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GROWTH OF SOLUTIONS OF A CLASS OF LINEAR
DIFFERENTIAL EQUATIONS NEAR A SINGULAR POINT

SAMIR CHERIEF1 AND SAADA HAMOUDA1

Abstract. In this paper, we investigate the growth of solutions of the differential
equation

f ′′ + A (z) exp
{

a

(z0 − z)n

}
f ′ + B (z) exp

{
b

(z0 − z)n

}
f = 0,

where A (z), B (z) are analytic functions in the closed complex plane except at z0
and a, b are complex constants such that ab ̸= 0 and a = cb, c > 1. Another case has
been studied for higher order linear differential equations with analytic coefficients
having the same order near a finite singular point.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna value distribution the-
ory of meromorphic function on the complex plane C and in the unit disc D =
{z ∈ C : |z| < 1} (see [11, 15, 20]). The importance of this theory has inspired many
authors to find modifications and generalizations to different domains. Extensions of
Nevanlinna Theory to annuli have been made by [2,12–14,16]. Recently in [6,10], Fet-
touch and Hamouda investigated the growth of solutions of certain linear differential
equations near a finite singular point. In this paper, we continue this investigation
near a finite singular point to study other types of linear differential equations.

First, we recall the appropriate definitions. Set C = C ∪ {∞} and suppose that
f (z) is meromorphic in C \ {z0}, where z0 ∈ C. Define the counting function near z0
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by

(1.1) Nz0 (r, f) = −
r∫

∞

n (t, f) − n (∞, f)
t

dt − n (∞, f) log r,

where n (t, f) counts the number of poles of f (z) in the region {z ∈ C : t ≤ |z − z0|}∪
{∞} each pole according to its multiplicity and the proximity function by

(1.2) mz0 (r, f) = 1
2π

2π∫
0

ln+
∣∣∣f (z0 − reiφ

)∣∣∣ dφ.

The characteristic function of f is defined in the usual manner by
(1.3) Tz0 (r, f) = mz0 (r, f) + Nz0 (r, f) .

In addition, the order of meromorphic function f (z) near z0 is defined by

(1.4) σT (f, z0) = lim sup
r→0

log+ Tz0 (r, f)
− log r

.

For an analytic function f (z) in C \ {z0}, we have also the definition

(1.5) σM (f, z0) = lim sup
r→0

log+ log+ Mz0 (r, f)
− log r

,

where Mz0 (r, f) = max {|f (z)| : |z − z0| = r} .
If f (z) is meromorphic in C \ {z0} of finite order 0 < σT (f, z0) = σ < ∞, then we

can define the type of f as the following:
τT (f, z0) = lim sup

r→0
rσTz0 (r, f) .

If f (z) is analytic in C \ {z0} of finite order 0 < σM (f, z0) = σ < ∞, we have also
another definition of the type of f as the following:

τM (f, z0) = lim sup
r→0

rσ log+ Mz0 (r, f) .

In the usual manner, we define the hyper order near z0 as follows:

σ2,T (f, z0) =lim sup
r→0

log+ log+ Tz0 (r, f)
− log r

,(1.6)

σ2,M (f, z0) =lim sup
r→0

log+ log+ log+ Mz0 (r, f)
− log r

.(1.7)

Remark 1.1. It is shown in [6] that if f is a non-constant meromorphic function in
C \ {z0} and g (w) = f

(
z0 − 1

w

)
then g (w) is meromorphic in C and we have

T (R, g) = Tz0

( 1
R

, f
)

,

and so σ (f, z0) = σ (g) . Also, if f (z) is analytic in C \ {z0} , then g (w) is entire and
thus σT (f, z0) = σM (f, z0) and σ2,T (f, z0) = σ2,M (f, z0) .
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So, we can use the notation σ (f, z0) without any ambiguity. But concerning the
type, as in the complex plane, τT (f, z0) does not equal to τM (f, z0) . For example, for
the function f (z) = exp

{
1

z0−z

}
, we have Mz0 (r, f) = exp

{
1
r

}
, then σM (f, z0) = 1

and τM (f, z0) = 1. On the other side, we have

Tz0 (r, f) = mz0 (r, f) = 1
2π

2π∫
0

ln+
∣∣∣f (z0 − reiφ

)∣∣∣ dφ = 1
πr

,

so σT (f, z0) = 1 and τT (f, z0) = 1
π
.

Definition 1.1. The linear measure of a set E ⊂ (0, ∞) is defined as
∫∞

0 χE (t) dt and
the logarithmic measure of E is defined by

∫∞
0

χE(t)
t

dt, where χE (t) is the characteristic
function of the set E.

The linear differential equation
(1.8) f ′′ + A (z) eazf ′ + B (z) ebzf = 0,

where A (z) and B (z) are entire functions, is investigated by many authors; see for
example [1, 3, 4, 7]. In [3], Chen proved that if ab ̸= 0 and arg a ̸= arg b or a = cb,
0 < c < 1 or c > 1, then every solution f (z) ̸≡ 0 of (1.8) is of infinite order. In 2012,
Hamouda proved results similar to (1.8) in the unit disc concerning the differential
equation

(1.9) f ′′ + A (z) e
a

(z0−z)µ f ′ + B (z) e
b

(z0−z)µ f = 0,

where µ > 0 and arg a ≠ arg b or a = cb, 0 < c < 1, see [8]. Recently, Fettouch and
Hamouda proved the following two results.

Theorem 1.1 ([6]). Let z0, a, b be complex constants such that arg a ̸= arg b or a = cb
(0 < c < 1) and n be a positive integer. Let A (z) , B (z) ̸≡ 0 be analytic functions
in C \ {z0} with max {σ (A, z0) , σ (B, z0)} < n. Then every solution f (z) ̸≡ 0 of the
differential equation

f ′′ + A (z) exp
{

a

(z0 − z)n

}
f ′ + B (z) exp

{
b

(z0 − z)n

}
f = 0

satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

Theorem 1.2 ([6]). Let A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) be analytic functions in
C\{z0} satisfying max {σ (Aj, z0) : j ̸= 0} < σ (A0, z0) . Then every solution f (z) ̸≡ 0
of the differential equation

(1.10) f (k) + Ak−1 (z) f (k−1) + · · · + A1 (z) f ′ + A0 (z) f = 0
satisfies σ (f, z0) = ∞, with σ2 (f, z0) = σ (A0, z0) .

In this paper, we will investigate the case c > 1 to complete the remaining case in
Theorem 1.1, in the following two results.
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Theorem 1.3. Let n ∈ N \ {0} , A (z) ̸≡ 0, B (z) ̸≡ 0 be analytic functions in
C \ {z0} such that max {σ (A, z0) , σ (B, z0)} < n. Let a, b be complex constants such
that ab ̸= 0 and a = cb, c > 1. Then every solution f (z) ̸≡ 0 of the differential
equation

(1.11) f ′′ + A (z) exp
{

a

(z0 − z)n

}
f ′ + B (z) exp

{
b

(z0 − z)n

}
f = 0,

that is analytic in C \ {z0} satisfies σ (f, z0) = ∞.

Theorem 1.4. Let n ∈ N \ {0} , A (z) ̸≡ 0, B (z) ̸≡ 0 be polynomials. Let a, b be
complex constants such that ab ̸= 0 and a = cb, c > 1. Then every solution f (z) ̸≡ 0
of the differential equation

(1.12) f ′′ + A
( 1

z0 − z

)
exp

{
a

(z0 − z)n

}
f ′ + B

( 1
z0 − z

)
exp

{
b

(z0 − z)n

}
f = 0,

that is analytic in C \ {z0} satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

In the following result, we will improve Theorem 1.2 by studying the case when
max {σ (Aj, z0) : j ̸= 0} ≤ σ (A0, z0) .

Theorem 1.5. Let A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) be analytic functions in C \ {z0}
satisfying the following conditions

i) 0 < σ (Aj, z0) ≤ σ (A0, z0) < ∞, j = 1, . . . , k − 1;
ii) max {τM (Aj, z0) : σ (Aj, z0) = σ (A0, z0)} < τM (A0, z0).

Then every solution f (z) ̸≡ 0 of (1.10) that is analytic in C\ {z0} satisfies σ (f, z0) =
∞, with σ2 (f, z0) = σ (A0, z0) .

Remark 1.2. If we replace τM by τT in the condition ii) in Theorem 1.5 we get the
same result.

We can find the analogs of Theorem 1.5 in the complex plane and in the unit disc
in ([18, Theorem 1], [9, Theorem 3]).

We signal here that when the coefficients A0 (z) ̸≡ 0, A1 (z) , . . . , Ak−1 (z) are
analytic functions in C \ {z0} , it may happen that the solution f of (1.10) is not
analytic in C \ {z0} . For example, f (z) = z is a solution of the differential equation

(1.13) f ′′ − exp
{1

z

}
f ′ + 1

z
exp

{1
z

}
f = 0,

where the coefficients of (1.13) are analytic in C \ {0} , but the solution f (z) = z is
not analytic in C \ {0} . That’s why we wrote in our results (every solution f (z) ̸≡ 0
of (1.10), that is analytic in C \ {z0} , . . . ) So, it is a priori assumed that f is analytic
in Theorem 1.1 and Theorem 1.2. It is similar to the case when the coefficients
are meromorphic in C, it is well known that the solutions of (1.10) may be non
meromorphic in C.
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2. Preliminary Lemmas

To prove these results we need the following lemmas.

Lemma 2.1 ([6]). Let A (z) ̸≡ 0 be analytic function in C \ {z0}, with σ (A, z0) <

n, n is a positive integer. Set g (z) = A (z) exp
{

a
(z0−z)n

}
, where a = α + iβ ̸=

0 is complex number, z0 − z = reiφ, δa (φ) = α cos (nφ) + β sin (nφ) and H =
{φ ∈ [0, 2π) : δa (φ) = 0} (obviously, H is of linear measure zero). Then for any given
ε > 0 and for any φ ∈ [0, 2π) \H, there exists r0 > 0 such that for 0 < r < r0, we
have

(i) if δa (φ) > 0, then

(2.1) exp
{

(1 − ε) δa (φ) 1
rn

}
≤ |g (z)| ≤ exp

{
(1 + ε) δa (φ) 1

rn

}
;

(ii) if δa (φ) < 0, then

(2.2) exp
{

(1 + ε) δa (φ) 1
rn

}
≤ |g (z)| ≤ exp

{
(1 − ε) δa (φ) 1

rn

}
.

Lemma 2.2 ([6]). Let f be a non constant meromorphic function in C \ {z0} . Let
α > 0, ε > 0 be given real constants and j ∈ N. Then

i) there exists a set E1 ⊂ (0, 1) that has finite logarithmic measure and a constant
A > 0 that depends on α and j such that for all r = |z − z0| satisfying r ∈ (0, 1) \ E1
we have

(2.3)
∣∣∣∣∣f (j) (z)

f (z)

∣∣∣∣∣ ≤ A
[ 1
r2 Tz0 (αr, f) log Tz0 (αr, f)

]j

;

ii) there exists a set E2 ⊂ [0, 2π) that has a linear measure zero and a constant
A > 0 that depends on α and j such that for all θ ∈ [0, 2π)\E2 there exists a constant
r0 = r0 (θ) > 0 such that (2.3) holds for all z satisfying arg (z − z0) ∈ [0, 2π) \ E2 and
r = |z − z0| < r0.

Lemma 2.3 ([10]). Let f be a non-constant meromorphic function in C\{z0} of finite
order σ (f, z0) < ∞. Let ε > 0 be a given constant. Then there exists a set E1 ⊂ (0, 1)
that has finite logarithmic measure such that for all r = |z − z0| ∈ (0, 1) \E1 we have

(2.4)
∣∣∣∣∣f (k) (z)

f (z)

∣∣∣∣∣ ≤ 1
rk(σ+1)+ε

, k ∈ N.

Lemma 2.4. Let f (z) be a non-constant meromorphic function in C \ {z0} . Then
σ (f ′, z0) = σ (f, z0) .

Proof. By Remark 1.1, g (w) = f
(
z0 − 1

w

)
is meromorphic in C and σ (g) = σ (f, z0) .

It is well known that for a meromorphic function in C we have σ (g′) = σ (g) (see
[17, 19]). We have f ′ (z) = 1

w2 g′ (w). Set h (w) = 1
w2 g′ (w) . Obviously, we have

σ (h) = σ (g′) . In the other hand, by Remark 1.1, we have σ (h) = σ (f ′, z0) . So, we
conclude that σ (f ′, z0) = σ (f, z0) . □
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Lemma 2.5. Let f be a non-constant meromorphic function in C \ {z0} and suppose
that

∣∣∣f (k) (z)
∣∣∣ is unbounded on some ray arg (z0 − z) = θ. Then there exists an infinite

sequence of points zm = z0 −rmeiθ, m = 1, 2, . . . , where rm → 0, such that f (k) (zm) →
∞ and

(2.5)
∣∣∣∣∣f (j) (zm)
f (k) (zm)

∣∣∣∣∣ ≤ M, M > 0, j = 0, 1, . . . , k − 1.

Proof. Let M
(
r, θ, f (k)

)
denotes the maximum modulus of f (k) on the line segment[

z0 − r1e
iθ, z0 − reiθ

]
. Clearly, we may construct a sequence of points zm = z0 − rmeiθ,

m ≥ 1, rm → 0, such that M
(
r, θ, f (k)

)
= f (k) (zm) → ∞. For each m, by (k − j)-fold

iteration integration along the line segment [z1, zm] we have

f (j) (zm) =f (j) (z1) + f (j+1) (z1) (zm − z1)

+ · · · + 1
(k − j − 1)f (k−1) (z1) (zm − z1)k−j−1 +

zm∫
z1

· · ·
y∫

z1

f (k) (x) dxdy · · · dt,

and by an elementary triangle inequality estimate we obtain∣∣∣f (j) (zm)
∣∣∣ ≤

∣∣∣f (j) (z1)
∣∣∣+ ∣∣∣f (j+1) (z1)

∣∣∣ |zm − z1|(2.6)

+ · · · + 1
(k − j − 1)

∣∣∣f (k−1) (z1)
∣∣∣ |zm − z1|k−j−1

+ 1
(k − j)

∣∣∣f (k) (zm)
∣∣∣ |zm − z1|k−j .

From (2.6) and by taking into account that when m → ∞, f (k) (zm) → ∞, zm → z0,
we obtain ∣∣∣∣∣f (j) (zm)

f (k) (zm)

∣∣∣∣∣ ≤ M, M > 0. □

Lemma 2.6. Let f be a non-constant analytic function in C \ {z0} of finite order
σ (f, z0) = σ > 0 and finite type τM (f, z0) = τ > 0. Then for any given 0 < β < τ
there exists a set F ⊂ (0, 1) of infinite logarithmic measure such that for all r ∈ F we
have

log Mz0 (r, f) >
β

rσ
.

Proof. By the definition of τM (f, z0) , there exists a decreasing sequence {rm} → 0
satisfying m

m+1rm > rm+1 and

lim
m→∞

rσ
m log Mz0 (rm, f) = τ.

Then there exists m0 such that for all m > m0 and for a given ε > 0 we have

(2.7) log Mz0 (rm, f) >
τ − ε

rσ
m

.
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There exists m1 such that for all m > m1 and for a given 0 < ε < τ − β, we have

(2.8)
(

m

m + 1

)σ

>
β

τ − ε
.

By (2.7) and (2.8), for all m > m2 = max {m0, m1} and for any r ∈
[

m
m+1rm, rm

]
, we

have
log Mz0 (r, f) > log Mz0 (rm, f) >

τ − ε

rσ
m

>
τ − ε

rσ

(
m

m + 1

)σ

>
β

rσ
.

Set F =
∞⋃

m=m2

[
m

m+1rm, rm

]
. Then we have

∞∑
m=m2

rm∫
m

m+1 rm

dt

t
=

∑
m>m2

log m + 1
m

= ∞. □

Lemma 2.7. Let f be a non-constant analytic function in C \ {z0} of infinite order
with hyper-order σ2 (f, z0) = σ and let Vz0 (r) be the central index of f (see [10]). Then

(2.9) lim sup
r→0

log+ log+ Vz0 (r)
− log r

= σ.

Proof. Set g (w) = f
(
z0 − 1

w

)
. Then g (w) is entire function of infinite order with the

hyper-order σ2 (g) = σ2 (f, z0) = σ and if V (R) denotes the central index of g, then
Vz0 (r) = V

(
1
r

)
. From [5, Lemma 2], we have

(2.10) lim sup
R→+∞

log+ log+ V (R)
log R

= σ.

Substituting R by 1
r

in (2.10), we get (2.9). □

Lemma 2.8. Let Aj (z), j = 0, . . . , k − 1, be analytic functions in C \ {z0} such that
σ (Aj, z0) ≤ α < ∞. If f is a solution of

(2.11) f (k) + Ak−1 (z) f (k−1) + · · · + A1 (z) f ′ + A0 (z) f = 0,

that is analytic in C \ {z0} , then σ2 (f, z0) ≤ α.

Proof. For any given ε > 0, there exists r0 > 0 such that for 0 < r = |z0 − z| < r0, we
have

(2.12) |Aj (z)| ≤ exp
{ 1

rα+ε

}
.

By the Wiman-Valiron near a finite singular point (see [10]), we have

(2.13) f (j) (zr)
f (zr)

= (1 + o (1))
(

Vz0 (r)
z0 − zr

)j

, j = 0, . . . , k − 1,
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where Vz0 (r) is the central index of f and |f (zr)| = M (r, f) = max
|z0−z|=r

|f (z)| . From
(2.11), we can write

(2.14) − f (k)

f
= Ak−1 (z) f (k−1)

f
+ · · · + A1 (z) f ′

f
+ A0 (z) .

Substituting (2.12) and (2.13) into (2.14), we obtain

(1 + o (1)) (Vz0 (r))k

rk
≤ k exp

{ 1
rα+ε

} (Vz0 (r))k−1

rk−1 (1 + o (1)) ,

and so

(2.15) Vz0 (r) ≤ kr exp
{ 1

rα+ε

}
(1 + o (1)) .

By (2.15), we get
σ2 (f, z0) ≤ α. □

It is easy to prove the following lemma.

Lemma 2.9. Let P (z) = anzn + · · · + a0, with an ̸= 0 be a polynomial and A (z) =
P
(

1
z0−z

)
. Then, for every ε > 0, there exists r0 > 0 such that for all 0 < r =

|z0 − z| ≤ r0, the inequalities

(1 − ε) |an|
rn

≤ |P (z)| ≤ (1 + ε) |an|
rn

hold.

Lemma 2.10. Let f be a non-constant analytic function in C \ {z0} of infinite order
with the hyper-order σ2 (f, z0) = α, and let Vz0 (r) be the central index of f. Let
E ⊂ (0, 1] be a set of finite logarithmic measure. Then, there exists a sequence of
points

{
zm = z0 − rmeiθm

}
, m ≥ 1, such that |f (zm)| = Mz0 (rm, f) , lim

m→∞
θm = θ∗ ∈

[0, 2π) , rm /∈ E, rm → 0 and for any given ε > 0, we have

lim sup
r→0

log+ Vz0 (r)
− log r

= ∞,(2.16)

exp
{ 1

rα−ε

}
≤ Vz0 (r) ≤ exp

{ 1
rα+ε

}
.(2.17)

Proof. Set g (w) = f
(
z0 − 1

w

)
. Then g (w) is entire function of infinite order with the

hyper-order σ2 (g) = σ2 (f, z0) = α and if V (R) denotes the central index of g then
Vz0 (r) = V

(
1
r

)
. From [3, Remark 1] we have

lim sup
R→∞

log+ Vz0 (R)
log R

= ∞,(2.18)

exp
{
Rα−ε

}
≤ V (R) ≤ exp

{
Rα+ε

}
.(2.19)

Substituting R by 1
r

in (2.18) and (2.19), we get (2.16) and (2.17). □
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3. Proof of Theorems

Proof of Theorem 1.3. We assume that σ (f, z0) = σ < ∞, and we prove that is failing.
By Lemma 2.3, for any given ε > 0 there exists a set E ⊂ [0, 2π) that has a linear
measure zero such that for all θ ∈ [0, 2π) \E there exists a constant r0 = r0 (θ) > 0
such that for all z satisfying arg (z − z0) ∈ [0, 2π) \E and r = |z − z0| < r0, we have

(3.1)
∣∣∣∣∣f ′′ (z)
f ′ (z)

∣∣∣∣∣ ≤ 1
rσ+1+ε

.

Set a = α + iβ, z0 − z = reiθ, δ = δa (θ) = α cos (nθ) + β sin (nθ) ,

(3.2) H = {θ ∈ [0, 2π) : δa (θ) = 0} ,

(obviously, H is of linear measure zero). By Lemma 2.1, for any given 0 < ε < 1 and
for any θ ∈ [0, 2π) \E ∪ H, there exists r0 > 0 such that for 0 < r < r0, (2.1) and
(2.2) hold.

Now we take θ ∈ [0, 2π) \E ∪ H (obviously, E ∪ H is of linear measure zero). Then
we have two cases: δa (θ) < 0 or δa (θ) > 0.

Case (i). δa = δ < 0. By a = cb, c > 1, δb (θ) = 1
c
δa (θ) = 1

c
δ. By (1.11), we get

(3.3) 1 ≤
∣∣∣∣∣A (z) exp

{
a

(z0 − z)n

}∣∣∣∣∣ ·
∣∣∣∣∣ f ′

f ′′

∣∣∣∣∣+
∣∣∣∣∣B (z) exp

{
b

(z0 − z)n

}∣∣∣∣∣ ·
∣∣∣∣∣ f

f ′′

∣∣∣∣∣ .
If |f ′′ (z)| is unbounded on the ray arg (z0 − z) = θ, then by Lemma 2.5 there exists
an infinite sequence of points

{
zm = z0 − rmeiθ

}
, m ≥ 1, where rm → 0 such that

f ′′ (zm) → ∞ and

(3.4)
∣∣∣∣∣ f (zm)
f ′′ (zm)

∣∣∣∣∣ ≤ M1,

∣∣∣∣∣ f ′ (zm)
f ′′ (zm)

∣∣∣∣∣ ≤ M2.

Using Lemma 2.1 and (3.4) into (3.3), we get as m → ∞

1 ≤ M1 exp
{

(1 − ε) δ

rn
m

}
+ M2 exp

{
(1 − ε) 1

c

δ

rn
m

}
→ 0,

a contradiction. Hence,

(3.5) |f ′′ (z)| ≤ C1,

holds on arg (z0 − z) = θ, where C1 is a constant. By integration along the line
segment

[
z0 − r1e

iθ, z0 − reiθ
]

, from (3.5) and the equality

f ′ (z) = f ′ (z1) +
z∫

z1

f ′′ (t) dt,

we obtain

(3.6) |f ′ (z)| ≤ C2 + C1 |z − z1| ≤ C3,



196 S. CHERIEF AND S. HAMOUDA

as z → z0. Analogously, by (3.6), we can obtain

(3.7) |f (z)| ≤ C4,

holds on arg (z0 − z) = θ as z → z0.
Case (ii). δ > 0. We have δb (θ) = 1

c
δa (θ) = 1

c
δ > 0. By (1.11), we have

(3.8)
∣∣∣∣∣A (z) exp

{
a

(z0 − zk)n

}∣∣∣∣∣ ≤
∣∣∣∣∣f ′′ (z)
f ′ (z)

∣∣∣∣∣+
∣∣∣∣∣B (z) exp

{
b

(z0 − zk)n

}∣∣∣∣∣ ·
∣∣∣∣∣ f (z)
f ′ (z)

∣∣∣∣∣ .
If |f ′ (z)| is unbounded on the ray arg (z0 − z) = θ, then by Lemma 2.5, there exists
an infinite sequence of points

{
zm = z0 − rmeiθ

}
, m ≥ 1, where rm → 0 such that

f ′ (zm) → ∞ and

(3.9)
∣∣∣∣∣ f (zm)
f ′ (zm)

∣∣∣∣∣ ≤ M3.

Substituting (3.1) and (3.9) into (3.8) and by Lemma 2.1, we obtain

exp
{

(1 − ε) δ

rn
m

}
≤ 1

rσ+1+ε
m

+ M3 exp
{

(1 + ε) 1
c

· δ

rn
m

}

≤ M3

rσ+1+ε
m

exp
{

(1 + ε) 1
c

· δ

rn
m

}
,

which implies that

(3.10) 1 ≤ M3

rσ+1+ε
m

exp
{[

(1 + ε) 1
c

− (1 − ε)
]

δ

rn
m

}
.

By taking 0 < ε < c−1
1+c

, a contradiction follows in (3.10) as m → ∞. So, |f ′ (z)| ≤ C5.
As above, we obtain that |f (z)| ≤ C6, holds on arg (z0 − z) = θ as z → z0.

Now, we proved that |f (z)| ≤ C on any ray arg (z0 − z) = θ ∈ [0, 2π) \E ∪ H.
Set g (w) = f (z) such that w = 1

z0−z
. g (w) is entire function in C and |g (w)| ≤

C ′ (C ′ > 0) on any ray arg (w) = −θ such that θ ∈ [0, 2π) \E ∪ H. By Phragmen-
Lindelof theorem in sectors, we get that |g (w)| ≤ C ′ in C and By Liouville theorem
we conclude that g (w) is a constant. So, f (z) is constant. We know that the only
constant solution of (1.11) is f ≡ 0. Hence, every solution f (z) ̸≡ 0 of (1.11) is of
infinite order. □

Proof of Theorem 1.4. Assume that f ̸≡ 0 is an analytic solution in C \ {z0} of (1.12).
By Theorem 1.3 and Lemma 2.8, we have σ (f, z0) = ∞ and σ2 (f, z0) = α ≤ n. We
assume that σ2 (f, z0) = α < n, and we prove that is failing. Since the Wiman-Valiron
near a finite singular point (see [10]), we have

(3.11) f (j) (zr)
f (zr)

= (1 + o (1))
(

Vz0 (r)
z0 − zr

)j

, j = 1, 2,
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where |f (zr)| = Mz0 (r, f) = max|z0−z|=r |f (z)| . By Lemma 2.10, there is a sequence{
zm = z0 − rmeiθm

}
, m ≥ 1, such that |f (zm)| = Mz0 (rm, f) , limm→∞ θm = θ∗ ∈

[0, 2π) , rm /∈ E, rm → 0 and for any given ε > 0, we have

lim sup
m→∞

log Vz0 (rm)
− log rm

= ∞,

exp
{

1
rα−ε

m

}
≤ Vz0 (rm) ≤ exp

{
1

rα+ε
m

}
.(3.12)

Set a = α + iβ, z0 − z = reiθ0 , δ = δa (θ∗) = α cos (nθ∗) + β sin (nθ∗) . Since a = cb,
c > 1, we have δb (θ∗) = 1

c
δa (θ∗) = 1

c
δ. There is three cases: (i) δ < 0; (ii) δ > 0; (iii)

δ = 0.
Case (i). δ < 0. By limm→∞θm = θ∗, as m is sufficiently large, we have δb (θm) =

δm < 0, δa (θm) = cδm < 0. From (1.12), we can write
(3.13)∣∣∣∣∣exp

{
−b

(z0 − zm)n

}∣∣∣∣∣ ·
∣∣∣∣∣f ′′

f

∣∣∣∣∣ ≤
∣∣∣∣∣A
( 1

z0 − zm

)
exp

{
a − b

(z0 − zm)n

}∣∣∣∣∣ ·
∣∣∣∣∣f ′

f

∣∣∣∣∣+
∣∣∣∣B ( 1

z0 − zm

)∣∣∣∣ .
Substituting (3.11)–(3.12) into (3.13) and by Lemma 2.1 and Lemma 2.9, for any
given ε (0 < ε < n − α) as m is sufficiently large, we have

exp
{

(1 − ε) −δm

rn
m

}
exp

{
2

rα−ε
m

}
1

r2
m

(1 + o (1))

≤
∣∣∣∣∣exp

{
−b

(z0 − zm)n

}∣∣∣∣∣ ·
∣∣∣∣∣f ′′

f

∣∣∣∣∣
≤ exp

{
(1 − ε) (c − 1) δm

rn
m

}
exp

{
1

rα+ε
m

}
1 + o (1)

rm

+ 1
rd+1

m

≤ exp
{

(1 − ε) (c − 1) δm

rn
m

}
exp

{
1

rα+ε
m

}
1

rd+2
m

,

where d = deg B, which implies

(3.14) exp
{

2
rα−ε

m

}
(1 + o (1)) ≤ exp

{
(1 − ε) c

δm

rn
m

}
exp

{
1

rα+ε
m

}
1

rd
m

.

By taking 0 < ε < max {1, n − α} , the right side of inequality (3.14) tends to zero as
m → ∞. This is a contradiction.

Case (ii). δ > 0. By limm→∞θm = θ∗, as m is sufficiently large, we have δb (θm) =
δm > 0, δa (θm) = cδm > 0. By (1.12), we can write
(3.15)∣∣∣∣∣A

( 1
z0 − zm

)
exp

{
a

(z0 − zm)n

}∣∣∣∣∣ ·
∣∣∣∣∣f ′

f

∣∣∣∣∣ ≤
∣∣∣∣∣f ′′

f

∣∣∣∣∣+
∣∣∣∣∣B
( 1

z0 − zm

)
exp

{
b

(z0 − zm)n

}∣∣∣∣∣ .
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Substituting (3.11)–(3.12) into (3.15) and by Lemma 2.1, as m is sufficiently large,we
have

exp
{

(1 − ε) cδm

rn
m

}
exp

{
1

rα−ε
m

}
(1 + o (1))

rm

≤
∣∣∣∣∣A
( 1

z0 − zm

)
exp

{
a

(z0 − zm)n

}∣∣∣∣∣ ·
∣∣∣∣∣f ′

f

∣∣∣∣∣
≤ exp

{
2

rα+ε
m

}
(1 + o (1))

r2
m

+ exp
{

(1 + ε) δm

rn
m

}

≤ 1
r2

m

exp
{

2
rα+ε

m

}
exp

{
(1 + ε) δm

rn
m

}
,

which implies the following inequality

(3.16) exp
{

1
rα−ε

m

}
(1 + o (1)) ≤ 1

rm

exp
{

2
rα+ε

m

}
exp

{
[(1 + ε) − (1 − ε) c] δm

rn
m

}
.

By taking 0 < ε < max
{

c−1
c+1 , n − α

}
, the right side of inequality (3.16) tends to zero

as m → ∞ and so a contradiction follows.
Case (iii) δ = 0. Since arg (z0 − z) = θ∗ is an asymptotic line of a

(z0−zm)n , there is
m0 > 0 such that as m > m0 we have

e−1 ≤
∣∣∣∣∣exp

{
a

(z0 − zm)n

}∣∣∣∣∣ ≤ e,(3.17)

e
−1
c ≤

∣∣∣∣∣exp
{

b

(z0 − zm)n

}∣∣∣∣∣ ≤ e
1
c .(3.18)

By (1.12), (3.11) and (3.17)–(3.18), we obtain

−
(

Vz0 (rm)
z0 − zm

)2

(1 + o (1)) =A
( 1

z0 − zm

)
exp

{
a

(z0 − zm)n

}(
Vz0 (r)
z0 − zm

)
(1 + o (1))

+ B
( 1

z0 − zm

)
exp

{
b

(z0 − zm)n

}
.(3.19)

By (3.17)–(3.19) and Lemma 2.1, for m large enough, we have(
Vz0 (rm)

rm

)2

(1 + o (1)) ≤ 1
rd+1

m

(
Vz0 (rm)

rm

)
(1 + o (1)) ,

and so

(3.20) Vz0 (rm) ≤ 1
rd

m

(1 + o (1)) ,

where d = max {deg A, deg B} . (3.20) contradicts (3.12). Thus, σ2 (f, z0) ≥ n and by
Lemma 2.8, we obtain σ2 (f, z0) = n. □
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Proof of Theorem 1.5. Assume that f ̸≡ 0 is an analytic solution of (1.10) in C \ {z0}.
From (1.10), we can write

(3.21) |A0 (z)| ≤
∣∣∣∣∣f (k)

f

∣∣∣∣∣+ |Ak−1 (z)| ·
∣∣∣∣∣f (k−1)

f

∣∣∣∣∣+ · · · + |A1 (z)| ·
∣∣∣∣∣f ′

f

∣∣∣∣∣ .
By Lemma 2.2, for any given α > 0 there exists a set E1 ⊂ (0, 1) that has finite
logarithmic measure and a constant λ > 0 that depends only on α such that for all
r = |z − z0| satisfying r /∈ E1, we have

(3.22)
∣∣∣∣∣f (j) (z)

f (z)

∣∣∣∣∣ ≤ λ
[1
r

Tz0 (αr, f)
]2j

, j = 1, . . . , k.

There exist β1, β2 such that max {τM (Aj, z0) : σ (Aj, z0) = σ (A0, z0)} < β1 < β2 <
τM (A0, z0). There exists a set E2 ⊂ (0, 1) that has finite logarithmic measure such
that for all r = |z − z0| satisfying r /∈ E2, we have

(3.23) |Aj (z)| ≤ exp
{

β1

rσ

}
, j = 1, . . . , k.

By Lemma 2.6, there exists a set F ⊂ (0, 1) of infinite logarirhmic measure such that
for all r ∈ F we have

(3.24) Mz0 (r, A0) > exp
{

β2

rσ

}
.

From (3.21)–(3.24), for all z satisfying r = |z − z0| ∈ F\E1 ∪ E2 and |A0 (z)| =
Mz0 (r, A0) , we obtain

exp
{

β2

rσ

}
≤ kλ

[1
r

Tz0 (αr, f)
]2k

exp
{

β1

rσ

}
,

and thus

(3.25) exp
{

β2 − β1

rσ

}
≤ kλ

[1
r

Tz0 (αr, f)
]2k

.

From (3.25), it is easy to obtain that σ2 (f, z0) ≥ σ and combining this with Lemma
2.8, we get the equality σ2 (f, z0) = σ = σ (A0, z0) . □
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