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ON THE SIMPLICIAL COMPLEXES ASSOCIATED TO THE
CYCLOTOMIC POLYNOMIAL

ALEKSANDRA KOSTIĆ1

Abstract. Musiker and Reiner in [9] studied coefficients of cyclotomic polynomial
in terms of topology of associated simplicial complexes. They determined homotopy
type of associated complexes for all cyclotomic polynomials, except for cyclotomic
polynomials whose degree is a product of three prime numbers. Using discrete Morse
theory for simplicial complexes we partially answer a question posed by the two
authors regarding homotopy type of the associated complexes when degree of the
cyclotomic polynomial is a product of three prime numbers.

1. Introduction

Cyclotomic polynomials are an important type of polynomials in algebraic number
theory, Galois theory and geometry. If n is a positive integer, then the nth cyclotomic
polynomial is defined as the unique monic, irreducible polynomial having all nth

primitive roots of unity as its zeros. It has degree given by Euler phi function ϕ(n),
with formula

Φn(x) =
∏

j∈(Z/nZ)×

(x − ξj),

where ξ is the nth root of unity in C. Additionally, cyclotomic polynomial Φn(x) has
integer coefficients which are well-studied. Musiker and Reiner in [9] interpreted these
coefficients topologically, as the torsion in the homology of a certain simplicial complex
associated with the degree of the cyclotomic polynomial. The idea for these simplicial
complexes originally appeared in [3] and reappeared in [1,7]. In what follows, we give
a review of associated simplicial complexes. It is sufficient to interpret the coefficients
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of the cyclotomic polynomial for squarefree n. Therefore, we fix such a squarefree
n = p1 · · · pd. Let

Kp1,...,pd
:= Kp1 ∗ · · · ∗ Kpd

be the simplicial join of Kp1 , . . . , Kpd
, where Kpi

is a 0-dimensional abstract simplicial
complex with pi vertices which are labeled by residues {0 (mod pi), 1 (mod pi), . . . ,
(pi − 1) (mod pi)}. The facets of Kp1,...,pd

are labeled by a sequence of residues
(j1 (mod p1), . . . , jd (mod pd)) and by the Chinese Reminder Theorem, they can be de-
noted by residue j (mod n) (denote this facet by Fj (mod n)). Let A ⊆ {0, 1, . . . , ϕ(n)}.
We denote by KA the subcomplex of Kp1,...,pd

which is generated by the facets
{Fj (mod n)}, where

j ∈ A ∪ {ϕ(n) + 1, ϕ(n) + 2, . . . , n − 2, n − 1}.

It turns out that subcomplexes K∅ and K{j}, where j ∈ {0, . . . , ϕ(n)} have a very nice
feature, which Musiker and Reiner proved in the next two theorems. Let [zj (mod n)] :=
∂[Fj (mod n)] denote the (d − 2)-cycle which is its image under the simplical boundary
map ∂.

Theorem 1.1. ([9, Theorem 7.1.]). Let n = p1 · · · pd be squarefree.
(i) One has a homology isomorphism

H̃∗(K∅) ∼= H̃∗(Sd−2),
with H̃d−2(K∅) ∼= Z generated by the cycle [zϕ(n) (mod n)].

(ii) If Φn(x) = ∑ϕ(n)
j=0 cjx

j, then for j = 0, 1, . . . , ϕ(n), one has

[zj (mod n)] = cj[zϕ(n) (mod n)] in H̃d−2(K∅) ∼= Z
and a homology isomorphism

H̃∗(K{j}) ∼= H̃∗(Bd−1 ∪fj
Sd−2),

where deg(fj) = cj.

Theorem 1.2. ([9, Theorem 7.5.]). For d ≥ 4 and every A ⊆ {0, 1, . . . , ϕ(n)}, the
complex KA is simply-connected. Consequently, for d ̸= 3, one has the following.

(i) The complex K∅ is homotopy equivalent to Sd−2 and contains [zϕ(n) (mod n)] as
a fundamental (d − 2)-cycle.

(ii) For j = 0, 1, . . . , ϕ(n), the cyclotomic polynomial coefficient cj gives the de-
gree of the attaching map from the oriented boundary [zj (mod n)] of the facet
Fj (mod n) into the homotopy (d − 2)-sphere K∅, with respect to the choice of
[zϕ(n) (mod n)] as the fundamental cycle.

(iii) In particular, the complex K{j} is homotopy equivalent to Sd−2 ∪fj
Bd−1, where

deg(fj) = cj.

For d ≥ 4 the fundamental group of KA is determined by its 2-skeleton, which is
the same as 2-skeleton of Kp1,...,pd

since the subcomplex K∅, and consequently every
subcomplex KA, contains the full (d − 2)-skeleton of Kp1,...,pd

[9, Proposition 5.5.].
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This skeleton is shellable [9, Proposition 5.1.], hence homotopy equivalent to a wedge
of (d − 2)-spheres.

The homotopy types of K∅ and K{j} remain as opened question when d = 3. Namely,
in Question 7.6, Musiker and Rainer ask the following.

1) Is K∅ homotopy equivalent to the circle S1?
2) Is K{j} homotopy equivalent to B2∪fj

S1, where deg(fj) = cj, j = 0, 1, . . . , ϕ(n)?
In [8], authors show, giving a counter-example, that Theorem 1.2 does not follow

generally when d = 3. For n = 3 · 5 · 7, K∅ is not homotopy equivalent to the circle S1

and K{j} is not homotopy equivalent to B2 ∪fj
S1 for j = 7.

In this paper, by using discrete Morse theory, we prove that for n = 3 · 5 · p, where
p ≥ 7 is an arbitrary prime number, Theorem 1.2 holds for certain classes of prime p
modulo 15, while for the others we show it does not hold. This result is given in the
following two theorems.

Theorem 1.3. Let p ≡ k (mod 15), where k ∈ {1, 2, 13, 14}, and n = 3 · 5 · p.
(1) The complex K∅ is homotopy equivalent to S1.
(2) If Φn(x) = ∑ϕ(n)

j=0 cjx
j, then for j ∈ {0, 1, . . . , ϕ(n)}, the complex K{j} is homo-

topy equivalent to S ∪fj
B2, where deg(fj) = cj.

Theorem 1.4. Let p ≡ k (mod 15), where k ∈ {4, 7, 8, 11}, and n = 3 · 5 · p. The
complex K∅ is not homotopy equivalent to S1.

The paper is organized as follows. In Section 2, we briefly introduce notation of
simplicial complexes, define an acyclic discrete vector field and its critical elements.
In Section 3 we study the structure of the subcomplex K∅. Additionally, we construct
an appropriate acyclic discrete vector field on K∅. In Section 4, we prove Theorem
1.3 by using results from Section 3. Finally, in Section 5 we prove Theorem 1.4.

2. Basic Concepts

2.1. Simplicial complex. Here, we present the basic notation and terminology con-
cerning simplicial complexes which we will use intensively in this paper. For more
details see [10].

An abstract simplicial complex K is a collection of finite non-empty sets such that,
if σ ∈ K and ∅ ̸= τ ⊆ σ, then τ ∈ K. If σ ∈ K, and σ has n + 1 elements, we refer
to σ as an n-simplex. If we want to emphasize that σ is n-dimensional simplex, i.e.,
n-simplex, we use notation σ(n).

A non-empty subset τ of σ is called a face of σ. Those simplices that are not faces
of any other simplex in K are called facets.

Definition 2.1. Let K be any simplicial complex and let σ be any face of K. The
star St(σ) of σ is the subcomplex of K consisting of all faces τ containing σ and of
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all faces of τ , i.e.,
St(σ) = {s ∈ K | (∃τ ∈ K) (σ ⊆ τ and s ⊆ τ)}.

Definition 2.2. The link of σ, denoted by Lk(σ), is the subcomplex of K consisting
of all faces in St(σ) that do not intersect σ, i.e.,

Lk(σ) = {τ ∈ K | τ ∈ St(σ) and σ ∩ τ = ∅}.

To simplify notation, if σ = {v}, where v is a vertex, we write St(v) for St({v})
and Lk(v) for Lk({v}). From the previous, it is clear that St(v) = v ∗ Lk(v). In order
to simplify notation we denote the union ⋃k

i=1 St(vi) by St(v1, . . . , vk).

2.2. Discrete Morse theory. This subsection aims to give a brief introduction and
some of the main results from Forman’s discrete Morse theory. Discrete Morse theory
(shorter DMT) is based on pairing faces of the complex, which actually represent
forming sequences of collapses on the complex. We will use this theory in order
to prove homotopical equivalence between certain simplicial complexes. For a more
thorough background concerning DMT, we refer the reader to [4–6].
Definition 2.3. A function F : K → R is discrete Morse function if, for every
α(p) ∈ K,

(1) f(β(p+1)) ≤ f(α(p)) for at most one β(p+1) ⊃ α(p), and
(2) f(γ(p−1)) ≥ f(α(p)) for at most one γ(p−1) ⊂ α(p).

Definition 2.4. Simplex α(p) is critical simplex if f(β(p+1)) > f(α(p)) for all β(p+1) ⊃
α(p) and f(γ(p−1)) < f(α(p)) for all γ(p−1) ⊂ α(p).

Forman proved that the topology of a simplicial complex is related to its critical
simplex in a very strong way. This connection is given in the next theorem.
Theorem 2.1 ([5]). Suppose K is a simplicial complex with a discrete Morse function.
Then, K is homotopy equivalent to a CW complex with exactly one cell of dimension
p for each critical simplex of dimension p.

The number of critical simplices is not a topological invariant as it depends on the
discrete Morse function. According to the previous theorem, the goal is to find Morse
function with as small critical simplicies as possible. For this purpose, we introduce
discrete vector field, which is (under some conditions) an equivalent concept.
Definition 2.5. Discrete vector field V on a finite simplicial complex K is the set of
pairs {α(p), β(p+1)}, where α(p) ⊂ β(p+1), and each simplex is in at most one pair. We
say that {α(p), β(p+1)} is a matching in V . Simplex γ in K is critical or unmatched
with respect to V if γ is not contained in any pair in V .

For a simplicial complex K and a discrete vector field V on K, let Ck(K, V ) denote
the set of all critical k-simplices in the simplicial complex K with respect to V and
let

C(K, V ) =
dim K⋃

k=0
Ck(K, V ).
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Definition 2.6. Given a discrete vector field V on a finite simplicial complex K, a
V -path is a sequence of simplicies

α
(p)
0 , β

(p+1)
0 , α

(p)
1 , β

(p+1)
1 , . . . , α

(p)
r+1, β

(p+1)
r+1 ,

such that, for each i ∈ {0, . . . , r}, pair {αi, βi} ∈ V and βi ⊃ αi+1 ̸= αi. This path is
non-trivially closed if r > 0 and α0 = αr+1.

If a discrete vector field V does not contain a non-trivial closed V -path we say that
V is acyclic.

Theorem 2.2 ([5]). A discrete vector field V on a finite simplicial complex K is a
discrete vector field of some Morse function if and only if V is acyclic.

Namely, for a discrete Morse function f , we can easily define a discrete vector
field in the following way: {α(p), β(p+1)} ∈ V whenever f(β(p+1)) ≤ f(α(p)). Previous
theorem give a condition when we can do the converse process.

On the other hand, matching {α(p), β(p+1)} in a discrete vector field V on a finite
simplicial complex K can be represent by an arrow from a simplex α(p) to a simplex
β(p+1) of K. According to this, a modified Hasse (directed) diagram of the complex K
corresponds to V . Hasse diagram is modified in the following way: arrows are reversed
each time when for β(p+1) and its face α(p) one has {α(p), β(p+1)} ∈ V . We denote this
diagram by D(K, V ). Directed path from α to β in D(K, V ) we denote by α → β. It
turns out that if V is an acyclic discrete vector field then D(K, V ) is acyclic directed
graph, that is, α → β and β → α implies α = β. The symbol α ̸→ β we use to denote
that a directed path from α to β does not exist in D(K, V ). Generally, for families
K1 and K2, we write K1 → K2 if there are α ∈ K1 and β ∈ K2 such that α → β.
The symbol K1 ̸→ K2 is used to denote the non-existence of such a directed path.

We will use the next theorem in further work in order to prove the existence of a
homotopical equivalence between a certain simplicial complexes.

Theorem 2.3. ([6, Theorem 4.4]). Suppose that K0 is a subcomplex of K such that
K0 ̸→ K \ K0 and such that all critical faces belong to K0. Then it is possible to
collapse K to K0. In particular, K and K0 are homotopy equivalent. Hence, K has
no homology in dimensions strictly greater than dim K0.

3. Complex K∅

Let n = 3 · 5 · p, where p is a prime. As the case when p = 7 was investigated in [8],
we can assume that p > 7. For n = 3 · 5 · p simplicial complex K3,5,p has p + 8 vertices:

0 (mod 3), 1 (mod 3), 2 (mod 3), 0 (mod 5), 1 (mod 5), 2 (mod 5),
3 (mod 5), 4 (mod 5), 0 (mod p), 1 (mod p), . . . , p − 1 (mod p).

In order to simplify the notation we label these vertices by numbers 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, . . . , p + 7, respectively.
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Subcomplex K∅ is a two-dimensional complex built of facets:

F(8p−7) (mod n), . . . , F(8p−1) (mod n), F8p (mod n), . . . , F(9p−8) (mod n),
F(9p−7) (mod n), . . . , F(9p−1) (mod n), F9p (mod n), . . . , F(10p−8) (mod n),

... ... ... ...
F(14p−7) (mod n), . . . , F(14p−1) (mod n), F14p (mod n), . . . , F(15p−8) (mod n),
F(15p−7) (mod n), . . . , F(15p−1) (mod n).

Note that facet F(dp−i) (mod n) contains vertex (p − i) (mod p) which is labeled by
number p − i + 8 for all d ∈ {8, . . . , 15}, i ∈ {1, . . . , 7}. Similarly, facet F(dp+i) (mod n)
contains vertex i (mod p) which is labeled by number i + 8 for all d ∈ {8, . . . , 14},
i ∈ {0, . . . , p − 8}. Let

[
ai

j, bi
j, i
]

=


F((8+j−1)p+i−8) (mod n), for i ∈ {8, . . . , p},

F((8+j−1)p+i−8−p) (mod n), for i ∈ {p + 1, . . . , p + 7}.

.

Then, the above set of facets are:[
ap+1

1 , bp+1
1 , p + 1

]
, . . . ,

[
ap+7

1 , bp+7
1 , p + 7

]
,
[
a8

1, b8
1, 8
]
, . . . ,

[
ap

1, bp
1, p
]
,

[
ap+1

2 , bp+1
2 , p + 1

]
, . . . ,

[
ap+7

2 , bp+7
2 , p + 7

]
,
[
a8

2, b8
2, 8
]
, . . . ,

[
ap

2, bp
2, p
]
,

...
...

...
...[

ap+1
7 , bp+1

7 , p + 1
]

, . . . ,
[
ap+7

7 , bp+7
7 , p + 7

]
,
[
a8

7, b8
7, 8
]
, . . . ,

[
ap

7, bp
7, p
]
,

[
ap+1

8 , bp+1
8 , p + 1

]
, . . . ,

[
ap+7

8 , bp+7
8 , p + 7

]
,

respectively.
As every facet of K∅ contains exactly one vertex from the set of vertices {8, 9, . . . , p+

7} it is clear that

K∅ =
p+7⋃
i=8

St(i).

Therefore, we begin our analysis of the complex K∅ with analysis of its subcomplexes
St(8), . . . , St(p + 7).

As the number of 2-simplicies of K∅ is 7p + 7, we can notice that the subcomplex
St(i) is built of facets

{
[ai

j, bi
j, i]

}7

j=1
when i ∈ {8, . . . , p} and facets

{
[ai

j, bi
j, i]

}8

j=1
when i ∈ {p + 1, . . . , p + 7}. Furthermore, it follows that

ai
1 = ai

4 = ai
7, ai

2 = ai
5, ai

3 = ai
6, for i ∈ {8, . . . , p},

and
ai

1 = ai
4 = ai

7, ai
2 = ai

5 = ai
8, ai

3 = ai
6, for i ∈ {p + 1, . . . , p + 7},
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because 8p ≡ 11p ≡ 14p, 9p ≡ 12p ≡ 15p and 10p ≡ 13p modulo 3. Similarly, as
8p ≡ 13p, 9p ≡ 14p and 10p ≡ 15p modulo 5, we can conclude that

bi
1 = bi

6, bi
2 = bi

7, for i ∈ {8, . . . , p},

and
bi

1 = bi
6, bi

2 = bi
7, bi

3 = bi
8, for i ∈ {p + 1, . . . , p + 7}.

Figure 1 shows subcomplex St(i) depending on the index i ∈ {8, . . . , p + 7}.

i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(a) i ∈ {8, . . . , p}

i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(b) i ∈ {p + 1, . . . , p + 7}

Figure 1. Simplicial complex St(i)

3.1. Discrete vector field on K∅. In order to examine the topology of the complex
K∅, we will look for a discrete vector field such that the number of critical 2-simplices
are as small as possible. We will see below that finding an appropriate discrete
vector field on K∅ can be reduced to finding an appropriate discrete vector field on
its subcomplex St(p + 1, . . . , p + 7).

The simplicial subcomplex St(i), i ∈ {8, . . . , p}, is built of facets:

[ai
1, bi

1, i], [ai
2, bi

2, i], [ai
3, bi

3, i],
[ai

1, bi
4, i], [ai

2, bi
5, i], [ai

3, bi
1, i],

[ai
1, bi

2, i].

As ai
1, ai

2, ai
3 and bi

1, bi
2, bi

3, bi
4, bi

5 are different vertices, we can define acyclic discrete
vector field on St(i) as follows:

Si = {{[bi
1, i], [ai

1, bi
1, i]}, {[bi

2, i], [ai
2, bi

2, i]}, {[bi
3, i], [ai

3, bi
3, i]},

{[bi
4, i], [ai

1, bi
4, i]}, {[bi

5, i], [ai
2, bi

5, i]}, {[ai
3, i], [ai

3, bi
1, i]},

{[ai
1, i], [ai

1, bi
2, i]}, {[i], [ai

2, i]}}.

Discrete vector field Si is an acyclic discrete vector field on St(i), as we can see on
Figure 2 (A). Note that C(St(i), Si) = Lk(i) ⊂ K3,5 and C2(St(i), Si) = ∅ (see Figure
2 (B)).
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i

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(a) Si-paths

bi
2

bi
4

ai
1

bi
1 ai

3

bi
3

ai
2 bi

5

(b) C(St(i), Si)

Figure 2. Discrete vector field Si on complex St(i), i ∈ {8, . . . , p}

Lemma 3.1. Let n = 3 · 5 · p, where p > 7 is a prime. If C is an arbitrary acyclic
discrete vector field on St(p + 1, . . . , p + 7), then

V =
( p⋃

i=8
Si

)
∪ C

is an acyclic discrete vector field on K∅.

Proof. It follows that  ⋃
k∈{8,...,̂i,...,p+7}

St(k)

 ∩ St(i) ⊆ Lk(i).

As C(St(i), Si) = Lk(i) for all i ∈ {8, . . . , p}, V is a well-defined discrete vector field
on K∅ as each simplex is in at most one pair. Additionally, for all i ∈ {8, . . . , p},⋃

k∈{8,...,̂i,...,p+7}

St(k) ̸−→ St(i) \ Lk(i).

Hence, there are no non-trivial closed V -paths which contain simplices from the set⋃p
i=8 (St(i) \ Lk(i)). Note that

p⋃
i=8

Lk(i) \ St(p + 1, . . . , p + 7) ⊆ C(K∅, V ).

As

K∅ =
( p⋃

i=8
(St(i) \ Lk(i))

)
∪
( p⋃

i=8
Lk(i) \ St(p + 1, . . . , p + 7)

)
∪ St(p + 1, . . . , p + 7),

the discrete vector field V is acyclic on K∅. □

According to the previous lemma, in what follows, we will focus on finding an
appropriate discrete vector field on the subcomplex St(p + 1, . . . , p + 7).
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3.2. Discrete vector field on St(p + 1, . . . , p + 7). As St(p + 1, . . . , p + 7) =⋃p+7
i=p+1 St(i), we will find acyclic discrete vector fields without unpaired 2-simplices

for the subcomplexes St(i), i ∈ {p + 1, . . . , p + 7}. We know that 2-simplices in St(i)
are

[ai
1, bi

1, i], [ai
2, bi

2, i], [ai
3, bi

3, i],
[ai

1, bi
4, i], [ai

2, bi
5, i], [ai

3, bi
1, i],

[ai
1, bi

2, i], [ai
2, bi

3, i].
First, we consider the following discrete vector field on St(i):

Vi = {{[bi
1, i], [ai

1, bi
1, i]}, {[bi

2, i], [ai
2, bi

2, i]}, {[bi
3, i], [ai

3, bi
3, i]},

{[bi
4, i], [ai

1, bi
4, i]}, {[bi

5, i], [ai
2, bi

5, i]}, {[ai
3, i], [ai

3, bi
1, i]},

{[ai
1, i], [ai

1, bi
2, i]}, {[ai

2, i], [ai
2, bi

3, i]}}.

Discrete vector field Vi is well-defined and pairs all facets of St(i), but it is not
acyclic (see Figure 3).

i

bi
2bi

4 ai
1

bi
1

ai
3 bi

3

ai
2

bi
5

Figure 3. Vi-paths on complex St(i), i ∈ {p + 1, . . . , p + 7}

Namely, there is exactly one non-trivial closed Vi-path. This path contains facets
[ai

1, bi
1, i], [ai

2, bi
2, i], [ai

3, bi
3, i], [ai

3, bi
1, i], [ai

1, bi
2, i] and [ai

2, bi
3, i] (see Figure 4).

Note that if α ⊃ [bi
4, i], then α = [ai

1, bi
4, i]. Similarly, if β ⊃ [bi

5, i], then β = [ai
2, bi

5, i].
Hence, there are no facets α, β ∈ St(i) such that α → [bi

4, i] and β → [bi
5, i] in Vi.

Consequently, simplices [bi
4, i], [bi

5, i], [ai
1, bi

4, i] and [ai
2, bi

5, i] cannot be a part of a
non-trivial closed Vi-path.

i

bi
2

ai
1

bi
1 ai

3

bi
3

ai
2

[ai
2, bi

2, i] [ai
1, bi

2, i] [ai
1, bi

1, i] [ai
3, bi

1, i] [ai
3, bi

3, i] [ai
2, bi

3, i]

[ai
2, i] [bi

2, i] [ai
1, i] [bi

1, i] [ai
3, i] [bi

3, i]

Figure 4. Non-trivial closed Vi-path

However, if we perform certain changes, we can make Vi acyclic. Namely, for some
(l, k) ∈ {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)}, if we modify Vi in a way that we pair
[ai

l, bi
k] with [ai

l, bi
k, i], instead paring [bi

k, i] or [ai
l, i], it becomes acyclic (see Figure 5).
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If {[bi
k, i], [ai

l, bi
k, i]} ∈ Vi, we replace the matching {[bi

k, i], [ai
l, bi

k, i]} by the match-
ing {[ai

l, bi
k], [ai

l, bi
k, i]}. Thus, 1-simplex [bi

k, i] becomes unmatched, so we can add
matching {[i], [bi

k, i]}. Analogously, if {[ai
l, i], [ai

l, bi
k, i]} ∈ Vi we replace the matching

{[ai
l, i], [ai

l, bi
k, i]} by the matching {[ai

l, bi
k], [ai

l, bi
k, i]} and 1-simplex [ai

l, i] becomes
unmatched. Then, we can add matching {[i], [ai

l, i]}.

i

bi
k ai

l

i

bi
k ai

l

i

ai
l bi

k

i

ai
l bi

k

Figure 5. The two type of modification in discrete vector field Vi

Note that 0-simplex [i] is not part of any non-trivial closed path in the mentioned
modification of Vi. Namely, if α → [i] for some 1-simplex α ⊃ [i], then α is not paired
with any 0-simplex. Actually, α is pared with a 2-simplex.

Let
Vi([ai

l, bi
k]) :=

(
Vi \

{
{[ai

l, i], [ai
l, bi

k, i]}
})

∪
{
{[ai

l, bi
k], [ai

l, bi
k, i]}, {[i], [ai

l, i]}
}

if {[ai
l, i], [ai

l, bi
k, i]} ∈ Vi and

Vi([ai
l, bi

k]) :=
(
Vi \

{
{[bi

k, i], [ai
l, bi

k, i]}
})

∪
{
{[ai

l, bi
k], [ai

l, bi
k, i]}, {[i], [bi

k, i]}
}

if {[bi
k, i], [ai

l, bi
k, i]} ∈ Vi.

According to the previous considerations, Vi([ai
l, bi

k]) is an acyclic discrete vector
field on St(i), without critical 2-simplices, for all i ∈ {p + 1, . . . , p + 7}. Actually,
C(St(i), Vi([ai

l, bi
k]) = Lk(i) \ [ai

l, bi
k] ⊂ K3,5.

The choice of (l, k) will depend on the rest of the complex St(p + 1, . . . , p + 7).
Let Vi([ai

li
, bi

ki
]) be the corresponding acyclic discrete vector field on St(i) for i ∈

{p + 1, . . . , p + 7}. If [ap+1
lp+1 , bp+1

kp+1 ], [ap+2
lp+2 , bp+2

kp+2 ], . . . , [ap+7
lp+7 , bp+7

kp+7 ] are distinct 1-simplices
then

C :=
p+7⋃

i=p+1
Vi([ai

li
, bi

ki
])

is a well-defined discrete vector field on St(p + 1, . . . , p + 7). Generally, C does not
have to be acyclic. Namely, there are no non-trivial closed C-paths which contain
simplices from the only one subcomplex St(i), but there may be non-trivial closed
paths containing simplices from the various subcomplexes St(i), i ∈ {p + 1, . . . , p + 7}.

For i ∈ {p + 1, . . . , p + 7}, note that the only “entrance” in St(i) with respect to
C from St(p + 1, . . . , î, . . . p + 7) is through the 1-simplex [ai

li
, bi

ki
], whereas the set of

“exits” are (
Lk(i) \ {[ai

li
, bi

ki
]}
)

∩ {[aj
lj

, bj
kj

]}
j∈{p+1,...,̂i,...,p+7}.
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The only way to reach 1-simplex [ai
1, bi

4] from the rest of the complex St(i) is through
the 1-simplex [bi

4, i], i.e., [bi
4, i] → [ai

1, bi
4, i] → [ai

1, bi
4]. Similarly, 1-simplex [ai

2, bi
5] can

be reached from the rest of the complex St(i) through the 1-simplex [bi
5, i] only, i.e.,

[bi
5, i] → [ai

2, bi
5, i] → [ai

2, bi
5]. As [bi

4, i] and [bi
5, i] do not have entrance arrows in C, we

can ignore 1-simplicies [ai
1, bi

4] and [ai
2, bi

5] as exits from St(i).
We form a directed graph Flow(C) of the “entrances/exits” through the sub-

complexes St(i), i ∈ {p + 1, . . . , p + 7}, with respect to C. The graph Flow(C) =
(A ⊔ B, E) is bipartite, where:

A ={St(i) | i ∈ {p + 1, . . . , p + 7}},

B ={[ai
li
, bi

ki
] | i ∈ {p + 1, . . . , p + 7},

and

E =
p+7⋃

i=p+1

{
(St(i), α) | α ∈ B ∩ Lk(i) \ {[ai

li
, bi

ki
], [ai

1, bi
4], [ai

2, bi
5]}
}

∪
{
([ai

li
, bi

ki
], St(i)) | i ∈ {p + 1, . . . , p + 7}

}
.

Therefore, if [alj , bkj
] ∈ St(i) \ {[ai

1, bi
4], [ai

2, bi
5]} it follows that

[ali , bki
] → St(i) → [alj , bkj

] → St(j)
is path in Flow(C), for all distinct i, j ∈ {p + 1, . . . , p + 7} (see Figure 6).

St(i) St(j)

[ai
li
, bi

ki
] [ai

lj
, bi

kj
]

i

j

ai
li

bi
ki aj

lj

bj
kj

Figure 6. Forming a directed graph Flow(C)

It is clear that if digraph Flow(C) is acyclic then C is an acyclic discrete vector field.
In order to make C acyclic, we will choose appropriate 1-simplices {[ai

li
, bi

ki
]}p+7

i=p+1.

4. Proof of Theorem 1.3

Let p1, p2 ≥ 7 be two distinct primes and n1 = 3 · 5 · p1 and n2 = 3 · 5 · p2. We
consider subcomplexes St(p1 + 1, . . . , p1 + 7) and St(p2 + 1, . . . , p2 + 7) of K∅ for n1
and n2. The subcomplex St(p1 + 1, . . . , p1 + 7) consists of facets

{F(dp1−i) (mod n1)}d=8,15, i=1,7,

while St(p2 + 1, . . . , p2 + 7) consists of facets
{F(dp2−i) (mod n2)}d=8,15, i=1,7.



320 A. KOSTIC

It turns out that for certain primes p1 and p2, complexes St(p1 + 1, . . . , p1 + 7) and
St(p2 + 1, . . . , p2 + 7) are isomorphic. Namely, when p1 ≡ p2 (mod 15), we can define
the map π : St(p1 + 1, . . . , p1 + 7) → St(p2 + 1, . . . , p2 + 7) such that

p1 + k
π7→ p2 + k, for k ∈ {1, . . . , 7},

and π fixes every other vertex. Note that dp1 − i ≡15 dp2 − i when p1 ≡15 p2 for all
i ∈ {1, . . . , 7}, d ∈ {8, . . . , 15}. Additionally, dp1 − i ≡p1 p1 − i and dp2 − i ≡p2 p2 − i.
As π(p1 − i + 8) = p2 − i + 8, we can conclude that

π(F(dp1−i) (mod n1)) = F(dp2−i) (mod n2).

Therefore, π is an isomorphism of the complexes.
If p is a prime number, then potential reminders modulo 15 are 1, 2, 4, 7, 8, 11, 13

and 14. According to the above, for a fixed reminder r modulo 15, we do not have to
examine complexes St(p + 1, . . . , p + 7) for all primes p ≡ r (mod 15), it is enough to
examine just for one of them.

Proof of Theorem 1.3. In order to show that K∅ ≃ S1, we will construct an acyclic
discrete vector field on K∅ without critical 2-simplices, with one critical 1-simplex
and one critical 0-simplex. If such discrete vector field exists, by Theorem 2.1, K∅
is homotopy equivalent to a CW complex with exactly one 1-cell and one 0-cell.
According to Theorem 1.1, H1(K∅) = Z. Therefore, K∅ is homotopy equivalent to S1.

Similarly, to show that K{j} ≃ S ∪fj
B2 we will construct an acyclic discrete vector

field on K{j} with one critical 2-simplex, one critical 1-simplex and one critical 0-
simplex. Then, by Theorem 2.1, K{j} is homotopy equivalent to a CW complex
with exactly one 2-cell, one 1-cell and one 0-cell. Consequently, as π1(K{j}) has a
presentation where the generators are the 1-cells and the relations come from the
2-cells,

π1(K{j}) = ⟨g | gd = 1⟩,

where d is the degree of the attaching map from the boundary of 2-cell into the 1-cell.
By Theorem 1.1, H1(K{j}) = Z/cjZ. As H1(K{j}) is the abelianization of π1(K{j}),
it follows that d = cj. Finally, the complex K{j} is homotopy equivalent to S ∪fj

B2,
where deg(fj) = cj.

Note that if V is an acyclic discrete vector field on K∅ with one critical 1-simplex,
one critical 0-simplex and without critical 2-simplices, then V is an acyclic discrete
vector field on K{j} with one critical 2-simplex, one critical 1-simplex and one critical
0-simplex. The complex K{j} is obtained by adding the facets Fj (mod n) to the complex
K∅, so the critical 2-simplex with respect to V is facet Fj (mod n).

Now, we divide analysis in several cases, depending on the remainder of the prime
p modulo 15. We will focus on finding an acyclic discrete vector field on K∅ without
critical 2-simplices, one critical 1-simplex and one critical 0-simplex for each case.
For each case we will find an acyclic vector field C on St(p + 1, . . . , p + 7), hence, by
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Lemma 3.1,

V =
( p⋃

i=8
Si

)
∪ C,

is an acyclic discrete vector field on K∅. For such defined discrete vector field V on
K∅ it follows that

C(K∅, V ) = (Lk(8, . . . , p) \ St(p + 1, . . . , p + 7)) ∪ C(St(p + 1, . . . , p + 7), C).

Case 1: p ≡ 1 (mod 15).
The subcomplex St(p + 1, . . . , p + 7) consists of the following 2-simplices:

[1, 4, p + 1] , [2, 5, p + 2] , [0, 6, p + 3] , [1, 7, p + 4] , [2, 3, p + 5] , [0, 4, p + 6] , [1, 5, p + 7] ,
[2, 5, p + 1] , [0, 6, p + 2] , [1, 7, p + 3] , [2, 3, p + 4] , [0, 4, p + 5] , [1, 5, p + 6] , [2, 6, p + 7] ,
[0, 6, p + 1] , [1, 7, p + 2] , [2, 3, p + 3] , [0, 4, p + 4] , [1, 5, p + 5] , [2, 6, p + 6] , [0, 7, p + 7] ,
[1, 7, p + 1] , [2, 3, p + 2] , [0, 4, p + 3] , [1, 5, p + 4] , [2, 6, p + 5] , [0, 7, p + 6] , [1, 3, p + 7] ,
[2, 3, p + 1] , [0, 4, p + 2] , [1, 5, p + 3] , [2, 6, p + 4] , [0, 7, p + 5] , [1, 3, p + 6] , [2, 4, p + 7] ,
[0, 4, p + 1] , [1, 5, p + 2] , [2, 6, p + 3] , [0, 7, p + 4] , [1, 3, p + 5] , [2, 4, p + 6] , [0, 5, p + 7] ,
[1, 5, p + 1] , [2, 6, p + 2] , [0, 7, p + 3] , [1, 3, p + 4] , [2, 4, p + 5] , [0, 5, p + 6] , [1, 6, p + 7] ,
[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .

We define discrete vector field C on St(p + 1, . . . , p + 7) in the following way:

C =Vp+1([1, 4]) ∪ Vp+2([2, 5]) ∪ Vp+3([0, 6]) ∪ Vp+4([1, 7])
∪ Vp+5([0, 5]) ∪ Vp+6([1, 6]) ∪ Vp+7([2, 7])
∪ {{[1], [1, 3]}, {[2], [2, 4]}, {[3], [2, 3]}, {[4], [0, 4]}, {[5], [1, 5]}, {[6], [2, 6]},

{[7], [0, 7]}}.

Discrete vector field C is well-defined (see Figure 7). Additionally, Figure 7 shows
that there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices.
Graph Flow(C) is acyclic (see Figure 8), thus, there are no non-trivial closed C-paths
which consist of 2-simplices and 1-simplices as well. Consequently, C is an acyclic
discrete vector field on St(p + 1, . . . , p + 7).

Note that the only critical simplex in St(p + 1, . . . , p + 7) with respect to C is [0],
i.e., C(St(p + 1, . . . , p + 7), C) = {[0]}. Additionally, it follows that

K3,5 \ St(p + 1, . . . , p + 7) = {[0, 3]}.

On the other hand, [0, 3] ∈ K3,5 and

[0, 3] ∈ F15p (mod n) ⊂ St(8).

Consequently,
[0, 3] ∈ Lk(8) ⊂ Lk(8, . . . , p).

Since Lk(8, . . . , p) ⊂ K3,5, we conclude that

Lk(8, . . . , p) \ St(p + 1, . . . , p + 7) = {[0, 3]}.
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Finally,
C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) ∪ {[0, 3]} = {[0], [0, 3]},

so V is an acyclic discrete vector field on K∅ without critical 2-simplices, with one
critical 1-simplex and one critical 0-simplex.
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Figure 7. Gradient vector field C

St(p + 1) St(p + 2) St(p + 3) St(p + 4) St(p + 5) St(p + 6) St(p + 7)

[1, 4] [2, 5] [0, 6] [1, 7] [0, 5] [1, 6] [2, 7]

Figure 8. Digraph Flow(C)

Case 2: p ≡ 2 (mod 15).
Again, we look for an acyclic discrete vector field on St(p+1, . . . , p+7) such that the

number of critical simplices are as small as possible. The subcomplex St(p+1, . . . , p+7)
consists of facets:

[0, 7, p + 1] , [1, 3, p + 2] , [2, 4, p + 3] , [0, 5, p + 4] , [1, 6, p + 5] , [2, 7, p + 6] , [0, 3, p + 7] ,
[2, 4, p + 1] , [0, 5, p + 2] , [1, 6, p + 3] , [2, 7, p + 4] , [0, 3, p + 5] , [1, 4, p + 6] , [2, 5, p + 7] ,
[1, 6, p + 1] , [2, 7, p + 2] , [0, 3, p + 3] , [1, 4, p + 4] , [2, 5, p + 5] , [0, 6, p + 6] , [1, 7, p + 7] ,
[0, 3, p + 1] , [1, 4, p + 2] , [2, 5, p + 3] , [0, 6, p + 4] , [1, 7, p + 5] , [2, 3, p + 6] , [0, 4, p + 7] ,
[2, 5, p + 1] , [0, 6, p + 2] , [1, 7, p + 3] , [2, 3, p + 4] , [0, 4, p + 5] , [1, 5, p + 6] , [2, 6, p + 7] ,
[1, 7, p + 1] , [2, 3, p + 2] , [0, 4, p + 3] , [1, 5, p + 4] , [2, 6, p + 5] , [0, 7, p + 6] , [1, 3, p + 7] ,
[0, 4, p + 1] , [1, 5, p + 2] , [2, 6, p + 3] , [0, 7, p + 4] , [1, 3, p + 5] , [2, 4, p + 6] , [0, 5, p + 7] ,
[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .
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Consider a discrete vector field
C =Vp+1([0, 7]) ∪ Vp+2([2, 3]) ∪ Vp+3([0, 4]) ∪ Vp+4([1, 5])

∪ Vp+5([2, 5]) ∪ Vp+6([0, 6]) ∪ Vp+7([1, 7])
∪ {{[0], [0, 3]}, {[5], [0, 5]}, {[3], [1, 3]}, {[4], [1, 4]}, {[1], [1, 6]}, {[6], [2, 6]},

{[7], [2, 7]}}
on St(p + 1, . . . , p + 7). This discrete vector field is well-defined and acyclic. Namely,
there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices (see
Figure 9) and graph Flow(C) is acyclic (see Figure 10).

It follows that C(St(p + 1, . . . , p + 7), C) = {[2], [2, 4]}. Additionally,
K3,5 ⊂ St(p + 1, . . . , p + 7).

As Lk(8, . . . , p) ⊂ K3,5, we can finally conclude that
C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) = {[2], [2, 4]}.
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Figure 9. Gradient vector field C

St(p + 4) St(p + 3) St(p + 2) St(p + 1) St(p + 7) St(p + 6) St(p + 5)

[1, 5] [0, 4] [2, 3] [0, 7] [1, 7] [0, 6] [2, 5]

Figure 10. Digraph Flow(C)

Case 3: p ≡ 13 (mod 15).
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The subcomplex St(p + 1, . . . , p + 7) consists of the following 2-simplices:
[1, 5, p + 1] , [2, 6, p + 2] , [0, 7, p + 3] , [1, 3, p + 4] , [2, 4, p + 5] , [0, 5, p + 6] , [1, 6, p + 7] ,
[2, 3, p + 1] , [0, 4, p + 2] , [1, 5, p + 3] , [2, 6, p + 4] , [0, 7, p + 5] , [1, 3, p + 6] , [2, 4, p + 7] ,
[0, 6, p + 1] , [1, 7, p + 2] , [2, 3, p + 3] , [0, 4, p + 4] , [1, 5, p + 5] , [2, 6, p + 6] , [0, 7, p + 7] ,
[1, 4, p + 1] , [2, 5, p + 2] , [0, 6, p + 3] , [1, 7, p + 4] , [2, 3, p + 5] , [0, 4, p + 6] , [1, 5, p + 7] ,
[2, 7, p + 1] , [0, 3, p + 2] , [1, 4, p + 3] , [2, 5, p + 4] , [0, 6, p + 5] , [1, 7, p + 6] , [2, 3, p + 7] ,
[0, 5, p + 1] , [1, 6, p + 2] , [2, 7, p + 3] , [0, 3, p + 4] , [1, 4, p + 5] , [2, 5, p + 6] , [0, 6, p + 7] ,
[1, 3, p + 1] , [2, 4, p + 2] , [0, 5, p + 3] , [1, 6, p + 4] , [2, 7, p + 5] , [0, 3, p + 6] , [1, 4, p + 7] ,
[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .

Let

C =Vp+1([0, 6]) ∪ Vp+2([1, 7]) ∪ Vp+3([2, 3]) ∪ Vp+4([0, 4])
∪ Vp+5([1, 4]) ∪ Vp+6([2, 5]) ∪ Vp+7([1, 6])
∪ {{[5], [0, 5]}, {[7], [0, 7]}, {[3], [1, 3]}, {[1], [1, 5]}, {[4], [2, 4]}, {[6], [2, 6]},

{[2], [2, 7]}}

be a discrete vector field on St(p+1, . . . , p+7). As each simplex is in at most one pair,
this discrete vector field is well-defined. Additionally, C is acyclic on St(p+1, . . . , p+7)
and such that

C(St(p + 1, . . . , p + 7), C) = {[0], [0, 3]}.

Namely, corresponding digraph Flow(C) is acyclic (see Figure 12), so there are no non-
trivial closed C-paths which consist of 1-simplices and 2-simplices. Figure 11 shows
that there are no non-trivial closed C-paths consisting of 0-simplices and 1-simplices
as well.

Like in the previous case, K3,5 ⊂ St(p + 1, . . . , p + 7), and consequently,

Lk(8, . . . , p) ⊂ St(p + 1, . . . , p + 7),

because Lk(8, . . . , p) ⊂ K3,5. According to this, all critical simplices in K∅ with
recpect to V are in St(p + 1, . . . , p + 7). Hence, we conclude

C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) = {[0], [0, 3]}.

Case 4: p ≡ 14 (mod 15).

The subcomplex St(p + 1, . . . , p + 7) is generated by facets:
[0, 3, p + 1] , [1, 4, p + 2] , [2, 5, p + 3] , [0, 6, p + 4] , [1, 7, p + 5] , [2, 3, p + 6] , [0, 4, p + 7] ,
[2, 7, p + 1] , [0, 3, p + 2] , [1, 4, p + 3] , [2, 5, p + 4] , [0, 6, p + 5] , [1, 7, p + 6] , [2, 3, p + 7] ,
[1, 6, p + 1] , [2, 7, p + 2] , [0, 3, p + 3] , [1, 4, p + 4] , [2, 5, p + 5] , [0, 6, p + 6] , [1, 7, p + 7] ,
[0, 5, p + 1] , [1, 6, p + 2] , [2, 7, p + 3] , [0, 3, p + 4] , [1, 4, p + 5] , [2, 5, p + 6] , [0, 6, p + 7] ,
[2, 4, p + 1] , [0, 5, p + 2] , [1, 6, p + 3] , [2, 7, p + 4] , [0, 3, p + 5] , [1, 4, p + 6] , [2, 5, p + 7] ,
[1, 3, p + 1] , [2, 4, p + 2] , [0, 5, p + 3] , [1, 6, p + 4] , [2, 7, p + 5] , [0, 3, p + 6] , [1, 4, p + 7] ,
[0, 7, p + 1] , [1, 3, p + 2] , [2, 4, p + 3] , [0, 5, p + 4] , [1, 6, p + 5] , [2, 7, p + 6] , [0, 3, p + 7] ,
[2, 6, p + 1] , [0, 7, p + 2] , [1, 3, p + 3] , [2, 4, p + 4] , [0, 5, p + 5] , [1, 6, p + 6] , [2, 7, p + 7] .
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Figure 11. Gradient vector field C

St(p + 6) St(p + 2) St(p + 4) St(p + 7) St(p + 5) St(p + 1) St(p + 3)
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Figure 12. Digraph Flow(C)

Let us define discrete vector field on St(p + 1, . . . , p + 7) as it follows
C =Vp+1([2, 6] ∪ Vp+2([0, 7]) ∪ Vp+3([1, 3]) ∪ Vp+4([2, 4])

∪ Vp+5([1, 7]) ∪ Vp+6([2, 3]) ∪ Vp+7([0, 4])
∪ {{[3], [0, 3]}, {[0], [0, 5]}, {[6], [0, 6]}, {[4], [1, 4]}, {[1], [1, 6]},

{[2], [2, 5]}, {[7], [2, 7]}}.

Discrete vector field C is well-defined (see Figure 13). Figure 14 shows that digraph
Flow(C) is acyclic. In addition, Figure 13 shows that there are no non-trivial closed
C-paths consisting of 0-simplices and 1-simplices. Therefore, C is acyclic on St(p +
1, . . . , p + 7) and C(St(p + 1, . . . , p + 7), V ) = {[5]}.

It follows that
K3,5 \ St(p + 1, . . . , p + 7) = {[1, 5]}.

As [1, 5] ∈ F8p (mod n) ⊂ St(8) we conclude that [1, 5] ∈ St(8) ∩ K3,5 = Lk(8). Hence,
Lk(8, . . . , p) \ St(p + 1, . . . , p + 7) = [1, 5].

From the previous considerations, we conclude
C(K∅, V ) = C(St(p + 1, . . . , p + 7), C) ∪ {[1, 5]} = {[5], [1, 5]]}.
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Figure 13. Gradient vector field C
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Figure 14. Digraph Flow(C)

□

5. Proof of Theorem 1.4

In order to prove Theorem 1.4, we will need next theorem which points out an
interesting feature of the complex K∅. Namely, under some conditions, complex K∅
is completely determined by its subcomplex St(p + 1, . . . , p + 7).

Theorem 5.1. Let n = 3 · 5 · p, where p ≥ 7 is a prime and p ≡ k (mod 15).
If k ∈ {2, 4, 7, 8, 11, 13}, then complex K∅ is homotopy equivalent to its subcomplex
St(p + 1, . . . , p + 7).

Proof. Obviously, K∅ = St(p + 1, . . . , p + 7) when p = 7, therefore we consider p > 7.
Let C be an acyclic discrete vector field on St(p + 1, . . . , p + 7). Then, by Lemma 3.1,
V = (⋃p

i=8 Si) ∪ C is an acyclic vector field on K∅. In order to prove this theorem, we
show that there are no critical simplices in K∅ \ St(p + 1, . . . , p + 7) with respect to
V and St(p + 1, . . . , p + 7) ̸→ K∅ \ St(p + 1, . . . , p + 7). Then the theorem follows by
Theorem 2.3.
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Recall that Si is an acyclic vector field on St(i) for i ∈ {8, . . . , p} (see Figure 2).
Additionally, all 1-simplices from the set Lk(i), i ∈ {8, . . . , p}, are unmatched with
respect to Si. Consequently,

St(p + 1, . . . , p + 7) ̸→ K∅ \ St(p + 1, . . . , p + 7).
It follows that α ∈ K∅ \ St(p + 1, . . . , p + 7) is critical with respect to V , when
α ∈ Lk(i)\St(p+1, . . . , p+7) for some i ∈ {8, . . . , p}. However, St(p+1, . . . , p+7) is
built of facets Fj (mod 15p), where j ∈ {dp − i}d=8,15, i=1,7. There are 15 numbers which
are distinct modulo 15 between numbers {dp−i}j=8,15, i=1,7 when k ∈ {2, 4, 7, 8, 11, 13}
(see Table 1). Thus, it follows that

K3,5 ⊂ St(p + 1, . . . , p + 7).

Table 1

k 15 numbers among {dp − i}j=8,15, i=1,7 which are distinct modulo 15

2 8p−1, 9p−2, 9p−1, 10p−2, 10p−1, 11p−2, 11p−1, 12p−2,12p−1,
8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3, 8p − 2

4 8p − 2, 8p − 1, 9p − 4, 9p − 3, 9p − 2, 9p − 1, 10p − 4, 10p − 3,
10p − 2, 10p − 1, 8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3

7 9p − 3, 9p − 2, 9p − 1, 10p − 7, 8p − 7, 8p − 6, 8p − 5, 8p − 4, 8p − 3,
8p − 2, 8p − 1, 9p − 7, 9p − 6, 9p − 5, 9p − 4

8 8p − 3, 8p − 2, 8p − 1, 10p − 1, 9p − 7, 9p − 6, 9p − 5, 9p − 4, 9p − 3,
9p − 2, 9p − 1, 8p − 7, 8p − 6, 8p − 5, 8p − 4

11 10p−5, 10p−4, 9p−7, 9p−6, 9p−5, 9p−4, 8p−7, 8p−6, 8p−5,
8p − 4, 8p − 3, 8p − 2, 8p − 1, 10p − 7, 10p − 6

13 12p − 6, 11p − 7, 11p − 6, 10p − 7, 10p − 6, 9p − 7, 9p − 6, 8p − 7,
8p − 6, 8p − 5, 8p − 4, 8p − 3, 8p − 2, 8p − 1, 12p − 7

As Lk(i) ⊂ K3,5, we can conclude that
Lk(i) ⊆ St(p + 1, . . . , p + 7),

for all i ∈ {8, . . . , p}. Therefore, there are no simplices in K∅ \ St(p + 1, . . . , p + 7)
which are critical with respect to V . □

Remark 5.1. It is not always true that K3,5 ⊂ St(p + 1, . . . , p + 7). Namely, if
p ≡ 1 (mod 15) then [0, 3] ∈ F15p (mod n) ⊂ St(8) and [0, 3] ̸∈ St(p + 1, . . . , p + 7)
(see Case 1 in the proof of Theorem 1.3). Therefore,

[0, 3] ∈ Lk(8) \ St(p + 1, . . . , p + 7) ⊆ K3,5 \ St(p + 1, . . . , p + 7).
Similarly, when p ≡ 14 (mod 15), it follows that [1, 5] ∈ F8p (mod n) ⊂ St(8). On the
other hand, [1, 5] ̸∈ St(p + 1, . . . , p + 7) (see Case 4 in the proof of Theorem 1.3), so
it follows that

[1, 5] ∈ Lk(8) \ St(p + 1, . . . , p + 7) ⊆ K3,5 \ St(p + 1, . . . , p + 7).
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We are now prove Theorem 1.4.
Proof of Theorem 1.4. According to the above theorem and consideration from the

beginning of the previous section, it is enough to examine the smallest possible cases:
p = 19, p = 7, p = 23 and p = 11.

In [8], it was calculated that π1(K∅) = ⟨a, b | ab2a−1b−2a−1bab−1a−1b−1⟩ when p = 7.
Further, it was proved that π1(K∅) is not commutative, and consequently, K∅ ̸≃ S1 .
Here, we will use a similar idea for the remaining three cases.

Using Algorithm 1 from [8] for computing the fundamental group, for the listed
maximal spanning trees, we obtain the following results.

p maximal tree π1(K∅)

19

{[0,3], [0,4], [0,5], [0,6], [0,7], [0,8], [0,9],
[0,10], [0,11], [0,12], [0,13], [0,14], [0,15],
[0,16], [0,17], [0,18], [0,19], [0,20], [0,21],
[0,22], [0,23], [0,24], [0,25], [0,26], [1,3],
[2,3]}

⟨a, b | a−1b−1a−2b−1ab = 1⟩

23

{[2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9],
[2,10], [2,11], [2,12], [2,13], [2,14], [2,15],
[2,16], [2,17], [2,18], [2,19], [2,20], [2,21],
[2,22], [2,23], [2,24], [2,25], [2,26], [2,27],
[2,28], [2,29], [2,30], [0,3], [1,3]}

⟨a, b | b−1a−1b2ab−1aba−1b−1a = 1⟩

11
{[0,3], [0,4], [0,5], [0,6], [0,7], [0,8], [0,9],
[0,10], [0,11], [0,12], [0,13], [0,14], [0,15],
[0,16], [0,17], [0,18], [1,3], [2,3]}

⟨a, b | a−1bab−2 = 1⟩

Note that ⟨a, b | a−1b−1a−2b−1ab = 1⟩ and ⟨a, b | a−1bab−2 = 1⟩ are distinct pre-
sentations of the same group. Namely, starting with ⟨a, b | a−1b−1a−2b−1ab = 1⟩ and
letting x = a−1b−1a−1, y = a−1 we obtain new presentation ⟨x, y | x2y−1x−1y = 1⟩ for
the same group. This group is Baumslag-Solitar group BS(1, 2) (for more details see
[2]). The group BS(1, 2) is not commutative. Namely, we can define an epimorphism
f : BS(1, 2) → S3, such that f(x) = (123), f(y) = (23). Since permutation group
S3 is not commutative, BS(1, 2) cannot be commutative. Consequently, π1(K∅) ̸≃ S1

when p = 11 and p = 19.
Now, we consider π1(K∅) when p = 23. Letting x = b−1a−1, relation

b−1a−1b2ab−1aba−1b−1a = 1
transforms into relation xb2x−1b−2x−1bxb−1x−1b−1 = 1. Thus, π1(K∅) is the same
group for p = 7 and p = 23. Therefore, K∅ ̸≃ S1 when p = 23. □
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