_{s}\right), \quad 1 \leq l, s \leq m(h) .
$$

The Discrete Maximum Principle Assumption (dmp) (cf. [19]). We assume that the matrices $\left(\mathbb{B}^{i}\right)_{l s}=b^{i}\left(\varphi_{l}, \varphi_{s}\right)=a^{i}\left(\varphi_{l}, \varphi_{s}\right)+\lambda\left(\varphi_{l}, \varphi_{s}\right)$ are M-matrices.

Under the dmp, we shall achieve a similar study to that devoted to the continuous problem.

We discretize in space the problem (2.2), i.e., that we approach the space H_{0}^{1} by a space discretization of finite dimensional $\mathbb{V}_{h} \subset H_{0}^{1}$. In a second step, we discretize the problem with respect to time using the semi-implicit scheme. Therefore, we seek a sequence of elements $u_{h}^{i, k} \in\left(\mathbb{V}_{h}\right)^{J}, 1 \leq i \leq J$, which approaches $u_{h}^{i}\left(t_{k}\right), t_{k}=k \Delta t$ with initial data $u^{i, 0}$. Thus, we have $k=1, \ldots, N$,

$$
\left\{\begin{array}{l}
\left(\frac{u_{h}^{i, k}-u_{h}^{i, k-1}}{\Delta t}, v_{h}^{i}-u_{h}^{i, k}\right)+a^{i}\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right) \geqq\left(f^{i, k}\left(u_{h}^{i, k-1}\right), v_{h}^{i}-u_{h}^{i, k}\right), \tag{3.1}\\
u_{h}^{i, k} \leq r_{h} M u_{h}^{i, k}, \quad v_{h}^{i} \leq r_{h} M u_{h}^{i, k}, \quad 1 \leq i \leq J .
\end{array}\right.
$$

Then we can write (3.1) as follows:

$$
\left\{\begin{array}{l}
\left(\frac{u_{h}^{i, k}}{\Delta t}, v_{h}^{i}-u_{h}^{i, k}\right)+a^{i}\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right) \geqq\left(f^{i, k}\left(u_{h}^{i, k-1}\right)+\frac{u_{h}^{i, k-1}}{\Delta t}, v_{h}^{i}-u_{h}^{i, k}\right) \tag{3.2}\\
u_{h}^{i, k} \leq r_{h} M u_{h}^{i, k}, \quad v_{h}^{i} \leq r_{h} M u_{h}^{i, k}, \quad 1 \leq i \leq J
\end{array}\right.
$$

The problem (3.2) can be reformulated into the following coercive system of discrete elliptic quasi-variational inequalities:

$$
\left\{\begin{array}{l}
b^{i}\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right) \geqq\left(f^{i, k}\left(u_{h}^{i, k-1}\right)+\lambda u_{h}^{i, k-1}, v_{h}^{i}-u_{h}^{i, k}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J}, \tag{3.3}\\
u_{h}^{i, k} \leq r_{h} M u_{h}^{i, k}, \quad v_{h}^{i} \leq r_{h} M u_{h}^{i, k},
\end{array}\right.
$$

such that

$$
\left\{\begin{array}{l}
b^{i}\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right)=\lambda\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right)+a^{i}\left(u_{h}^{i, k}, v_{h}^{i}-u_{h}^{i, k}\right), \quad u_{h}^{i, k} \in\left(\mathbb{V}_{h}\right)^{J} \\
\lambda=\frac{1}{\Delta t}=\frac{N}{T}, \quad k=1, \ldots, N
\end{array}\right.
$$

3.0.1. Existence and uniqueness for discrete solution of the system of PQVI. As in the continuous problem, we shall characterize the discrete solution of system of PQVI as the unique fixed point of a contraction.

A fixed point mapping associated with discrete problem

We introduce the following mapping:

$$
\begin{align*}
T_{h}: \mathbb{H}^{+} & \rightarrow\left(\mathbb{V}_{h}\right)^{J}, \tag{3.4}\\
W & \rightarrow T_{h} W=\zeta_{h}^{k}=\left(\zeta_{h}^{1, k}, \ldots, \zeta_{h}^{J, k}\right),
\end{align*}
$$

we keep the precedent notation, i.e., $\zeta_{h}^{i, k}=\partial_{h}\left(F^{i, k}\left(w^{i}\right), r_{h} M w^{i}\right) \in\left(\mathbb{V}_{h}\right)^{J}$ for all $i=1, \ldots, J$, the solution to the following problem:

$$
\left\{\begin{array}{l}
b^{i}\left(\zeta_{h}^{i, k}, v_{h}^{i}-\zeta_{h}^{i, k}\right) \geqq\left(f^{i, k}\left(w^{i}\right)+\lambda w^{i}, v_{h}^{i}-\zeta_{h}^{i, k}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J} \\
\zeta_{h}^{i, k} \leq r_{h} M w^{i}, \quad v_{h}^{i} \leq r_{h} M w^{i},
\end{array}\right.
$$

where $F^{i, k}\left(w^{i}\right)=f^{i, k}\left(w^{i}\right)+\lambda w^{i}$.

An iterative discrete algorithm

Let us also define the vector $U_{h}^{0}=\left(u_{h}^{1,0}, \ldots, u_{h}^{J, 0}\right)$, where $u_{h}^{i, 0}$ is the solution of the continuous equation:

$$
b^{i}\left(u_{h}^{i, 0}, v^{i}\right)=\left(g^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(\mathbb{V}_{h}\right)^{J}
$$

where $g^{i, 0}$ is a linear and a regular function.
Now we give the following discrete algorithm

$$
\begin{equation*}
u_{h}^{i, k}=T_{h} u_{h}^{i, k-1}, \quad k=1, \ldots, N, i=1, \ldots, J \tag{3.5}
\end{equation*}
$$

or

$$
U_{h}^{k}=T_{h} U_{h}^{k-1}
$$

where $U_{h}^{k}=\left(u_{h}^{1, k}, \ldots, u_{h}^{J, k}\right)$ is the solution of the problem (3.3).
We denote $\mathbb{C}_{h}=\left\{W \in \mathbb{H}^{+} \mid 0 \leq W \leq U_{h}^{0}\right\}$, where $U_{h}^{0}=\left(u_{h 0}^{1}, \ldots, u_{h 0}^{J}\right)$ and $F^{i, k}\left(w^{i}\right)=f^{i, k}\left(w^{i}\right)+\lambda w^{i} \tilde{F}^{i, k}\left(\tilde{w}^{i}\right)=f^{i, k}\left(\tilde{w}^{i}\right)+\lambda \tilde{w}^{i} \in\left(L^{\infty}(\Omega)\right)^{J}$ are the corresponding right-hand sides to the discrete PQVIs and \mathbf{k} and $\tilde{\mathbf{k}}$ be two parameters.

As in the continuous case, we give some related qualitative properties of the discrete solution of the system of parabolic QVIs (3.3).

A monotonicity property

Proposition 3.1 ([16,20]). If $F^{i, k}\left(w^{i}\right) \leq F^{i, k}\left(\tilde{w}^{i}\right)$ and $\mathbf{k} \leq \widetilde{\mathbf{k}}$, then

$$
u_{h}^{i, k}=\partial_{h}\left(F^{i, k}\left(w^{i}\right), \mathbf{k}\right) \leq \tilde{u}_{h}^{i, k}=\partial_{h}\left(F^{i, k}\left(\tilde{w}^{i}\right), \tilde{\mathbf{k}}\right)
$$

Proposition 3.2 ($[8,12]$). Under the previous assumption, notations (1.2), (2.1), (3.4) and the $\boldsymbol{d m p}$, the mapping T_{h} is a contraction in \mathbb{H}^{+}with contraction constant $\frac{\alpha+\lambda}{\beta+\lambda}$. Therefore, T_{h} admits a unique fixed point which coincides with the discrete solution of the system of parabolic QVIs (3.3).
Proposition 3.3 ([8]). Under the conditions of Proposition 3.2 and notations (1.2), (2.1), (3.4), we have the following estimate of geometric convergence

$$
\left\|U_{h}^{k}-U_{h}^{\infty}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u_{h}^{i, k}-u_{h}^{i, \infty}\right\|_{\infty} \leq\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{k}\left\|U_{h}^{\infty}-U_{h}^{0}\right\|_{\infty}
$$

where U_{h}^{∞} is an asymptotic discrete solution of the following system of QVIs

$$
\left\{\begin{array}{l}
b^{i}\left(u_{h}^{i, \infty}, v_{h}^{i}-u_{h}^{i, \infty}\right) \geq\left(f^{i}\left(u_{h}^{i, \infty}\right)+\lambda u_{h}^{i, \infty}, v_{h}^{i}-u_{h}^{i, \infty}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J}, \\
u_{h}^{i, \infty} \leq r_{h} M u_{h}^{i, \infty}, \quad i=1, \ldots, J .
\end{array}\right.
$$

Lipschitz dependence with respect to the right-hand sides and the parameter k
Proposition 3.4 ([14,21]). Under the dmp and the Proposition 3.1, we have:

$$
\max _{1 \leq i \leq J}\left\|u_{h}^{i, k}-\tilde{u}_{h}^{i, k}\right\|_{\infty} \leq C \max _{1 \leq i \leq J}\left(|\mathbf{k}-\tilde{\mathbf{k}}|+\left\|F^{i, k}-\tilde{F}^{i, k}\right\|_{\infty}\right) .
$$

Characterization of the solution of system (3.3) as the envelope of discrete subsolutions
Definition $3.1([4]) . Z_{h}=\left(z_{h}^{1}, \ldots, z_{h}^{J}\right) \in\left(\mathbb{V}_{h}\right)^{J}$ is said to be a discrete subsolution for the system of quasi-variational inequalities (3.3) if

$$
\left\{\begin{array}{l}
b^{i}\left(z_{h}^{i, k}, \varphi_{l}\right) \leq\left(f^{i, k}\left(z_{h}^{i, k-1}\right)+\lambda z_{h}^{i, k-1}, \varphi_{l}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J}, \varphi_{l} \geq 0 \\
l=1, \ldots, m(h) \\
z_{h}^{i, k} \leq r_{h} M z_{h}^{i, k}, \quad i=1, \ldots, J, k=1, \ldots, N
\end{array}\right.
$$

Let \mathbb{Y}_{h} denote the set of such discrete subsolutions.
Theorem 3.1 ([4,21]). The discrete solution of the system (3.3) is the maximum element of the set \mathbb{Y}_{h}.

4. L^{∞}-Error Estimates

In this section, we first introduce the following two auxiliary systems of variational inequalities and next we prove a fundamental lemma of the subsolutions method.
4.1. Two auxiliary sequences of system of variational inequalities. We define the sequence $\left\{\bar{U}^{k}\right\}_{k \geq 1}=\left(\bar{u}^{1, k}, \ldots, \bar{u}^{J, k}\right)$ such that \bar{U}^{k} solves the continuous system of V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}-\bar{u}^{i, k}\right) \geqq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda u_{h}^{i, k-1}, v^{i}-\bar{u}^{i, k}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \\
\bar{u}^{i, k} \leq M u_{h}^{i, k-1}, \quad v^{i} \leq M u_{h}^{i, k-1},
\end{array}\right.
$$

where $U_{h}^{k-1}=\left(u_{h}^{1, k-1}, \ldots, u_{h}^{J, k-1}\right)$ is defined in (3.5), and the sequence $\left\{\bar{U}_{h}^{k}\right\}_{k \geq 1}=$ $\left(\bar{u}_{h}^{1, k}, \ldots, \bar{u}_{h}^{J, k}\right)$ is such that \bar{U}_{h}^{k} solves the discrete system of V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, v_{h}^{i}-\bar{u}_{h}^{i, k}\right) \geqq\left(f^{i}\left(u^{i, k-1}\right)+\lambda u^{i, k-1}, v_{h}^{i}-\bar{u}_{h}^{i, k}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J}, \\
\bar{u}_{h}^{i, k} \leq r_{h} M u^{i, k-1}, \quad v_{h}^{i} \leq r_{h} M u^{i, k-1},
\end{array}\right.
$$

where $U^{k-1}=\left(u^{1, k-1}, \ldots, u^{J, k-1}\right)$ is defined in (2.5).
Lemma 4.1 ([20,21]). There exists a constant C independent of h and k such that

$$
\max _{1 \leq i \leq J}\left\|\bar{u}^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

and

$$
\max _{1 \leq i \leq J}\left\|\bar{u}_{h}^{i, k}-u^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

4.2. Optimal L^{∞}-error estimates. Now, we obtain the optimal L^{∞}-error estimate between the k-th continuous iterates $u^{i, k}$ and k-th discrete iterates $u_{h}^{i, k}$ defined in (2.7) and (3.3), respectively.

In this theorem, we exploit the idea of Boulbrachene in [13] given for variational inequalities with noncoercive operators, where we have adapted it to a system of QVIs related to the management of energy production problem.

Theorem 4.1.

$$
\left\|U^{k}-U_{h}^{k}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

The following lemma plays crucial role in proving the Theorem 4.1.
Lemma 4.2. There exists a sequence of continuous subsolutions $\left(\beta^{k}\right)_{k \geq 1}=$ $\left(\beta^{1, k}, \ldots, \beta^{J, k}\right)$, such that

$$
\beta^{i, k} \leq u^{i, k}, \quad 1 \leq k \leq N, 1 \leq i \leq J
$$

and

$$
\left\|\beta^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

and a sequence of discrete subsolutions $\left(\alpha_{h}^{k}\right)_{k \geq 1}=\left(\alpha_{h}^{1, k}, \ldots, \alpha_{h}^{J, k}\right)$, such that

$$
\alpha_{h}^{i, k} \leq u_{h}^{i, k}, \quad 1 \leq k \leq N, 1 \leq i \leq J,
$$

and

$$
\left\|\alpha_{h}^{i, k}-u^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

Proof. Let \bar{U}^{1} be continuous solution of the system of V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, 1}, v^{i}-\bar{u}^{i, 1}\right) \geqq\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda u_{h}^{i, 0}, v^{i}-\bar{u}^{i, 1}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, 1} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, 0} u_{h}^{\mu,}, \quad v^{i} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, 0}
\end{array}\right.
$$

Then, as $\bar{U}^{1}=\left(\bar{u}^{i, 1}\right)_{1 \leq i \leq J}$ is a solution to a system of V.I. it is also a subsolution, i.e.,

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, 1}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda u_{h}^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, 1} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, 0}, \quad v^{i} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, 0},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, 1}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda u_{h}^{i, 0}-\lambda u^{i, 0}+\lambda u^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \\
\bar{u}^{i, 1} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, 0} u_{h}-\inf _{\mu \neq i}^{\mu, 0}+\inf _{\mu \neq i}^{\mu, 0}
\end{array}\right.
$$

We have

$$
\begin{equation*}
\left\|u_{h}^{i, 0}-u^{i, 0}\right\|_{\infty} \leq C h^{2}|\ln h|^{\frac{3}{2}} \quad(\text { see }[23]), \tag{4.1}
\end{equation*}
$$

then

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, 1}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda\left\|u_{h}^{i, 0}-u^{i, 0}\right\|_{\infty}+\lambda u^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J}, \\
\bar{u}^{i, 1} \leq \mathbf{k}+\left\|\inf _{\mu \neq i} u_{h}^{\mu, 0}-\inf _{\mu \neq i}^{\mu, 0}\right\|_{\infty}+\inf _{\mu \neq i} u^{\mu, 0},
\end{array}\right.
$$

and using (4.1), we get

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, 1}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u^{i, 0}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, 1} \leq \mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}+\inf _{\mu \neq i}^{\mu, 0}
\end{array}\right.
$$

As $\bar{U}^{1}=\left(\bar{u}^{i, 1}\right)_{1 \leq i \leq J}$ is a subsolution for the system of V.I., where the solution is $\tilde{U}^{1}=\left(\tilde{u}^{i, 1}\right)_{1 \leq i \leq J}=\partial\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u^{i, 0}, \mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}\right)$.

Let $U^{1}=\left(u^{i, 1}\right)_{1 \leq i \leq J}=\partial\left(f^{i}\left(u_{h}^{i, 0}\right)+\lambda u^{i, 0}, \mathbf{k}\right)$ using the Proposition 2.4, we get

$$
\begin{aligned}
\left\|\tilde{u}^{i, 1}-u^{i, 1}\right\|_{\infty} \leq & C\left(\left\|f^{i}\left(u_{h}^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u^{i, 0}-f^{i}\left(u_{h}^{i, 0}\right)-\lambda u^{i, 0}\right\|_{\infty}\right. \\
& \left.+\left\|\mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}-\mathbf{k}\right\|_{\infty}\right) \\
\leq & C\left(\lambda C h^{2}|\ln h|^{\frac{3}{2}}+C h^{2}|\ln h|^{\frac{3}{2}}\right) \\
\leq & C h^{2}|\ln h|^{\frac{3}{2}}
\end{aligned}
$$

and using the Theorem 2.1, we have

$$
\bar{u}^{i, 1} \leq \tilde{u}^{i, 1} \leq u^{i, 1}+C h^{2}|\ln h|^{\frac{3}{2}} .
$$

Now taking $\beta^{i, 1}=\bar{u}^{i, 1}-C h^{2}|\ln h|^{\frac{3}{2}}$, we have

$$
\begin{equation*}
\beta^{i, 1} \leq u^{i, 1} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\beta^{i, 1}-u_{h}^{i, 1}\right\|_{\infty} & \leq\left\|\bar{u}^{i, 1}-C h^{2}|\ln h|^{\frac{3}{2}}-u_{h}^{i, 1}\right\|_{\infty} \tag{4.3}\\
& \leq\left\|\bar{u}^{i, 1}-u_{h}^{i, 1}\right\|_{\infty}+C h^{2}|\ln h|^{\frac{3}{2}} \\
& \leq C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{\frac{3}{2}} \\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Let \bar{U}_{h}^{1} be the discrete solution of the system of V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, 1}, v_{h}^{i}-\bar{u}_{h}^{i, 1}\right) \geqq\left(f^{i}\left(u^{i, 0}\right)+\lambda u^{i, 0}, v_{h}^{i}-\bar{u}_{h}^{i, 1}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J} \\
\bar{u}_{h}^{i, 1} \leq r_{h}\left(k+\inf _{\mu \neq i}^{\mu, 0}\right), \quad v_{h}^{i} \leq r_{h}\left(k+\inf _{\mu \neq i}^{\mu, 0}\right)
\end{array}\right.
$$

Then, as $\bar{U}_{h}^{1}=\left(\bar{u}_{h}^{i, 1}\right)_{1 \leq i \leq J}$ is a solution to a system of V.I. it is also a subsolution, i.e.,

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, 1}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, 0}\right)+\lambda u^{i, 0}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\
\bar{u}_{h}^{i, 1} \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, 0}\right), \quad v_{h}^{i} \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, 0}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, 1}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, 0}\right)+\lambda u^{i, 0}-\lambda u_{h}^{i, 0}+\lambda u_{h}^{i, 0}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\
\bar{u}_{h}^{i, 1} \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, 0}\right)
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, 1}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, 0}\right)+\lambda u^{i, 0}-\lambda u_{h}^{i, 0}+\lambda u_{h}^{i, 0}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\
\bar{u}_{h}^{i, 1} \leq \mathbf{k}+r_{h}\left(\inf _{\mu \neq i}^{\mu, 0}\right)-r_{h}\left(\inf _{\mu \neq i}^{\mu, 0}\right)+r_{h}\left(\inf _{\mu \neq i}^{\mu, 0} u_{h}^{\mu}\right)
\end{array}\right.
$$

and
$\left\{\begin{array}{l}b^{i}\left(\bar{u}_{h}^{i, 1}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, 0}\right)+\lambda\left\|u^{i, 0}-u_{h}^{i, 0}\right\|_{\infty}+\lambda u_{h}^{i, 0}, \varphi_{s}\right), \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\ \bar{u}_{h}^{i, 1} \leq \mathbf{k}+\left\|r_{h}\left(\inf _{\mu \neq i}^{\mu, 0}\right)-r_{h}\left(\inf _{\mu \neq i}^{\mu, 0}\right)\right\|_{\infty}+r_{h}\left(\inf _{\mu \neq i}^{\mu, 0}\right),\end{array}\right.$
using (4.1), we get

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, 1}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u_{h}^{i, 0}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\
\bar{u}_{h}^{i, 1} \leq \mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}+r_{h}\left(\inf _{\mu \neq i}^{u, 0}\right) .
\end{array}\right.
$$

As $\bar{U}_{h}^{1}=\left(\bar{u}_{h}^{i, 1}\right)_{1 \leq i \leq J}$ is a subsolution for the system of V.I., where the solution is $\tilde{U}_{h}^{1}=\left(\tilde{u}_{h}^{i, 1}\right)_{1 \leq i \leq J}=\partial_{h}\left(f^{i}\left(u^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u_{h}^{i, 0}, \mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}\right)$.

Let $U_{h}^{1}=\left(u_{h}^{i, 1}\right)_{1 \leq i \leq J}=\partial_{h}\left(f^{i}\left(u^{i, 0}\right)+\lambda u_{h}^{i, 0}, \mathbf{k}\right)$. Using Proposition 3.4, we have

$$
\begin{aligned}
\left\|\tilde{u}_{h}^{i, 1}-u_{h}^{i, 1}\right\|_{\infty} \leq & C\left(\left\|f^{i}\left(u^{i, 0}\right)+\lambda C h^{2}|\ln h|^{\frac{3}{2}}+\lambda u_{h}^{i, 0}-f^{i}\left(u^{i, 0}\right)-\lambda u_{h}^{i, 0}\right\|_{\infty}\right. \\
& \left.+\left\|\mathbf{k}+C h^{2}|\ln h|^{\frac{3}{2}}-\mathbf{k}\right\|_{\infty}\right) \\
\leq & C\left(\lambda C h^{2}|\ln h|^{\frac{3}{2}}+C h^{2}|\ln h|^{\frac{3}{2}}\right) \\
\leq & C h^{2}|\ln h|^{\frac{3}{2}}
\end{aligned}
$$

and using Theorem 3.1, we get

$$
\bar{u}_{h}^{i, 1} \leq \tilde{u}_{h}^{i, 1} \leq u_{h}^{i, 1}+C h^{2}|\ln h|^{\frac{3}{2}} .
$$

Now taking $\alpha_{h}^{i, 1}=\bar{u}_{h}^{i, 1}-C h^{2}|\ln h|^{\frac{3}{2}}$, we get

$$
\begin{equation*}
\alpha_{h}^{i, 1} \leq u_{h}^{i, 1} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\alpha_{h}^{i, 1}-u^{i, 1}\right\|_{\infty} & \leq\left\|\bar{u}_{h}^{i, 1}-C h^{2}|\ln h|^{\frac{3}{2}}-u^{i, 1}\right\|_{\infty} \tag{4.5}\\
& \leq\left\|\bar{u}_{h}^{i, 1}-u^{i, 1}\right\|_{\infty}+C h^{2}|\ln h|^{\frac{3}{2}} \\
& \leq C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{\frac{3}{2}} \\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Then, according to (4.2), (4.3) and (4.4), (4.5), we get

$$
\begin{aligned}
u^{i, 1} & \leq \alpha_{h}^{i, 1}+C h^{2}|\ln h|^{2}
\end{aligned} \leq u_{h}^{i, 1}+C h^{2}|\ln h|^{2}, ~ 子 C h^{i, 1}|\ln h|^{2} \leq u^{i, 1}+C h^{2}|\ln h|^{2} .
$$

Thus,

$$
\left\|u^{i, 1}-u_{h}^{i, 1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

Therefore,

$$
\max _{1 \leq i \leq J}\left\|u^{i, 1}-u_{h}^{i, 1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

For k we assume that

$$
\begin{equation*}
\left\|u^{i, k-1}-u_{h}^{i, k-1}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} \tag{4.6}
\end{equation*}
$$

and we prove that

$$
\left\|u^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

For that, consider the following system of continuous V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}-\bar{u}^{i, k}\right) \geqq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda u_{h}^{i, k-1}, v^{i}-u^{i, k}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, k} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}, \quad v^{i} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

Then, as $\bar{U}^{k}=\left(\bar{u}^{i, k}\right)_{1 \leq i \leq J}$ be a solution to a system of V.I. it is also a subsolution i.e.,

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda u_{h}^{i, k-1}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, k} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}, \quad v_{h}^{i} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda u_{h}^{i, k-1}-\lambda u^{i, k-1}+\lambda u^{i, k-1}, v^{i}\right) \\
\text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, k} \leq \mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}-\inf _{\mu \neq i} u^{\mu, k-1}+\inf _{\mu \neq i} u^{\mu, k-1},
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda\left\|u_{h}^{i, k-1}-u^{i, k-1}\right\|_{\infty}+\lambda u^{i, k-1}, v^{i}\right) \\
\text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, k} \leq \mathbf{k}+\left\|\inf _{\mu \neq i}^{\mu, k-1}-\inf _{\mu \neq i} u^{\mu, k-1}\right\|_{\infty}+\inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

Using (4.6), we get

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}^{i, k}, v^{i}\right) \leq\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}+\lambda u^{i, k-1}, v^{i}\right), \quad \text { for all } v^{i} \in\left(H_{0}^{1}(\Omega)\right)^{J} \\
\bar{u}^{i, k} \leq \mathbf{k}+C h^{2}|\ln h|^{2}+\inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

Let $\bar{U}^{k}=\left(\bar{u}^{i, k}\right)_{1 \leq i \leq J}$ be a subsolution for the system of V.I. whose solution is $\tilde{U}^{k}=\left(\tilde{u}^{i, k}\right)_{1 \leq i \leq J}=\partial\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}+\lambda u^{i, k-1}, \mathbf{k}+C h^{2}|\ln h|^{2}\right)$.

Then, as $U^{k}=\left(u^{i, k}\right)_{1 \leq i \leq J}=\partial\left(f^{i}\left(u_{h}^{i, k-1}\right)+\lambda u^{i, k-1}, \mathbf{k}\right)$ making use of Proposition 2.4, we have

$$
\begin{aligned}
\left\|\tilde{u}^{i, k}-u^{i, k}\right\|_{\infty} \leq & C\left(\left\|f^{i}\left(u_{h}^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}-f^{i}\left(u_{h}^{i, k-1}\right)\right\|_{\infty}\right. \\
& \left.+\left\|\mathbf{k}+C h^{2}|\ln h|^{2}-\mathbf{k}\right\|_{\infty}\right) \\
\leq & C\left(\lambda C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{2}\right) \\
\leq & C h^{2}|\ln h|^{2}
\end{aligned}
$$

and, using Theorem 2.1, we have

$$
\bar{u}^{i, k} \leq \tilde{u}^{i, k} \leq u^{i, k}+C h^{2}|\ln h|^{2} .
$$

Now putting $\beta^{i, k}=\bar{u}^{i, k}-C h^{2}|\ln h|^{2}$, we get

$$
\begin{equation*}
\beta^{i, k} \leq u^{i, k} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\beta^{i, k}-u_{h}^{i, k}\right\|_{\infty} & \leq\left\|\bar{u}^{i, k}-C h^{2}|\ln h|^{2}-u_{h}^{i, k}\right\|_{\infty} \tag{4.8}\\
& \leq\left\|\bar{u}^{i, k}-u_{h}^{i, k}\right\|_{\infty}+C h^{2}|\ln h|^{2} \\
& \leq C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{2} \\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Let \bar{U}_{h}^{k} be the discrete solution of the following system of V.I.

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, v_{h}^{i}-\bar{u}_{h}^{i, k}\right) \geqq\left(f^{i}\left(u^{i, k-1}\right)+\lambda u^{i, k-1}, v_{h}^{i}-\bar{u}_{h}^{i, k}\right), \quad \text { for all } v_{h}^{i} \in\left(\mathbb{V}_{h}\right)^{J} \\
\bar{u}_{h}^{i, k} \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}\right), \quad v \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}\right)
\end{array}\right.
$$

Then, as $\bar{U}_{h}^{k}=\left(\bar{u}_{h}^{i, k}\right)_{1 \leq i \leq J}$ is a solution to a system of V.I. it is also a subsolution, i.e.,

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, k-1}\right)+\lambda u^{i, k-1}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, s=1, \ldots, m(h), \\
\bar{u}_{h}^{i, k} \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}\right), \quad v \leq r_{h}\left(\mathbf{k}+\inf _{\mu \neq i}^{\mu, k-1}\right)
\end{array}\right.
$$

Then we have

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, k-1}\right)+\lambda u^{i, k-1}-\lambda u_{h}^{i, k-1}+\lambda u_{h}^{i, k-1}, \varphi_{s}\right), \quad \text { for all } \varphi_{s} \\
\bar{u}_{h}^{i, k} \leq \mathbf{k}+r_{h} \inf _{\mu \neq i}^{\mu, k-1}-r_{h} \inf _{\mu \neq i}^{\mu, k-1}+r_{h} \inf _{\mu \neq i} u_{h}^{\mu, k-1}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, k-1}\right)+\lambda\left\|u^{i, k-1}-u_{h}^{i, k-1}\right\|_{\infty}+\lambda u_{h}^{i, k-1}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, \\
\bar{u}_{h}^{i, k} \leq \mathbf{k}+\| r_{h} \inf _{\mu \neq i}^{\mu, k-1}-r_{h} \inf _{\mu \neq i}^{\mu, k-1} u_{h}+r_{h} \inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

Using (4.6), we obtain

$$
\left\{\begin{array}{l}
b^{i}\left(\bar{u}_{h}^{i, k}, \varphi_{s}\right) \leq\left(f^{i}\left(u^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}+\lambda u_{h}^{i, k-1}, \varphi_{s}\right), \quad \text { for all } \varphi_{s}, \\
\bar{u}_{h}^{i, k} \leq \mathbf{k}+C h^{2}|\ln h|^{2}+r_{h} \inf _{\mu \neq i}^{\mu, k-1}
\end{array}\right.
$$

So, $\bar{U}_{h}^{k}=\left(\bar{u}_{h}^{i, k}\right)_{1<i<J}$ is a subsolution for the system of V.I. whose solution is $\tilde{U}_{h}^{k}=$ $\left(\tilde{u}_{h}^{i, k}\right)_{1 \leq i \leq J}=\partial_{h}\left(f^{i}\left(u^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}+\lambda u_{h}^{i, k-1}, \mathbf{k}+C h^{2}|\ln h|^{2}\right)$. Then, as $U_{h}^{k}=$ $\left(u_{h}^{i, k}\right)_{1 \leq i \leq J}=\partial_{h}\left(f^{i}\left(u^{i, k-1}\right)+\lambda u_{h}^{i, k-1}, \mathbf{k}\right)$ making use of Proposition 3.4, we have

$$
\begin{aligned}
\left\|\tilde{u}_{h}^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq & C\left(\left\|f^{i}\left(u^{i, k-1}\right)+\lambda C h^{2}|\ln h|^{2}-f^{i}\left(u^{i, k-1}\right)\right\|_{\infty}\right. \\
& \left.+\left\|\mathbf{k}+C h^{2}|\ln h|^{2}-\mathbf{k}\right\|_{\infty}\right) \\
\leq & C\left(\lambda C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{2}\right) \\
\leq & C h^{2}|\ln h|^{2}
\end{aligned}
$$

and, using Theorem 3.1, we have

$$
\bar{u}_{h}^{i, k} \leq \tilde{u}_{h}^{i, k} \leq u_{h}^{i, k}+C h^{2}|\ln h|^{2} .
$$

Now, putting $\alpha_{h}^{i, k}=\bar{u}_{h}^{i, k}-C h^{2}|\ln h|^{2}$, we have

$$
\begin{equation*}
\alpha_{h}^{i, k} \leq u_{h}^{i, k} \tag{4.9}
\end{equation*}
$$

and

$$
\begin{align*}
\left\|\alpha_{h}^{i, k}-u^{i, k}\right\|_{\infty} & \leq\left\|\bar{u}_{h}^{i, k}-C h^{2}|\ln h|^{2}-u^{i, k}\right\|_{\infty} \tag{4.10}\\
& \leq\left\|\bar{u}_{h}^{i, k}-u^{i, k}\right\|_{\infty}+C h^{2}|\ln h|^{2} \\
& \leq C h^{2}|\ln h|^{2}+C h^{2}|\ln h|^{2} \\
& \leq C h^{2}|\ln h|^{2} .
\end{align*}
$$

Then, combining (4.7), (4.8) and (4.9), (4.10), we get

$$
\begin{aligned}
u^{i, k} & \leq \alpha_{h}^{i, k}+C h^{2}|\ln h|^{2} \leq u_{h}^{i, k}+C h^{2}|\ln h|^{2}, \\
u_{h}^{i, k} & \leq \beta^{i, k}+C h^{2}|\ln h|^{2}
\end{aligned} \leq u^{i, k}+C h^{2}|\ln h|^{2} ., ~ 又
$$

Thus,

$$
\left\|u^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

Therefore,

$$
\left\|U^{k}-U_{h}^{k}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u^{i, k}-u_{h}^{i, k}\right\|_{\infty} \leq C h^{2}|\ln h|^{2} .
$$

5. Asymptotic Behavior in L^{∞}-Norm

This section is devoted to the proof of the main result of the present paper, where we prove the optimal L^{∞}-asymptotic behavior for the system of parabolic quasivariational inequalities with nonlinear source terms. More precisely, we evaluate the variation in L^{∞} between U_{h}^{N}, the discrete solution calculated at the moment $T=N \Delta t$ and U^{∞}, the stationary continuous solution of the system of QVIs.

Theorem 5.1. Under the results of the Proposition 2.3 and Theorem 4.1, we have

$$
\begin{equation*}
\left\|U_{h}^{N}-U^{\infty}\right\|_{\infty} \leq C\left[h^{2}|\ln h|^{2}+\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}\right] \tag{5.1}
\end{equation*}
$$

where C is a constant independent of h and $N, \beta>0$ is constant and $\alpha<\beta$ Lipschitz constant.

Proof. We have

$$
\left.u_{h}^{i, k}=u_{h}^{i}(t, x), \quad \text { for } t \in\right](k-1) t, k t[.
$$

Thus,

$$
u_{h}^{i, N}=u_{h}^{i}(T, x),
$$

then

$$
\begin{aligned}
\left\|u_{h}^{i, N}-u^{i, \infty}\right\|_{\infty} & =\left\|u_{h}^{i, N}-u^{i, N}+u^{i, N}-u^{i, \infty}\right\|_{\infty} \\
& \leq\left\|u_{h}^{i, N}-u^{i, N}\right\|_{\infty}+\left\|u^{i, N}-u^{i, \infty}\right\|_{\infty} .
\end{aligned}
$$

Using Theorem 4.1 and Proposition 2.3, we get,

$$
\left\|u_{h}^{i, N}-u^{i, \infty}\right\|_{\infty} \leq C\left[h^{2}|\ln h|^{2}+\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}\right]
$$

which yields the following estimate:

$$
\left\|U_{h}^{N}-U^{\infty}\right\|_{\infty}=\max _{1 \leq i \leq J}\left\|u_{h}^{i, N}-u^{i, \infty}\right\|_{\infty} \leq C\left[h^{2}|\ln h|^{2}+\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}\right]
$$

Remark 5.1. In the previous estimate (5.1), $\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}$ tends to 0 when $N \rightarrow+\infty$. Then, we obtain the optimal L^{∞}-error estimate for the system of elliptic quasivariational inequalities related to management of energy production problems (cf. [16]):

$$
\left\|U_{h}^{\infty}-U^{\infty}\right\|_{\infty} \leq C h^{2}|\ln h|^{2}
$$

If we replace $M u^{i}$ in (1.3) by $M u=\mathbf{k}+\inf _{\xi \geq 0, x+\xi \in \bar{\Omega}}(u+\xi)$ and $f(u)$ by f, the problem (2.2) reduces to the parabolic quasi-variational inequalities related to impulse control problem with linear source term (cf. [10]). Find $u \in K(u)$

$$
\left(\frac{\partial u}{\partial t}, v-u\right)+a(u, v-u) \geq(f, v-u), \quad \text { for all } v \in K(u)
$$

with

$$
K(u)=\left\{u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \mid u \leq M u, u(0, x)=u_{0} \text { in } \Omega\right\}
$$

In this case, the error estimate given in (5.1) becomes

$$
\left\|u_{h}^{N}-u^{\infty}\right\|_{\infty} \leq C\left[h^{2}|\ln h|^{2}+\left(\frac{1}{1+\beta \Delta t}\right)^{N}\right]
$$

If we replace $M u^{i}$ in (1.3) by $M u^{i}=l+u^{i+1}$, where $M u^{i}=l+u^{i+1}$ represents the obstacle of Hamilton Jacobi Bellman equation, the problem (2.2) reduces to the system of evolutionary Hamilton Jacobi Bellman (HJB) equation with nonlinear source terms (cf [8]): Find a victor $U=\left(u^{1}, \ldots, u^{J}\right) \in\left(L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)\right)^{J}$ such that

$$
\left\{\begin{array}{l}
\left(\frac{\partial u^{i}}{\partial t}, v^{i}-u^{i}\right)+a^{i}\left(u^{i}, v^{i}-u^{i}\right) \geqq\left(f^{i}\left(u^{i}\right), v^{i}-u^{i}\right) \\
u^{i} \leq l+u^{i+1}, \quad v^{i} \leq l+u^{i+1}, \quad u^{J+1}=u^{1}, \quad 1 \leq i \leq J \\
u^{i}(x, 0)=u_{0}^{i} \text { in } \Omega, \quad u^{i}=0 \text { on } \partial \Omega
\end{array}\right.
$$

In this case, we get the following error estimate:

$$
\max _{1 \leq i \leq J}\left\|u_{h}^{i, N}-u^{i, \infty}\right\|_{\infty} \leq C\left[h^{2}|\ln h|^{2}+\left(\frac{1+\alpha \Delta t}{1+\beta \Delta t}\right)^{N}\right]
$$

Conclusion 1. We have introduced a new approach and we have obtained the optimal L^{∞}-asymptotic behavior for the finite element approximation of the system of parabolic quasi-variational inequalities with nonlinear source terms. This method stands on the Bensoussan-Lions algorithm and the concept of subsolutions. A future work will consolidate our theoretical results by numerical simulation, where efficient numerical monotone algorithms will be treated.

Acknowledgements. The author would like to thank the referees and the editors for reading, and suggestions.

References

[1] C. Baiocchi, Estimation d'erreur dans L^{∞} pour les inequations a obstacle, Mathematical Aspects of Finite Methods 606 (1977), 27-34. https://doi.org/10.1007/BFb0064453
[2] D. C. Benchettah and M. Haiour, L^{∞}-asymptotic behavior of the variational inequality related to American options problem, Applied Mathematics 5(8) (2014), 1299-1309. https://doi.org/ 10.4236/am. 2014.58122
[3] D. C. Benchettah and M. Haiour, Sub-solution approach for the asymptotic behavior of a parabolic variational inequality related to American options problem, Global Journal of Pure and Applied Mathematics, 11(4) (2015), 1727-1745.
[4] A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Gauthier Villars, Paris, 1984.
[5] A. Bensoussan and J. L. Lions, Applications des inèquations variationnelles en contrôle stochastique, Dunod, Paris, 1978.
[6] M. A. Bencheikh le Hocine, S. Boulaaras and M. Haiour, An optimal L^{∞}-error estimate for an approximation of a parabolic variational inequality, Numer. Funct. Anal. Optim. 37(1) (2015), 1-18. https://doi.org/10.1080/01630563.2015.1109520
[7] M. A. Bencheikh le Hocine, S. Boulaaras and M. Haiour, On finite element approximation of system of parabolic quasi-variationnal inequalities related to stochastic control problems, Cogent Math. 3(1) (2016), Paper ID 1251386. https://doi.org/10.1080/23311835.2016.1251386
[8] S. Boulaaras and M. Haiour, The finite element approximation of evolutionary Hamilton-JacobiBellman equations with nonlinear source terms, Indag. Math. 24(1) (2013), 161-173. https: //doi.org/10.1016/j.indag.2012.07.005
[9] S. Boulaaras and M. Haiour, The theta time scheme combined with a finite-element spatial approximation in the evolutionary Hamilton-Jacobi-Bellman equation with linear source terms, Comput. Math. Model. 25(3) (2014), 423-438.
[10] S. Boulaaras and M. Haiour, L^{∞}-asymptotic behavior for a finite element approximation in parabolic quasi-variational inequalities related to impulse control problem, Appl. Math. Comput. 217(14) (2011), 6443-6450. https://doi.org/10.1016/j.amc.2011.01.025
[11] S. Boulaaras, M. A. Bencheikh le Hocine and M. Haiour, The finite element approximation in a system of parabolic quasi-variationnal inequalities related to management of energy production with mixed boundary condition, Comput. Math. Model. 25(4) (2014), 530-543.
[12] M. Boulbrachene, Pointwise error estimates for a class of elliptic quasi-variational inequalities with nonlinear source terms, Appl. Math. Comput. 161(1) (2005), 129-138.
[13] M. Boulbrachene, On the finite element approximation of variational inequalities with noncoercive operators, Numer. Funct. Anal. Optim. 36(9) (2015), 1107-1121. https://doi.org/10. 1080/01630563.2015.1056913
[14] M. Boulbrachene and P. Cortey Dumont, Optimal L^{∞}-error estimate of a finite element method for Hamilton Jacobi Bellman equations, Numer. Funct. Anal. Optim. 30(5-6) (2009), 421-435. https://doi.org/10.1080/01630560902987683
[15] M. Boulbrachene, On the finite element approximation of variational inequalities with noncoercive operators, Numer. Funct. Anal. Optim. 36(9) (2015), 1107-1121.
[16] M. Boulbrachene, Pointwise error estimate for a noncoercive system of quasi-variational inequalities related to the management of energy production, Journal of Inequalities in Pure and Applied Mathematics 3(5) (2002), Article ID 79.
[17] M. Boulbrachene, On variational inequalities with vanishing zero term, J. Inequal. Appl. (2013), Article ID 438. https://doi.org/10.1186/1029-242X-2013-438
[18] F. Brezzi and L. A. Caffarelli, Convergence of the discrete free boundaries for finite element approximations, RAIRO Analyse Numérique 17(4) (1983), 385-395.
[19] P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2(1) (1973), 17-31.
[20] P. Cortey-Dumont, Sur l'analyse numérique des équations de Hamilton-Jacobi-Bellman, Math. Methods Appl. Sci. 9(1) (1987), 198-209. https://doi.org/10.1002/mma. 1670090115
[21] P. Cortey-Dumont, Sur les inéquations variationnelles à opérateurs non coercif, Modélisation mathématique et analyse numérique 19 (2) (1985), 195-212.
[22] J. Hannouzet and P. Joly, Convergence uniforme des iteres definissant la solution d'une inéquation quasi-variationnelle, C. R. Math. Acad. Sci. Paris, Serie A 286 (1978), 1 page. https://10.5802/jedp. 172
[23] J. Nitsche, L^{∞}-convergence of finite element approximations, mathematical aspects of finite element methods, Lecture Notes in Math. 606 (1977), 261-274.
[24] R. H. Nochetto, A note on the approximation of free boundaries by finite element methods, Modelisation Mathématique et Analyse Numérique 20(2) (1986), 355-368.
[25] B. Perthame, Some remarks on quasi-variational inequalities and the associated impulsive control problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 2(3) (1985), 237-260.
[26] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer, Berlin, Heidelberg, 1994.
${ }^{1}$ Higher School of Management Sciences-Annaba,
${ }^{2}$ LANOS Laboratory, Faculty of Science, Badji-Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

Email address: benchettah.djaber@essg-annaba.dz

[^0]: Key words and phrases. Quasi-variational inequalities, asymptotic behavior, subsolutions method, finite elements approximation, L^{∞}-error estimate.

 2010 Mathematics Subject Classification. Primary: 65J15. Secondary: 65N30.
 DOI 10.46793/KgJMat2303.347B
 Received: February 05, 2020.
 Accepted: August 29, 2020.

